JPH11326512A - Ultrasonic range finder - Google Patents

Ultrasonic range finder

Info

Publication number
JPH11326512A
JPH11326512A JP13497298A JP13497298A JPH11326512A JP H11326512 A JPH11326512 A JP H11326512A JP 13497298 A JP13497298 A JP 13497298A JP 13497298 A JP13497298 A JP 13497298A JP H11326512 A JPH11326512 A JP H11326512A
Authority
JP
Japan
Prior art keywords
signal
pulse
ultrasonic
received
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13497298A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
朗 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Soc Corp
Original Assignee
Showa Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Optronics Co Ltd filed Critical Showa Optronics Co Ltd
Priority to JP13497298A priority Critical patent/JPH11326512A/en
Publication of JPH11326512A publication Critical patent/JPH11326512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic range finder which excludes an external noise causing an erroneous distance measurement, other disturbing waves and an influence by a change in a receiving signal due to an interference and which can measure a distance precisely. SOLUTION: In an ultrasonic range finder, a transmitting signal by reference pulses and by ultrasonic carrier waves is radiated from a transmitter 13 to an object to be measured, a receiving signal which is reflected by the object to be measured is received by a receiver 14, receiving pulses are created on the basis of the receiving signal, the time difference between the reference pulses and the receiving pulses is measured, and a distance is measured. In the ultrasonic range finder, the receiving signal is received by two receivers 14a, 14b, respective receiving signals are changed into a correction receiving signal via an OR coupled circuit 15, the receiving pulses are created so as to be used as the transmitting signal, and a negative-logic (L-active) signal which transmits the ultrasonic carrier waves is used during a period excluding the generation period of the reference pulses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波信号によっ
て目標物までの距離を測定する超音波距離計に関し、特
に外来ノイズによって誤った距離測定が行われる確率を
低減し、測定精度を高める機能を付加させた超音波距離
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic range finder for measuring a distance to a target by using an ultrasonic signal, and more particularly to a function of reducing the probability of erroneous distance measurement being performed due to external noise and improving the measurement accuracy. The present invention relates to an ultrasonic distance meter to which is added.

【0002】[0002]

【従来の技術】この種の超音波距離計は、図1で示すよ
うに距離計本体Aに一対をなす送波器3と受波器4が装
備され、送波器3から通常は搬送周波数を40KHz程
度の超音波信号とした基準パルスを被測定物Bとなる目
標物に発射し、被測定物Bからの反射波を受波器4で受
けて基準パルスが戻るまでの時間を計測して距離の測定
を行うものであり、例えばコンベアで移送中の物体の検
出や物体の高さの判別或いは自動ドアや侵入警報機にお
ける人体の検出など各種分野で使用されているが、その
一例としては図2で示すブロック図及び図3で示す図2
の各部波形図のように構成されている。
2. Description of the Related Art As shown in FIG. 1, this type of ultrasonic range finder is equipped with a pair of a transmitter 3 and a receiver 4 in a range finder main body A, and the transmitter 3 normally receives a carrier frequency. A reference pulse, which is an ultrasonic signal of about 40 KHz, is emitted to a target object to be measured B, and the time until the reference pulse returns after the reflected wave from the measured object B is received by the receiver 4 and measured. It is used in various fields such as detection of an object being transported on a conveyor, determination of the height of an object, or detection of a human body in an automatic door or an intrusion alarm, for example. Is the block diagram shown in FIG. 2 and FIG.
Are configured as shown in the waveform diagram of each part.

【0003】図2,3において、パルス発生回路1は所
定時間間隔毎に基準パルス101を発生し、搬送波発生
回路2では基準パルス101が入力される毎に、当該基
準パルス101をゲート信号としてパルス幅の期間中だ
け間欠的に超音波の搬送波を送波器3へ出力し、送波器
3から送波信号103を被測定物Bに向けて発射する
が、この場合の送波論理は基準パルス101の発生期間
中だけ送波信号103を発生するようにした正論理(H
アクティブ)による。
In FIGS. 2 and 3, a pulse generation circuit 1 generates a reference pulse 101 at predetermined time intervals, and a carrier wave generation circuit 2 uses the reference pulse 101 as a gate signal every time the reference pulse 101 is input. The carrier wave of the ultrasonic wave is output intermittently to the transmitter 3 only during the width period, and the transmitter 3 emits the transmission signal 103 toward the DUT B. In this case, the transmission logic is based on the reference. Positive logic (H) that generates the transmission signal 103 only during the generation period of the pulse 101
Active).

【0004】発射した送波信号103は被測定物Bで反
射して受波信号104として受波器4に戻り、この受波
信号104を増幅回路5で十分なレベルまで増幅した後
に、検波回路6で検波してその包絡線(エンベロープ)
が形成する信号検出パルス105を検出するが、予め設
定した一定レベルh1以上の信号検出パルス105が検
波回路6の出力から検出されると、信号検出パルス10
5をトリガパルスとしてその前縁(リーディングエッ
ジ)により、信号レベル判定回路7ではこれを矩形波に
波形整形して受信パルス107を計数回路9に送る。
The transmitted transmission signal 103 is reflected by the DUT B and returns to the receiver 4 as a reception signal 104. After the reception signal 104 is amplified to a sufficient level by the amplifier circuit 5, the detection circuit Detected at 6 and its envelope (envelope)
Is detected, the signal detection pulse 105 having a predetermined level h1 or higher is detected from the output of the detection circuit 6 when the signal detection pulse 105 is detected.
With the leading edge (leading edge) of 5 as a trigger pulse, the signal level determination circuit 7 shapes the waveform into a rectangular wave and sends the received pulse 107 to the counting circuit 9.

