JPS61229108A - Self-standing unmanned vehicle - Google Patents

Self-standing unmanned vehicle

Info

Publication number
JPS61229108A
JPS61229108A JP60072349A JP7234985A JPS61229108A JP S61229108 A JPS61229108 A JP S61229108A JP 60072349 A JP60072349 A JP 60072349A JP 7234985 A JP7234985 A JP 7234985A JP S61229108 A JPS61229108 A JP S61229108A
Authority
JP
Japan
Prior art keywords
unmanned vehicle
ultrasonic
microphone
distance
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072349A
Other languages
Japanese (ja)
Inventor
Yutaka Nakai
裕 中井
Hidemitsu Tabata
田畑 秀光
Masanori Onishi
正紀 大西
Hirotomo Suzuki
鈴木 禮奉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP60072349A priority Critical patent/JPS61229108A/en
Publication of JPS61229108A publication Critical patent/JPS61229108A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals

Abstract

PURPOSE:To measure the distance from a short-distance object so as to make a self-standing unmanned vehicle stronger to physical impacts, by burying a transmitting loudspeaker and receiving microphone in the main body of the unmanned vehicle to a depth corresponding to the pulse width of an ultrasonic pulse. CONSTITUTION:Ultrasonic waves radiated from a buried transmitting loudspeaker A go to the outside through a space produced when the speaker A is buried and reflecting waves of the ultrasonic waves by means of outside objects are inputted in a receiving microphone B through a space produced when the microphone B is buried. Therefore, the propagating distance of the ultrasonic is made longer by the length of the space when compared with the case where the loudspeaker A and microphone B are fitted to the side wall of the unmanned vehicle and measurement of any short-distance objects becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波により外界物体との距離を測定する自立
無人車に関するもので、特に超音波送信スピーカ(送信
用トランスデユーサ)及び受信マイクロホン(受信用ト
ランスデユーサ)の取付けに関するものである口 〔従来の技術〕 第2因は従来の自立無人車c以下、無人車と論う)の構
成側図である。図中、lは無人車の本体。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an autonomous unmanned vehicle that measures the distance to an external object using ultrasonic waves, and particularly relates to an ultrasonic transmitting speaker (transmitting transducer) and a receiving microphone. (Conventional technology) The second factor is a side view of the configuration of a conventional self-supporting unmanned vehicle (hereinafter referred to as unmanned vehicle). In the figure, l is the main body of the unmanned vehicle.

2は壁、3F1床、Cは超音波の送信回路で、超音波周
波数の信号を発生し、その信号を搬送波としてパルス波
形で変調して送信スピーカ(送信用トランスデユーサ)
Aへ出力するとともに、信号を出力し几タイミングのタ
イミング信号を信号処理回路Eへ出力する。Aは送信ス
ピーカで、送信回路Cから入力し几超音波パルス信号を
外界へ超音波として発射する。Bは受信マイクロホンで
送信スピーカAから発射された超音波が、外界の物体。
2 is a wall, 3F1 is a floor, and C is an ultrasonic transmitting circuit that generates an ultrasonic frequency signal, modulates the signal as a carrier wave with a pulse waveform, and sends it to a transmitting speaker (transmitting transducer).
At the same time, it outputs a signal and outputs a timing signal of the timing to the signal processing circuit E. A is a transmitting speaker, which receives an ultrasonic pulse signal from the transmitting circuit C and emits the ultrasonic pulse signal to the outside world as an ultrasonic wave. B is a receiving microphone, and the ultrasonic waves emitted from transmitting speaker A are objects in the outside world.

例えば壁2等に当って反射し、戻ってくる超音波を受信
する。Dtlf超音波パルス信号の受信回路で。
For example, it receives ultrasonic waves that hit a wall 2, etc., are reflected, and return. Dtlf ultrasonic pulse signal receiving circuit.

受信マイクロホンで受信された超音波ノ(ルス信号を入
力し、増巾整形して、その信号が送信スビーカAから発
射された信号と同じものであるか否かを比較器で比較確
認し、同一信号である場合は。
The ultrasonic wave signal received by the receiving microphone is input, amplified and shaped, and a comparator is used to check whether the signal is the same as the signal emitted from the transmitting speaker A. If it's a signal.

