JPS61229365A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS61229365A
JPS61229365A JP6899185A JP6899185A JPS61229365A JP S61229365 A JPS61229365 A JP S61229365A JP 6899185 A JP6899185 A JP 6899185A JP 6899185 A JP6899185 A JP 6899185A JP S61229365 A JPS61229365 A JP S61229365A
Authority
JP
Japan
Prior art keywords
film
thin film
polycrystalline silicon
gate electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6899185A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hosokawa
細川 義和
Yutaka Misawa
三沢 豊
Takaya Suzuki
誉也 鈴木
Nobutake Konishi
信武 小西
Hiroshi Kaneko
洋 金子
Kenji Miyata
健治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6899185A priority Critical patent/JPS61229365A/en
Publication of JPS61229365A publication Critical patent/JPS61229365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode

Abstract

PURPOSE:To make the process at low cost by forming the source-drain region by the process of metal film forming and annealing. CONSTITUTION:On the glass substrate 1, the polycrystalline silicon thin film 2 is formed. The SiO2 film 3 is formed as the gate insulation film, on which the polycrystalline silicon film 4 is formed. By the photoetching, the films 3 and 4 are eliminated, and the gate electrode 4 of the thin film transistor is formed. The metal film 5 is formed by the sputtering method. The silicide film 6 is formed by the heat treatment and a pickling is performed. The passivation film 9 is formed, on a part of which the aperture is installed and the electrodes 10 and 11 are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体素子に係り、特に絶縁基板上に形成する
薄膜トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a thin film transistor formed on an insulating substrate.

〔発明の背景〕[Background of the invention]

従来の薄膜トランジスタは、上記文献に記載のように、
多結晶品質のシリコン薄膜を用いて。
Conventional thin film transistors, as described in the above literature,
Using polycrystalline quality silicon thin film.

MOSトランジスタを形成し、特にソース、ドレン領域
は、イオン打込み法等により不純物のドーパントを拡張
させ、低抵抗の領域を形成し、上記低抵抗領域の一部に
、電極、配線材料を接続布せでいた。
In forming a MOS transistor, especially in the source and drain regions, impurity dopants are expanded by ion implantation or the like to form a low resistance region, and electrodes and wiring materials are connected to a part of the low resistance region. It was.

一般に薄膜トランジスタは、ガラス竺の基板の上に形成
されるが、比較的安価に入手できるガラスを用いると、
ガラスの歪温度が低いため、例えば、はうけい酸ガラス
では580℃、高温での熱処理ができなくなる。そのた
め、イオン打込み後にドパーントを活性化するための熱
処理を、低温で長時間はどこす必要がある。また、長時
間かけて熱処理したとしても単結晶シリコンの場合とは
異なり、逆阻止電圧の高いPn接合を作ることはできず
、オフ状態での高抵抗の確保は、半導体薄膜の固有抵抗
によらねばならない、また、不純物をドーピングした領
域のシート抵抗も、単結晶シリコンにドーピングした場
合よりも大きくなり、配線領域として用いようとすると
、非常に大きな配線対抗となってしまう。
Generally, thin film transistors are formed on a glass substrate, but if glass is available at a relatively low price,
Since the strain temperature of glass is low, for example, silicate glass cannot be heat treated at a high temperature of 580°C. Therefore, after ion implantation, it is necessary to perform heat treatment at low temperature for a long time to activate the dopant. Furthermore, even if heat treatment is performed for a long time, it is not possible to create a Pn junction with a high reverse blocking voltage, unlike in the case of single crystal silicon, and ensuring high resistance in the off state depends on the specific resistance of the semiconductor thin film. In addition, the sheet resistance of the region doped with impurities is also larger than that in the case of doping single crystal silicon, and if an attempt is made to use it as a wiring region, there will be a very large resistance to the wiring.

上記に示したように、シリコン薄膜中に不純物をドーピ
ングする方法では、プロセスが長くなりコスト増加の原
因になるのみでなく、低抵抗の領域が得られないという
欠点がある。
As described above, the method of doping impurities into a silicon thin film not only requires a long process and increases costs, but also has the disadvantage that a region of low resistance cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、薄膜トランジスタのソース、ドレン領
域をイオン打込み等の不純物ドーピングすることなしに
、低抵抗の領域を形成することにある。
An object of the present invention is to form low-resistance regions without doping the source and drain regions of a thin film transistor with impurities such as ion implantation.