【0005】計数回路9には、信号レベル判定回路7か
らの受信パルス107の他に、パルス発生回路1からの
基準パルス101と、クロック発生回路8からのクロッ
クパルス108が入力されるが、基準パルス101の立
ち上がりでクロックパルス108のカウントがスタート
し、受信パルス107の立ち上がりでカウントがストッ
プするように設定され、これらの入力パルスに基づいて
計数回路9から距離信号109が出力される。
The counting circuit 9 receives a reference pulse 101 from the pulse generation circuit 1 and a clock pulse 108 from the clock generation circuit 8 in addition to the reception pulse 107 from the signal level determination circuit 7. The counting of the clock pulse 108 is started at the rising edge of the pulse 101, and the counting is stopped at the rising edge of the receiving pulse 107. The counting circuit 9 outputs the distance signal 109 based on these input pulses.

【0006】この基準パルス101と受信パルス107
の立ち上がりの時間間隔Tは被測定物Bまでの距離に比
例するので、カウント終了時に計数回路9から出力され
る距離信号109(時間間隔Tにおけるクロックパルス
108のカウント値)によって距離を測定することがで
き、計数回路9は次の基準パルス101の立ち上がりで
前回のカウント値をリセットすると同時に新たにカウン
トをスタートし、次の受信パルス107の立ち上がりで
カウントをストップすると同時にカウント値をラッチ
し、次回のカウントがストップするまで継続して出力す
る。
The reference pulse 101 and the reception pulse 107
Since the rising time interval T is proportional to the distance to the device under test B, the distance is measured by the distance signal 109 (the count value of the clock pulse 108 at the time interval T) output from the counting circuit 9 at the end of counting. The counting circuit 9 resets the previous count value at the next rising edge of the reference pulse 101 and starts a new counting at the same time, and stops counting at the next rising edge of the receiving pulse 107 and latches the count value at the same time. Output continuously until counting stops.

【0007】前記構成による従来の超音波距離計の場合
には、搬送波として使用している40KHzの超音波成
分を含んだ外来の超音波ノイズ、例えば金属の摩擦音や
拍手或いはエアブレーキ音などによるノイズ源からの影
響を受け易く、これらの超音波ノイズが時系列的に基準
パルス101と受信パルス107の間に到来すると、受
信パルス107と見誤って距離を短めに計測する誤った
距離測定をしてしまう恐れがあり、特に送波信号103
をHアクティブで送波している場合には外来ノイズの影
響を受け易かった。
In the case of the conventional ultrasonic range finder having the above-described configuration, extraneous ultrasonic noise containing an ultrasonic component of 40 KHz used as a carrier wave, for example, noise due to frictional sound of metal, clapping or air brake sound. When these ultrasonic noises arrive between the reference pulse 101 and the reception pulse 107 in a time-series manner, an erroneous distance measurement that measures the distance short by mistake as the reception pulse 107 is performed. The transmission signal 103
Was transmitted with H active, it was susceptible to external noise.

【0008】例えば、図4のように正規の受波信号10
4a,104aの間にノイズ信号104nが混入する
と、このノイズ信号104nによってノイズ検出パルス
105nが検出され、このノイズ検出パルス105nに
基づいて正規の受信パルス107aよりパルス幅の狭い
偽の受信パルス107nが造られるので、これを次に到
達すべき受波信号104aに基づく受信パルスと見誤っ
て、正規の距離信号t1より距離の短い距離信号t2と
して短めに計測する誤った距離測定が行われる。
For example, as shown in FIG.
When the noise signal 104n is mixed between the noise detection pulses 4a and 104a, a noise detection pulse 105n is detected by the noise signal 104n. Based on the noise detection pulse 105n, a false reception pulse 107n having a narrower pulse width than the normal reception pulse 107a is generated. Since it is made, it is erroneously regarded as a received pulse based on the received signal 104a to be reached next, and an erroneous distance measurement is performed in which the distance is measured as a distance signal t2 shorter than the normal distance signal t1.

【0009】この課題を解決すべく本件出願人は、ノイ
ズ測定回路が外来の超音波ノイズを検出することによっ
て、正しい反射波に基づかない距離測定データを排除
し、またデータ保持回路ではノイズ測定回路が外来の超
音波ノイズを検出した直前の距離測定データも信頼でき
ないものとして排除することで、誤った距離測定が行わ
れる確率を低減させて測定精度を高めるようにした超音
波距離計について、先に特願平9−307461号で提
案した。
In order to solve this problem, the applicant of the present application proposes that a noise measuring circuit detects extraneous ultrasonic noise, thereby eliminating distance measurement data not based on a correct reflected wave, and a noise measuring circuit in a data holding circuit. Ultrasonic rangefinders that reduce the probability of erroneous distance measurement by increasing the measurement accuracy by eliminating the distance measurement data immediately before the detection of extraneous ultrasonic noise as unreliable, In Japanese Patent Application No. 9-307461.