その受信したタイミングのタイミング信号を(FI号処
理回路Eへ出力する口Eは信号処理回路で、送信回路C
から入力された超音波発射時のタイミンその差時間t3
 = t2− tl  を測定し、これより無人車と外
界の物体との距離を算出する。第3図は第2図中の送信
スピーカAと受信マイクロホンBとを一つのトランスデ
ユーサFで共用させ、切替スイッチSで発信時はスィッ
チ8t?送信回路C側に倒して超音波を発射し、超音波
を受信するとき。
The port E that outputs the timing signal at the received timing to the FI processing circuit E is a signal processing circuit, and the transmitting circuit C
The difference time t3 from the timing of ultrasonic emission inputted from
= t2-tl is measured, and from this the distance between the unmanned vehicle and an object in the outside world is calculated. In FIG. 3, the transmitting speaker A and the receiving microphone B in FIG. 2 are shared by one transducer F, and when transmitting with the selector switch S, the switch 8t? When tilting the transmitter circuit to the C side to emit and receive ultrasonic waves.

スイッチSを受信回路り側へ倒して受信するようにした
ものである。
The switch S is turned to the receiving circuit side for reception.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記第3図のように送信と受信とを切替スイッチSによ
って切替える場合は、当然、送信を行って−る間は受信
できな込。したがって、超音波パルス信号のパルス巾の
伝播時間の長さに相当するような近接距離での測定は不
可能である。
When switching between transmission and reception using the changeover switch S as shown in FIG. Therefore, measurement at a close distance corresponding to the length of propagation time of the pulse width of the ultrasonic pulse signal is impossible.

又、上記第2図のように送信スピーカAと受信マイクロ
ホンBと全それぞれ設けた場合でも、原理的には可能で
あるが、実際に近接距離の場合は音響ノイズや回路的な
ノイズが混入し、測定可能である。このように従来の無
人車の場合、近接距離の測定が不可能であるという欠点
があった。本発明はこのような従来の欠点を解消するこ
とを目的とする。
In addition, even if transmitting speaker A and receiving microphone B are installed as shown in Figure 2 above, it is theoretically possible, but in reality, acoustic noise and circuit noise may be mixed in when the distance is close. , measurable. As described above, conventional unmanned vehicles have the disadvantage that it is impossible to measure close distances. The present invention aims to eliminate such conventional drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による無人車の構成例図である。 FIG. 1 is a diagram showing an example of the configuration of an unmanned vehicle according to the present invention.

図中1〜3.A−11iiは第2因の場合と、同一部分
を示す。第1図を第2図と対比して理解されるように従
来、送信スピーカA、及び受信マイクロホンBを無人車
の側壁に取付けていたものを1本発明では無人車本体の
中に埋め込み、開口部分のみを外界へ対して開放するよ
うにする0この際、埋め込む深さは1次のことを考慮し
て決定すればよい。■超音波パルスのパルス巾が大きけ
れば太き論程、深く埋め込む。これハ、ハルス中が太き
bと、外界の物体に当って反射し、パルス巾の先端が帰
ってくる時点で未だパルス巾の後端が発射されて偽ない
と、前述のように切替スイッチの切替が不能になり几り
、ノイズが生じ九りして近接距離の測定が不可能になる
からである。■実際の場合は、測定精度を上げるため、
−回のパルス発射のみでなく、続げで一定の周期でパル
スを発射するが、このときのパルス周波数が大きければ
大きい糧、余り深(は埋め込めない。これは、前に発射
すれたパルスが未だ帰ってとな−うちに次のパルスが発
射されると混乱が生ずる几めである。■距離が遠くなる
と外界物体におはる反射角が小さくなり、距離が近くな
ると外界物体における反射角が大きくならな込と定まつ
几位置に設置された受信マイクロホンBに反射波が入力
されにくくなる口 したがって、距離と超音波の指向特性(反射角)とは極
カ一致させるようにしなければならな込。
1 to 3 in the figure. A-11ii shows the same part as in the case of the second factor. As can be understood by comparing FIG. 1 with FIG. 2, in the past, the transmitting speaker A and the receiving microphone B were mounted on the side wall of an unmanned vehicle, but in the present invention, they are embedded inside the unmanned vehicle body and are opened through an opening. In this case, the depth of embedding may be determined by considering the first order. ■If the pulse width of the ultrasonic pulse is large, the thicker it is, the deeper it will be embedded. In this case, if the Hals medium is thick, it will be reflected by hitting an object in the outside world, and when the leading edge of the pulse width returns, the trailing edge of the pulse width will still be emitted. This is because the switching becomes impossible and the noise is generated, making it impossible to measure the close distance. ■In actual cases, to improve measurement accuracy,
- It does not only emit pulses once, but also emit pulses at a certain period in succession.The higher the pulse frequency at this time, the greater the effect; Don't go home yet - this is a method that will cause confusion when the next pulse is emitted. ■As the distance increases, the angle of reflection on the external object decreases, and as the distance decreases, the angle of reflection on the external object decreases. The larger the distance, the more difficult it is for reflected waves to be input to the receiving microphone B installed at a fixed position. Therefore, the distance and the directivity characteristics (reflection angle) of the ultrasonic waves must be made to closely match. Including.