〔発明の概要〕[Summary of the invention]

一般に薄膜トランジスタは、オフ状態での抵抗を半導体
薄膜の固有抵抗でもたせており、接合を作る必要がない
ことに着目し、ソース、ドレン領域を金属シリサイド膜
のみで低抵抗化することである。
In general, thin film transistors have off-state resistance based on the specific resistance of a semiconductor thin film, and focusing on the fact that there is no need to create a junction, the idea was to lower the resistance of the source and drain regions by using only metal silicide films.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図によって説明する。第1図は、
薄膜トランジスタの断面図である。
An embodiment of the present invention will be explained with reference to FIG. Figure 1 shows
FIG. 2 is a cross-sectional view of a thin film transistor.

ガラス基板1の上に、島状に形成された多結晶シリコン
の領域2がある。このシリコン領域2は高抵抗の層であ
る。シリコン領域の両端に例えば白金シリサイド等の、
金属シリサイド領域6.8が形成されている。この部分
がソース、ドレン領域であり、PSGの膜等のパッシベ
ーション膜9の開孔部を通して、電極10.11が接続
している。多結晶シリコン領域2の中央部分の表面上に
:ゲート絶縁膜としての5in2膜を介してゲート電極
4が形成されている。上記ゲート電極の表面領域にも、
金属シリサイド膜11が形成されている。
On a glass substrate 1, there is a polycrystalline silicon region 2 formed into an island shape. This silicon region 2 is a high resistance layer. Platinum silicide, etc., on both ends of the silicon region.
A metal silicide region 6.8 is formed. These portions are source and drain regions, and electrodes 10 and 11 are connected through the openings of the passivation film 9 such as a PSG film. A gate electrode 4 is formed on the surface of the central portion of the polycrystalline silicon region 2 via a 5in2 film serving as a gate insulating film. Also in the surface area of the gate electrode,
A metal silicide film 11 is formed.

ソース、ドレン間に電圧を印加しても、ゲート電圧がo
vであれば多結晶シリコン領域2の固有抵抗が高いため
ほとんど電流は流れない、ゲートデン電圧を高くすると
、ゲート電極4の下の多結晶シリコン領域にチャネル1
2が形成され、ソース、ドレン間に電流が流れ出す。
Even if a voltage is applied between the source and drain, the gate voltage is
If the voltage is V, almost no current will flow because the specific resistance of the polycrystalline silicon region 2 is high.If the gate voltage is increased, the channel 1 will flow in the polycrystalline silicon region under the gate electrode 4.
2 is formed, and current begins to flow between the source and drain.

次に本発明の形成プロセスを第2図の断面図により説明
する。
Next, the formation process of the present invention will be explained with reference to the cross-sectional view of FIG.

(a)、ガラス基板1の上に、第1の多結晶又は非晶質
のシリコン薄膜2(以下多結晶シリコン膜と呼ぶ)を形
成し、ホットエツチング技術により。
(a) A first polycrystalline or amorphous silicon thin film 2 (hereinafter referred to as polycrystalline silicon film) is formed on a glass substrate 1 by hot etching technology.

島状に加工する。Process into islands.

(b)、ゲート絶縁膜として、5i02膜3をCVD法
で形成し、その上に第2の多結晶シリコンI!Ii4を
形成する。
(b) As a gate insulating film, a 5i02 film 3 is formed by the CVD method, and a second polycrystalline silicon I! Form Ii4.

(C)、ホトエツチング技術により、上記5i02膜お
よび多結晶シリコンll14を除去し、薄膜トランジス
タのゲート電極をを形成する。
(C) The 5i02 film and the polycrystalline silicon 114 are removed by photoetching to form a gate electrode of a thin film transistor.

(d)、白金、その他の金属膜5をスパッタ法等で形成
する。
(d) A platinum or other metal film 5 is formed by sputtering or the like.