【0010】また前記提案による超音波距離計の場合に
は、距離測定とノイズ測定を交互に行っているために距
離の測定結果が直ぐに出力されないでワンテンポ遅れる
弊害があるので、この点を改善するために正しい距離測
定信号と外来の超音波ノイズとを識別する手段として、
距離測定期間中における受信パルスの継続時間即ちパル
ス幅の大小によって両者を識別させ、ノイズ検出部では
予め設定された継続時間(設定パルス幅)の範囲外の受
信パルスは超音波ノイズと判別させ、これを距離信号出
力に反映させるようにした超音波距離計について、別に
特願平10−6375号で提案した。
In the case of the ultrasonic range finder according to the above proposal, since the distance measurement and the noise measurement are performed alternately, there is a disadvantage that the distance measurement result is not output immediately and is delayed by one tempo. As a means to identify the correct distance measurement signal and extraneous ultrasonic noise,
The duration of the received pulse during the distance measurement period, that is, the magnitude of the pulse width is used to distinguish between the two, and the noise detection unit determines that the received pulse outside the range of the preset duration (set pulse width) is ultrasonic noise, An ultrasonic range finder in which this is reflected in the distance signal output has been separately proposed in Japanese Patent Application No. 10-6375.

【0011】[0011]

【発明が解決しようとする課題】ところが、誤った距離
測定が行われる原因としては前記した外部ノイズ源から
発生された外来ノイズによる場合の他に、被測定物から
の反射波とは別に周辺物体からの疑似反射波がエコーと
して戻ってくる場合や、被測定物から周辺物体を経由し
て二重反射波が干渉波として戻ってくる場合もあり、こ
れらに対応して正確な距離測定を行うことは前記した従
来の超音波距離計では困難であり、また本件出願人の前
記した構想による超音波距離計でも不十分であった。
However, the cause of the erroneous distance measurement is not only the above-mentioned external noise generated from the external noise source, but also a peripheral object other than the reflected wave from the object to be measured. In some cases, the pseudo-reflected wave from the object returns as an echo, and sometimes the double-reflected wave returns as an interference wave from the DUT via the surrounding object, and accurate distance measurement is performed accordingly. This is difficult with the conventional ultrasonic range finder described above, and the ultrasonic range finder according to the above-described concept of the present applicant was also insufficient.

【0012】即ち、被測定物からの反射波である真の受
波信号以外に、被測定物より距離の離れた周辺の物体か
らの疑似反射波である偽の受波信号もあり、この偽の受
波信号が次の測定期間の基準パルス101と受信パルス
107の間にエコーとして後から戻ってくると、特に送
波信号をHアクティブで送波している場合には真偽を見
分けることができず、エコーを受信パルス107と見誤
って距離を短めに計測する誤った距離測定をしてしまう
恐れがあった。
That is, in addition to a true received signal which is a reflected wave from the object to be measured, there is also a false received signal which is a pseudo reflected wave from a peripheral object which is farther away from the object to be measured. If the received signal returns later as an echo between the reference pulse 101 and the received pulse 107 in the next measurement period, it can be determined whether the transmitted signal is H-active or not. Therefore, there is a possibility that an erroneous distance measurement for measuring the distance to be shorter by mistake in regarding the echo as the reception pulse 107 may be performed.

【0013】また、送波信号には広がりがあるので、被
測定物に反射して直接戻ってくる反射波だけではなく、
一旦被測定物に反射した後に周囲の物体にも当たってか
ら戻ってくる二重反射波もあり、これらの反射波が受波
器の位置で干渉を起こし、各反射波の位相が逆になった
状態で合成されると、特に一対の送受波器を用いた構成
の場合には受波信号が減少するので、計測に必要な受信
レベル以下になると距離測定が不能になってしまうが、
この干渉の影響は図1のように一対の送受波器3,4を
用いた構成では回避できない。
[0013] Further, since the transmitted signal has a spread, not only the reflected wave directly reflected by the object to be measured but returned directly,
There are also double reflected waves that return to the object under measurement after they have hit the surrounding object and then return.These reflected waves cause interference at the receiver, and the phases of the reflected waves are reversed. When combined in a state where it is combined, especially in the case of a configuration using a pair of transducers, the received signal decreases, so if the reception level required for measurement becomes less than the distance measurement becomes impossible,
The influence of this interference cannot be avoided by a configuration using a pair of transducers 3 and 4 as shown in FIG.

【0014】そこで本発明による超音波距離計では、誤
った距離測定が行われる原因である前記した外来ノイズ
による場合は勿論、疑似反射波がエコーとして戻ってく
る場合や二重反射波が干渉波として戻ってくる場合にも
対応して、また受波信号の強弱を補正して正確な距離測
定を行うことができるようにした超音波距離計の提供を
目的とするものである。
Therefore, in the ultrasonic range finder according to the present invention, not only the case of the above-mentioned external noise, which is the cause of the erroneous distance measurement, but also the case where the pseudo reflected wave returns as an echo and the case where the double reflected wave is the interference wave It is another object of the present invention to provide an ultrasonic range finder capable of performing accurate distance measurement by correcting the strength of a received signal and responding to the case of returning.