このため、距離に関係する埋め込み深さは超音波特性を
考慮して定める必要がある。
For this reason, the embedding depth, which is related to the distance, must be determined in consideration of the ultrasonic characteristics.

〔作用〕[Effect]

埋め込まれた送信スピーカAから発射される超音波は埋
め込まれた几めにできた空間を通って外界へ出て行き、
又、外界物体で反射し九反射波は受信マイクロホンBが
埋め込まれ几ため、それによってできた空間を通って受
信マイクロホンBに入力される。したがって、従来の場
合に比し、埋め込まれてでき比空間距離分だけ超音波の
伝播する[liが長くなる。この几め、従来、近距離の
物体の測定が不可能であったものが1本発明により。
The ultrasonic waves emitted from the embedded transmitting speaker A go out to the outside world through the carefully constructed embedded space.
Further, the nine reflected waves reflected by external objects are input into the receiving microphone B through the space created by the embedded receiving microphone B. Therefore, compared to the conventional case, the ultrasonic wave propagates [li] longer by the space distance that can be embedded. With this method, the present invention has made it impossible to measure objects at close range.

見かけ上、遠距離になることから測定可能となる。Since it appears to be far away, it can be measured.

〔発明の効果〕 ■前述のように近距離物体との距離測定が可能となり、
又、同時に■無人車の外板に突出部がなくなる几め、物
理的衝撃にも強くなり、無人車そのものも実質上小型に
なったと同じ効果が生ずる。
[Effects of the invention] ■As mentioned above, it becomes possible to measure distances to objects at close range,
At the same time, (1) the outer panel of an unmanned vehicle has no protruding parts, making it more resistant to physical shocks, and the same effect is produced as if the unmanned vehicle itself had become substantially smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による自立無人車の構成例図。 第2図は従来の自立無人車の構成側図、第3図は第2図
中の送信スピーカAど受信マイクロホンB?一つのトラ
ンスデユーサFで兼用した場合の接続側図である。
FIG. 1 is a diagram showing an example of the configuration of an autonomous unmanned vehicle according to the present invention. Figure 2 is a side view of the configuration of a conventional autonomous unmanned vehicle, and Figure 3 is where the transmitting speaker A and receiving microphone B in Figure 2 are located. It is a connection side view when one transducer F is used for both purposes.