(e)、熱処理をする。金属膜5と多結晶シリコン膜2
,4が反応し、シリサイドI!i6が形成される。その
場合、5i02膜3のエツチング側面では、金属膜5は
反応されずに残る6次に王水等の酸で洗浄する。未反応
の金属層は酸と反応して溶け、シリサイド膜6,7,8
は残る。
(e) Heat treatment. Metal film 5 and polycrystalline silicon film 2
, 4 reacts and silicide I! i6 is formed. In that case, on the etched side of the 5i02 film 3, the metal film 5 remaining unreacted is washed with an acid such as aqua regia. The unreacted metal layer reacts with acid and melts, forming silicide films 6, 7, 8.
remains.

その結果、シリサイド膜6,7.8は。As a result, the silicide films 6, 7.8.

5iOz膜3の側面で分離され、各々電気的分離された
領域になる。
The regions are separated by the side surfaces of the 5iOz film 3 and are electrically isolated from each other.

(5)、次にPSG膜等のパッシベーション膜9を形成
し、その一部に開孔を設け、電極10゜11を形成する
(5) Next, a passivation film 9 such as a PSG film is formed, a hole is provided in a part of the passivation film 9, and an electrode 10.degree. 11 is formed.

その結果リース電極10.ドレン電極11、ゲート電極
4のMOSトランジスタが構成されφ。
As a result, the lease electrode 10. A MOS transistor with a drain electrode 11 and a gate electrode 4 is configured with φ.

ソース、ドレンの抵抗領域は、シリサイド層6゜8で形
成され、この領域はゲート電極5の直下まで延びており
、ゲート電極をマスクとしたいわゆるセルファライン構
造と同じ効果を示している。
The source and drain resistance regions are formed of a silicide layer 6°8, and extend directly below the gate electrode 5, exhibiting the same effect as a so-called self-line structure using the gate electrode as a mask.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ソース、ドレンの領域を、イオン打ち
込み、長時間アニールの工程の代りに、金属膜形成、ア
ニールの工程で形成することができる。プロセスの所要
時間使用装置の価格等で比較すれば、後者の方が、より
安価のプロセスになる。
According to the present invention, the source and drain regions can be formed by metal film formation and annealing steps instead of ion implantation and long-time annealing steps. If you compare the time required for the process and the price of the equipment used, etc., the latter will be a cheaper process.

また、形成された領域のシート抵抗を比較する。Also, the sheet resistances of the formed regions are compared.

発明者らの実験によれば、多結晶シリコンにリンをイオ
ン打ち込みし、500℃、20時間のアニールをした時
のシート抵抗は、100〜600Ω/口であったのに対
し、多結晶シリコンに白金をスパッタし、500℃、1
0分間のアニールしたときのシリサイドのシート抵抗は
、5〜20Ω/口であった。
According to experiments conducted by the inventors, when polycrystalline silicon was ion-implanted with phosphorus and annealed at 500°C for 20 hours, the sheet resistance was 100 to 600 Ω/hole; Sputter platinum, 500℃, 1
The sheet resistance of the silicide when annealed for 0 minutes was 5 to 20 Ω/hole.

このように、低ソシート抵抗のシリサイド層が得られる
ことにより、ソース、ドレン領域の内部抵抗を減らすこ
とができる。また、ソース又はドレン領域を、長く引き
延ばすことにより、配線を減らせることもできる。
In this way, by obtaining a silicide layer with low resistance, the internal resistance of the source and drain regions can be reduced. Furthermore, by extending the source or drain region, the number of wirings can be reduced.

例えば、薄膜トランジスタを、液晶平面ディスプレイの
ドライブ用素子に用いる場合も考える。
For example, consider the case where thin film transistors are used as drive elements for liquid crystal flat displays.

この場合、ドレンには、透明電極を接続する必要がある
。透明電極は、一般にシート抵抗は、50〜500Ω/
口と高く、これを配線に用いると配線抵抗が高くなる。
In this case, it is necessary to connect a transparent electrode to the drain. The transparent electrode generally has a sheet resistance of 50 to 500Ω/
If this is used for wiring, the wiring resistance will be high.