【0015】[0015]

【課題を解決するための手段】本発明は、基準パルスと
超音波搬送波による送波信号を送波器から被測定物に発
射させ、被測定物から反射した受波信号を受波器で受信
すると共に、当該受波信号に基づいて受信パルスを造
り、上記基準パルス(スタート信号)と受信パルス(ス
トップ信号)の時間差を計測して距離の測定を行う超音
波距離計において、上記受波信号を異なった入力条件で
受信する位置に配置した2つの受波器で受信させ、各受
波信号は論理和回路を介して補正受波信号として取出
し、当該補正受波信号から上記受信パルスを造るように
した。
SUMMARY OF THE INVENTION According to the present invention, a transmission signal based on a reference pulse and an ultrasonic carrier is emitted from a transmitter to an object to be measured, and a received signal reflected from the object is received by a receiver. An ultrasonic range finder that generates a reception pulse based on the received signal, measures a time difference between the reference pulse (start signal) and the received pulse (stop signal), and measures the distance. Are received by two receivers arranged at positions for receiving under different input conditions, each received signal is taken out as a corrected received signal via an OR circuit, and the received pulse is formed from the corrected received signal. I did it.

【0016】この超音波距離計によると、反射波の干渉
その他の原因で受波信号に強弱があった場合でも、二つ
の受波器のうちの何れか一方が正確な距離測定に適した
受波信号を受信していれば、干渉等による影響を軽減さ
せた状態で正確な距離測定が可能になるものであり、こ
の構想は送波信号として後述する上記基準パルスの発生
期間中を除いた期間に上記超音波搬送波を送波する負論
理(Lアクティブ)信号を用いた場合だけではなく、従
来技術のように上記基準パルスの発生期間中のみ上記超
音波搬送波を送波する正論理(Hアクティブ)信号を用
いた場合にも適用することができる。
According to this ultrasonic range finder, even if the received signal is weak due to interference of reflected waves or other causes, one of the two receivers receives a signal suitable for accurate distance measurement. If a wave signal is received, accurate distance measurement can be performed in a state in which the influence of interference or the like is reduced, and this concept is excluded as a transmission signal during a period during which the reference pulse described later is generated. Not only when a negative logic (L active) signal for transmitting the ultrasonic carrier is used during the period, but also for a positive logic (H) for transmitting the ultrasonic carrier only during the generation period of the reference pulse as in the related art. The present invention can also be applied to a case where an (active) signal is used.

【0017】別の本発明は、基準パルスと超音波搬送波
による送波信号を送波器から被測定物に発射させ、被測
定物から反射した受波信号を受波器で受信すると共に、
当該受波信号に基づいて受信パルスを造り、上記基準パ
ルス(スタート信号)と受信パルス(ストップ信号)の
時間差を計測して距離の測定を行う超音波距離計におい
て、上記送波信号として、上記基準パルスの発生期間中
を除いた期間に上記超音波搬送波を送波する負論理(L
アクティブ)信号を用いたものである。
According to another aspect of the present invention, a transmitter transmits a transmission signal based on a reference pulse and an ultrasonic carrier to an object to be measured, and receives a received signal reflected from the object to be measured by the receiver.
In an ultrasonic range finder that generates a reception pulse based on the received signal and measures a time difference between the reference pulse (start signal) and the received pulse (stop signal) to measure a distance, the transmission signal is Negative logic (L) for transmitting the ultrasonic carrier during a period except during the generation period of the reference pulse
Active) signal.

【0018】この超音波距離計によると、送波論理とし
てLアクティブを用いているので、計測を行った際に受
波信号中のハイ(H)の部分である超音波搬送波に外来
ノイズ信号が混入した場合にも、ストップ信号となる受
信パルスを生成する基準パルスには何ら影響を及ぼすこ
とはなく、即ち外来ノイズ信号によって受信パルスは生
成されないので、Hアクティブを用いた従来の方式の場
合のように外来ノイズ信号を受波信号と誤認して誤った
計測することは回避される。
According to this ultrasonic range finder, since L-active is used as the transmission logic, an extraneous noise signal is added to the ultrasonic carrier, which is the high (H) portion of the received signal, when the measurement is performed. Even in the case of mixing, there is no influence on the reference pulse for generating the reception pulse serving as the stop signal. That is, since the reception pulse is not generated by the external noise signal, the conventional method using the H active is used. As described above, erroneous measurement by erroneously recognizing an external noise signal as a received signal is avoided.

【0019】また受波信号中のロー(L)の部分である
基準パルスに外来ノイズ信号が混入した場合において、
この外来ノイズ信号のパルス幅が基準パルスに比べて長
いと、当該外来ノイズ信号によってロー(L)の部分が
埋められてしまうので、その際には受信パルスは生成さ
れないで計測は行われず、少なくとも外来ノイズ信号に
よる誤った距離測定は回避される。
Further, when an external noise signal is mixed in a reference pulse which is a low (L) part in a received signal,
If the pulse width of the extraneous noise signal is longer than the reference pulse, the extraneous noise signal fills the low (L) portion. At that time, no reception pulse is generated and measurement is not performed. False distance measurements due to extraneous noise signals are avoided.