Claims (1)

【特許請求の範囲】 1、自立無人車に送信回路(C)、送信スピーカ(A)
。 受信マイクロホン(B)、受信回路(D)、信号処理回
路(E)からなる超音波センサ装置を取付け、上記送信
回路(C)で超音波信号を発生させて上記マイクロホン
(B)で外界に対し超音波を発射し、その超音波が外界
の物体に当って反射し、戻ってくるのを上記受信マイク
ロホン(B)及び上記受信回路(D)で受信し、上記信
号処理回路(E)で上記超音波の発射から受信までの時
間を計測することにより自立無人車と外界の物体との距
離を求めるようにした自立無人車に於て、上記送信スピ
ーカ(A)及び上記受信マイクロホン(B)を自立無人
車内に埋込んで取付けるようにした自立無人車。
[Claims] 1. A transmitting circuit (C) and a transmitting speaker (A) in an autonomous unmanned vehicle
. An ultrasonic sensor device consisting of a receiving microphone (B), a receiving circuit (D), and a signal processing circuit (E) is attached, and the transmitting circuit (C) generates an ultrasonic signal and the microphone (B) transmits it to the outside world. An ultrasonic wave is emitted, the ultrasonic wave hits an object in the outside world, is reflected, and is received by the receiving microphone (B) and the receiving circuit (D), and is received by the signal processing circuit (E). In an autonomous unmanned vehicle that determines the distance between an autonomous unmanned vehicle and an object in the outside world by measuring the time from emission to reception of ultrasonic waves, the transmitting speaker (A) and the receiving microphone (B) are installed. An autonomous unmanned vehicle that is embedded and installed inside an autonomous unmanned vehicle.
JP60072349A 1985-04-04 1985-04-04 Self-standing unmanned vehicle Pending JPS61229108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072349A JPS61229108A (en) 1985-04-04 1985-04-04 Self-standing unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072349A JPS61229108A (en) 1985-04-04 1985-04-04 Self-standing unmanned vehicle

Publications (1)

Publication Number Publication Date
JPS61229108A true JPS61229108A (en) 1986-10-13

Family

ID=13486738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072349A Pending JPS61229108A (en) 1985-04-04 1985-04-04 Self-standing unmanned vehicle

Country Status (1)

Country Link
JP (1) JPS61229108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363212U (en) * 1989-10-17 1991-06-20
JPH03100908U (en) * 1990-01-31 1991-10-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496056U (en) * 1972-04-19 1974-01-19
JPS5140233A (en) * 1974-09-30 1976-04-03 Sanyo Electric Co MOJINYOTENYAKUKI
JPS59116814A (en) * 1982-12-22 1984-07-05 Aisin Seiki Co Ltd Annunciator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496056U (en) * 1972-04-19 1974-01-19
JPS5140233A (en) * 1974-09-30 1976-04-03 Sanyo Electric Co MOJINYOTENYAKUKI
JPS59116814A (en) * 1982-12-22 1984-07-05 Aisin Seiki Co Ltd Annunciator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363212U (en) * 1989-10-17 1991-06-20
JPH03100908U (en) * 1990-01-31 1991-10-22

Similar Documents

Publication Publication Date Title
US4858203A (en) Omnidirectional distance measurement system
US4964104A (en) System for measuring position using electronic or ultrasonic devices
JPS61229108A (en) Self-standing unmanned vehicle
JP2001133549A (en) Obstacle determining method
JPS6264973A (en) Ultrasonic range finder
JPS648313B2 (en)
JPS61180390U (en)
JP2828259B2 (en) Fish finder
JPS6361976A (en) Ultrasonic switch
JPH0474990A (en) Distance meter
JPH06317662A (en) Ultrasonic device
JPS63193085A (en) Ultrasonic range finder
JP3162873B2 (en) Ship speed measuring device
JPH11326512A (en) Ultrasonic range finder
CN1103717A (en) Method for increasing measuring range of ultrasonic wave range finder
JPH06317663A (en) Ultrasonic device
JP3388660B2 (en) Underwater position measurement method and device
JPS58122412A (en) Position detecting method of moving body in pipeline
JPH0140072Y2 (en)
JPH0763848A (en) Ultrasonic equipment for measuring distance
JPS61172084A (en) Ultrasonic detector
JPH0219911Y2 (en)
JPS61286780A (en) Ultrasonic range finder
JPS62147383A (en) Ultrasonic range finder
JPS63284483A (en) Distance measuring instrument