そのために、配線用に他の金属を用いる場合がある。そ
の場合、シリサイド層を設けた多結晶シリコン領域を配
線用に用いれば、配線用金属を別に形成する必要がなく
、プロセスは省略できる。
Therefore, other metals may be used for wiring. In that case, if a polycrystalline silicon region provided with a silicide layer is used for wiring, there is no need to separately form metal for wiring, and the process can be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構造を示す断面図。 第2図は1本発明の素子を形成する工程を説明する断面
図である。 1・・・絶縁物基板、2・・・半導体薄膜、3・・・ゲ
ート絶縁膜、4・・・ゲート電極、5・・・金属膜、6
・・・金属シリサイド、7・・・金属シリサイド、8・
・・金属シリサイド、9・・・絶縁膜、10・・・電極
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating a step of forming an element of the present invention. DESCRIPTION OF SYMBOLS 1... Insulator substrate, 2... Semiconductor thin film, 3... Gate insulating film, 4... Gate electrode, 5... Metal film, 6
...Metal silicide, 7...Metal silicide, 8.
...Metal silicide, 9...Insulating film, 10...Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁物基板の上に島状の多結晶又は非晶質の半導体
薄膜を形成し、上記半導体薄膜の表面にゲート絶縁膜を
介してゲート電極を設け、その両端にリース、ドレン領
域を設けるMOS形薄膜トランジスタにおいて、上記リ
ース、ドレン領域に不純物ドーピングをせず、金属シリ
サイド領域を設けることを特徴とした薄膜トランジスタ
1. Form an island-shaped polycrystalline or amorphous semiconductor thin film on an insulating substrate, provide a gate electrode on the surface of the semiconductor thin film via a gate insulating film, and provide lease and drain regions at both ends of the gate electrode. A MOS type thin film transistor characterized in that the lease and drain regions are not doped with impurities and are provided with metal silicide regions.
JP6899185A 1985-04-03 1985-04-03 Thin film transistor Pending JPS61229365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6899185A JPS61229365A (en) 1985-04-03 1985-04-03 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6899185A JPS61229365A (en) 1985-04-03 1985-04-03 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS61229365A true JPS61229365A (en) 1986-10-13

Family

ID=13389635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6899185A Pending JPS61229365A (en) 1985-04-03 1985-04-03 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS61229365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008218A (en) * 1988-09-20 1991-04-16 Hitachi, Ltd. Method for fabricating a thin film transistor using a silicide as an etch mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008218A (en) * 1988-09-20 1991-04-16 Hitachi, Ltd. Method for fabricating a thin film transistor using a silicide as an etch mask

Similar Documents

Publication Publication Date Title
KR100191091B1 (en) Thin film transistor and its fabrication method
US5904508A (en) Semiconductor device and a method of manufacturing the same
JPH1195256A (en) Active matrix substrate
US6498059B2 (en) Method for fabricating thin film transistor
JP2773221B2 (en) Semiconductor device
JPS6113670A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPH1197699A (en) Thin-film transistor
JPS61229365A (en) Thin film transistor
US6342440B1 (en) Method for forming low-leakage impurity regions by sequence of high-and low-temperature treatments
JPH05114734A (en) Semiconductor device
JP3291069B2 (en) Semiconductor device and manufacturing method thereof
JPH0581054B2 (en)
KR100194677B1 (en) Inverter and its fabrication method
JPH11111985A (en) Manufacture of thin-film transistor and liquid crystal display device
JP3161466B2 (en) Method for manufacturing thin film transistor
JPH0551176B2 (en)
JP2837473B2 (en) Silicon thin film transistor
JPH0936370A (en) Method for manufacturing coplanar type thin-film transistor
JPH0785480B2 (en) Thin film transistor and manufacturing method thereof
JP2911255B2 (en) Semiconductor device and manufacturing method thereof
JPS63300566A (en) Manufacture of thin film transistor
JPS61110462A (en) Semiconductor device and manufacture thereof
JPH0563001A (en) Manufacture of thin film transistor
JPH08248441A (en) Liquid crystal display device
KR100867533B1 (en) Method for fabricating thin film transistor display device