【0020】また受波信号中のロー(L)の部分である
基準パルスに外来ノイズ信号が混入した場合において、
この外来ノイズ信号のパルス幅が短くて且つ基準パルス
の直前に混入した際には、仮に外来ノイズ信号によって
擬似的な受信パルスが発生しても、正規の受波信号で受
信パルスを発生した際とのタイミング差は僅かであっ
て、そのズレが計測時間Tに比べて極めて短い(例えば
1/30)範囲内では計測結果には殆ど影響を与えな
い。
When an external noise signal is mixed in a reference pulse which is a low (L) portion in a received signal,
If the pulse width of this extraneous noise signal is short and mixed immediately before the reference pulse, even if a spurious reception pulse is generated by the extraneous noise signal, the reception pulse is generated by the regular reception signal. And the timing difference between them is very small, and when the deviation is extremely short (for example, 1/30) as compared with the measurement time T, the measurement result is hardly affected.

【0021】また受波信号中のロー(L)の部分である
基準パルスに外来ノイズ信号が混入した場合において、
この外来ノイズ信号が正規の受波信号で受信パルスを発
生した直後に混入した際には、例え外来ノイズ信号によ
って擬似的な受信パルスが発生することがあっても、正
規の受信パルスによって既に距離計測は完了しているの
で、誤った計測が行われることはない。
When an external noise signal is mixed in a reference pulse which is a low (L) portion in a received signal,
When this extraneous noise signal is mixed immediately after generating a reception pulse in a regular reception signal, even if a pseudo reception pulse is generated by the extraneous noise signal, the distance is already set by the regular reception pulse. Since the measurement has been completed, no erroneous measurement is performed.

【0022】また周辺の物体からの疑似反射波によるエ
コーノイズが、次の測定期間の基準パルスと受信パルス
の間に混入した場合には、このエコーノイズ信号は受波
信号中でも期間の長いハイ(H)の部分即ち超音波搬送
波に混入して埋没する確率が高く、その際にはエコーノ
イズ信号によって受信パルスは生成されないので、Hア
クティブを用いた従来の方式の場合に比べて、誤った計
測を行う確率は極めて少なくなる。
When echo noise due to a pseudo-reflected wave from a surrounding object mixes between a reference pulse and a received pulse in the next measurement period, this echo noise signal is a high (long) signal even in a received signal. H), that is, the probability of being buried by mixing into the ultrasonic carrier wave is high, and in that case, no reception pulse is generated by the echo noise signal. Therefore, erroneous measurement is performed as compared with the conventional method using H active. Is extremely low.

【0023】更に別の本発明は、送波信号として負論理
(Lアクティブ)信号を用い且つ、受波信号を異なった
入力条件で受信する位置に配置した2つの受波器で受信
させると共に、各受波信号は論理和回路を介して補正受
波信号として取出して受信パルスを造るようにした超音
波距離計であり、この超音波距離計では既に説明した本
発明の双方の効果を得ることができる。
According to still another aspect of the present invention, a negative logic (L active) signal is used as a transmission signal, and a reception signal is received by two receivers arranged at positions for receiving reception signals under different input conditions. Each received signal is an ultrasonic range finder that takes out a corrected received signal via an OR circuit to form a reception pulse, and this ultrasonic range finder can obtain both effects of the present invention already described. Can be.

【0024】なお、送波信号として負論理(Lアクティ
ブ)信号を用いた上記超音波距離計の場合には、受波信
号又は補正受波信号から検波回路で超音波搬送波成分を
除去すると共に、リミット回路でエンベロープの脈動分
を除去して得られた一定レベル以上の基準パルス成分を
信号検出パルスとし、当該信号検出パルスをトリガパル
スとして波形整形した受信パルスを生成することが望ま
しく、これによって受波信号中に混入した外来ノイズや
疑似反射波その他の計測精度を低下させる妨害波の影響
を軽減させ、負論理(Lアクティブ)信号を用いた効果
が容易に且つより確実に達成される。
In the case of the above ultrasonic range finder using a negative logic (L active) signal as a transmission signal, an ultrasonic carrier component is removed from a received signal or a corrected received signal by a detection circuit. It is preferable that a reference pulse component having a certain level or more obtained by removing a pulsating portion of the envelope by a limit circuit is used as a signal detection pulse, and a reception pulse shaped by using the signal detection pulse as a trigger pulse is generated. The effect of extraneous noise mixed in the wave signal, a pseudo-reflected wave, and other interfering waves that lower the measurement accuracy is reduced, and the effect using the negative logic (L active) signal is easily and more reliably achieved.

【0025】[0025]

【発明の実施の形態】以下、本発明の超音波距離計につ
いて実施の形態を説明するが、図5は第1の実施形態に
よる超音波距離計のブロック図を、図6は図5の距離計
による送受波状態を説明する模式図を、図7は図5の距
離計に装備された送受波器の配置を説明する平面図を、
図8〜11は図5の距離計における各部波形図であっ
て、特に図8は受波信号のハイの部分に外来ノイズが混
入した場合を、図9は受波信号のローの部分に外来ノイ
ズが混入した場合を、図10は受波信号に疑似反射波が
混入した場合を、図11は受波信号に二重反射波が混入
した場合を、図12は図9の詳細な要部波形図を、図1
3は第2の実施形態による超音波距離計のブロック図
を、図14は図13の距離計における各部波形図を示す
ものである。
FIG. 5 is a block diagram of an ultrasonic range finder according to a first embodiment of the present invention. FIG. 6 is a block diagram of the ultrasonic range finder according to the first embodiment. FIG. 7 is a schematic diagram illustrating a transmitting / receiving state by a meter, FIG. 7 is a plan view illustrating an arrangement of a transmitter / receiver mounted on the distance meter in FIG. 5,
8 to 11 are waveform diagrams of respective parts in the range finder of FIG. 5. In particular, FIG. 8 shows a case where external noise is mixed in a high portion of a received signal, and FIG. 9 shows an external noise in a low portion of the received signal. FIG. 10 shows a case where a pseudo reflected wave is mixed in a received signal, FIG. 11 shows a case where a double reflected wave is mixed in a received signal, and FIG. 12 shows a detailed main part of FIG. The waveform diagram is shown in FIG.
3 is a block diagram of the ultrasonic range finder according to the second embodiment, and FIG. 14 is a waveform diagram of each part in the range finder of FIG.

【0026】第1の実施形態による超音波距離計は、図
5のブロック図で示すようにパルス発生回路11、搬送
波発生回路12、OR結合回路15、検波回路16、リ
ミット回路17、極性反転回路18、信号レベル判定回
路19、クロック発生回路20、計数回路21とで構成
した距離計本体C1を備え、この距離計本体C1には1
台の送波器13と2台の受波器14が装備されている。
As shown in the block diagram of FIG. 5, the ultrasonic range finder according to the first embodiment has a pulse generation circuit 11, a carrier generation circuit 12, an ORing circuit 15, a detection circuit 16, a limit circuit 17, a polarity inversion circuit. 18, a distance meter main body C1 composed of a signal level determination circuit 19, a clock generation circuit 20, and a counting circuit 21.
Two transmitters 13 and two receivers 14 are provided.

【0027】上記構成を図2で示す従来の構成と対比す
ると、受波器14として第1受波器14aと第2受波器
14bの2台が装備されていること、この第1受波器1
4aと第2受波器14bがOR結合回路15に接続され
ていること、検波回路16と信号レベル判定回路19の
間にリミット回路17と極性反転回路18を設けたこと
が相違し、また図8〜11の波形図に基づいて詳細を後
述するが、基準パルス201の発生期間中を除いた期間
に送波器3から送波信号103を発生するようにした負
論理(Lアクティブ)を用いており、Hアクティブによ
る送波を行う図2の場合とは搬送波発生回路12の構成
が相違する。
When the above configuration is compared with the conventional configuration shown in FIG. 2, two receivers, ie, a first receiver 14a and a second receiver 14b, are provided. Vessel 1
The difference is that the 4a and the second receiver 14b are connected to the ORing circuit 15 and the limit circuit 17 and the polarity inversion circuit 18 are provided between the detection circuit 16 and the signal level determination circuit 19. Although the details will be described later based on the waveform diagrams 8 to 11, the negative logic (L active) in which the transmission signal 103 is generated from the transmitter 3 during a period excluding the generation period of the reference pulse 201 is used. The configuration of the carrier generation circuit 12 is different from that in FIG.

【0028】1台の送波器13に対して2台の受波器1
4a,14bを用いた構成は、反射波の干渉その他で受
波信号の受信レベルが弱められたことに起因する誤った
距離測定を防止するための手段であり、図6で示すよう
に送波器13から被測定物Bに送波信号203を発射す
ると、その反射波204は異なった経路を経て第1受波
器14aと第2受波器14bにそれぞれ到達するので、
正確な距離測定に適した何れか一方の受波信号を用いて
距離測定が行われるようにする。
For one transmitter 13 and two receivers 1
The configuration using 4a and 14b is a means for preventing erroneous distance measurement due to the reception level of a received signal being weakened by interference of a reflected wave or the like. As shown in FIG. When the transmitting signal 203 is emitted from the detector 13 to the device under test B, the reflected wave 204 reaches the first receiver 14a and the second receiver 14b via different paths.
Distance measurement is performed using one of the received signals suitable for accurate distance measurement.

【0029】例えば第1受波器14aには互いに逆位相
の反射波が到達して相殺され、低い受信レベルの受波信
号しか得られない場合でも、第2受波器14bに互いに
同位相の反射波が到達して重畳された高い受信レベルの
受波信号が得られると、受波器14a,14bからの受
波信号を上記OR結合回路15を介して論理和(OR出
力)として取り出すことで、干渉による影響を軽減させ
た正確な距離測定が可能になる。
For example, even when reflected waves having phases opposite to each other arrive at the first receiver 14a and are canceled out, only a received signal having a low reception level can be obtained. When the reflected wave arrives and a superimposed received signal with a high reception level is obtained, the received signals from the receivers 14a and 14b are taken out as a logical sum (OR output) via the OR coupling circuit 15. Thus, accurate distance measurement with reduced influence of interference becomes possible.

【0030】送波器13に対する受波器14a,14b
の配置関係は、双方の受波器が成る可く異なった入力条
件(特に位相関係)で反射波を受信でき且つ、受波器の
感度指向性を勘案して成る可く高感度で受信できる位置
を選択して配置することが望ましく、図7に示す一例の
ように送波器13の両側へそれぞれ受波器14aと受波
器14bを配置する態様(a)、送波器13の一方側へ
受波器14aと受波器14bを並べて配置する態様
(b)等があり、受波器14aと受波器14bの配置間
隔Lと変位角度θは上記目的に適合させて所望に設定さ
れる。
Receivers 14a, 14b for transmitter 13
In the arrangement, the two receivers can receive reflected waves under different input conditions (particularly, phase relations), and can receive with high sensitivity, taking into account the sensitivity directivity of the receivers. It is desirable to select and arrange the positions. As shown in an example shown in FIG. 7, a mode in which the receivers 14a and 14b are arranged on both sides of the transmitter 13 (a), one of the transmitters 13 There is a mode (b) or the like in which the receiver 14a and the receiver 14b are arranged side by side, and the arrangement interval L and the displacement angle θ between the receiver 14a and the receiver 14b are set as desired in conformity with the above purpose. Is done.

【0031】図7(a)の例では、変位角度θは0〜1
5度で配置間隔L1は20〜50mmとし、図7(b)
の例では、変位角度θは0〜15度で配置間隔L1は1
0〜40mmとしているが、変位角度θは15度以上に
なると受波器14a,14bの感度指向性が急激に低下
するので設定範囲の限界としたものであり、配置間隔L
は可能な限り小さい方がよいが、送受波器として使用し
ている各素子の外径が略10mmであるために、この各
素子を隣接配置させた状態を下限とし、この各素子が取
り付けられる距離計本体Cの外径を上限として設定し
た。
In the example of FIG. 7A, the displacement angle θ is 0 to 1
At 5 degrees, the arrangement interval L1 is set to 20 to 50 mm, and FIG.
In the example, the displacement angle θ is 0 to 15 degrees and the arrangement interval L1 is 1
However, when the displacement angle θ becomes 15 degrees or more, the sensitivity directivity of the receivers 14a and 14b rapidly decreases.
It is better to be as small as possible, but since the outer diameter of each element used as a transducer is approximately 10 mm, the lower limit is the state where these elements are arranged adjacent to each other, and each element is attached. The outer diameter of the rangefinder body C was set as the upper limit.

【0032】パルス発生回路11は、図8で示すように
所定時間間隔毎に基準パルス201を発生し、この基準
パルス201は距離測定のスタート信号として搬送波発
生回路12と計数回路21へそれぞれ出力され、搬送波
発生回路12では常時40KHz程度の超音波の搬送波
202を発生しているが、基準パルス201が入力され
る毎に、当該基準パルス201をゲート信号としてパル
ス幅の期間中だけ間欠的に搬送波202の発生が休止さ
れ、この間欠的に搬送波202が除去された信号は送波
信号203として送波器13へ出力し、送波器13から
Lアクティブによる送波信号を被測定物Bに向けて発射
する。
The pulse generation circuit 11 generates a reference pulse 201 at predetermined time intervals as shown in FIG. 8, and this reference pulse 201 is output to the carrier generation circuit 12 and the counting circuit 21 as a start signal for distance measurement. The carrier generation circuit 12 always generates an ultrasonic carrier 202 of about 40 KHz, but every time the reference pulse 201 is input, the carrier is intermittently used only during the pulse width period using the reference pulse 201 as a gate signal. The generation of the signal 202 is stopped, and the signal from which the carrier 202 is removed intermittently is output to the transmitter 13 as a transmission signal 203, and the transmission signal from the transmitter 13 is transmitted to the DUT B by L-active. Fire.

【0033】第1受波器14aから出力された受波信号
204aと、第2受波器14bから出力された受波信号
204bは、アナログ加算演算を行う演算増幅器(OP
アンプ)等で構成されたOR結合回路15にそれぞれ入
力され、OR結合回路15からは論理和(OR出力)に
よるOR結合出力として、干渉による影響を軽減させた
状態に波形整形した補正受波信号204cが取り出さ
れ、補正受波信号204cは必要に応じて増幅器を設け
て(図示を省略)所望レベルに増幅させる。
The reception signal 204a output from the first receiver 14a and the reception signal 204b output from the second receiver 14b are combined with an operational amplifier (OP) for performing an analog addition operation.
Amplifier) or the like, and the corrected received signal whose waveform is shaped as an OR-coupled output by a logical sum (OR output) from the OR-coupled circuit 15 to reduce the influence of interference. 204c is extracted, and the corrected reception signal 204c is amplified to a desired level by providing an amplifier (not shown) as necessary.

【0034】補正受波信号204cは、検波回路16で
搬送波202を除去して包絡線(エンベロープ)部分が
検波出力として取り出され、リミット回路17では一定
のレベルでクリップして包絡線の脈動分をカットしたリ
ミット信号205を造り、このリミット信号205を極
性反転回路18で極性を反転させて信号検出パルス20
6として信号レベル判定回路19に入力させ、信号レベ
ル判定回路19では予め設定した一定レベルh1以上の
信号検出パルス206を検出すると、この信号検出パル
ス206の前縁(リーディングエッジ)側の一定レベル
h1をトリガポイントとして矩形波に波形整形した受信
パルス207を造成し、この受信パルス207を距離測
定のストップ信号として計数回路21に送る。
From the corrected received signal 204c, the carrier wave 202 is removed by the detection circuit 16 and the envelope (envelope) portion is taken out as a detection output. The limit circuit 17 clips it at a constant level to remove the pulsation component of the envelope. The cut limit signal 205 is produced, and the polarity of the limit signal 205 is inverted by the polarity inversion circuit 18 to generate the signal detection pulse 20.
6 is input to the signal level determination circuit 19, and when the signal level determination circuit 19 detects a signal detection pulse 206 of a predetermined level h1 or more, the predetermined level h1 on the leading edge (leading edge) side of the signal detection pulse 206. Is used as a trigger point to form a reception pulse 207 shaped into a rectangular wave, and the reception pulse 207 is sent to the counting circuit 21 as a distance measurement stop signal.

【0035】計数回路21には、信号レベル判定回路1
9からの受信パルス207の他に、パルス発生回路11
からの基準パルス201と、クロック発生回路20から
のクロックパルス208が入力され、基準パルス201
の立ち上がりでクロックパルス208のカウントがスタ
ートし、受信パルス207の立ち上がりでカウントがス
トップするように設定され、基準パルス201から受信
パルス207までの計測時間Tの期間中におけるクロッ
クパルス数をカウントし、カウント終了時に計数回路2
1から距離信号209として出力される。
The counting circuit 21 includes a signal level determination circuit 1
9, the pulse generation circuit 11
, And a clock pulse 208 from the clock generation circuit 20 are input.
The counting of the clock pulse 208 is started at the rise of the received pulse 207, and the counting is stopped at the rise of the received pulse 207. The number of clock pulses during the measurement time T from the reference pulse 201 to the received pulse 207 is counted. Counting circuit 2 at the end of counting
1 is output as a distance signal 209.

【0036】距離信号209として出力されたクロック
パルス数は、被測定物Bまでの距離に比例するので距離
を測定することができ、計数回路21は次の基準パルス
201の立ち上がりで前回のカウント数をリセットする
と同時に新たにカウントをスタートし、次の受信パルス
207の立ち上がりでカウントをストップすると同時に
そのカウント数をラッチし、次回のカウントがストップ
するまでラッチしたカウント数を継続して出力する。
Since the number of clock pulses output as the distance signal 209 is proportional to the distance to the device under test B, the distance can be measured, and the counting circuit 21 counts the previous count at the next rise of the reference pulse 201. , A new count is started at the same time as resetting, the count is stopped at the next rising edge of the reception pulse 207, the count is latched at the same time, and the latched count is continuously output until the next count is stopped.

【0037】上記計測を行った際に例えば図8で示すよ
うに、受波信号204a,204b中のハイ(H)の部
分に外来ノイズ信号N1が混入しても、送波論理として
Lアクティブを用いているので、ストップ信号となる受
信パルス207の生成には何ら影響を及ぼすことはな
く、即ち外来ノイズ信号N1によって受信パルス207
は生成されないので、Hアクティブを用いた従来の方式
の場合のように受波信号と誤認して誤った計測すること
はない。
When the above measurement is performed, as shown in FIG. 8, for example, even if the external noise signal N1 is mixed in the high (H) portion of the received signals 204a and 204b, L active is set as the transmission logic. Since it is used, there is no effect on the generation of the reception pulse 207 serving as a stop signal, that is, the reception pulse 207 is generated by the external noise signal N1.
Is not generated, so that there is no possibility of erroneous measurement by erroneously recognizing the received signal as in the case of the conventional method using H active.

【0038】上記計測を行った際に図9で示すように、
受波信号204a,204b中のロー(L)の部分に外
来ノイズ信号N2が混入した場合には、この外来ノイズ
信号N2のパルス幅の長短や発生位置の相違などによっ
て状況は異なるが、パルス幅が長い場合には外来ノイズ
信号N2でロー(L)の部分が埋められて信号検出パル
ス206が検出されないので、受信パルス207が生成
されずに計数回路21はオーバーフローされ、その際に
は前回のラッチしたカウント数を距離信号209として
出力させる。
When the above measurement was performed, as shown in FIG.
When the external noise signal N2 is mixed in the low (L) portion of the received signals 204a and 204b, the situation differs depending on the length of the pulse width of the external noise signal N2 and the difference in the generation position. Is long, the low (L) portion is filled with the extraneous noise signal N2 and the signal detection pulse 206 is not detected, so that the reception pulse 207 is not generated and the counting circuit 21 overflows. The latched count number is output as the distance signal 209.

【0039】図9のケースで外来ノイズ信号T2のパル
ス幅が短い場合であって、例えば図12(a)のように
信号検出パルス206の立ち上がり側トリガーレベルと
一部が重なる状態で直前に外来ノイズ信号N2が混入し
た場合には、ストップ信号となる受信パルス207の発
生するタイミングに僅かなズレを生ずることはあって
も、そのズレが計測時間Tに比べて極めて短い(例えば
1/30)と計測結果には殆ど影響を与えない。
In the case of FIG. 9, when the pulse width of the external noise signal T2 is short, for example, as shown in FIG. When the noise signal N2 is mixed, a slight deviation may occur in the timing at which the reception pulse 207 serving as the stop signal is generated, but the deviation is extremely short as compared with the measurement time T (for example, 1/30). Has little effect on the measurement results.

【0040】図12(b)のように外来ノイズ信号N2
が、信号検出パルス206の立ち上がり側トリガーレベ
ルの直後に混入した場合や、図12(c)のように外来
ノイズ信号N2が、信号検出パルス206の立ち上がり
側と立ち下がりのトリガーレベルの間に混入した場合に
は、外来ノイズ信号N2によるノイズ検出パルス206
nで擬似的な受信パルスが造られることはあっても、正
規の受信パルス207によって既に計測は完了している
ので、誤った計測が行われることはない。
As shown in FIG. 12B, the external noise signal N2
Is mixed immediately after the rising trigger level of the signal detection pulse 206, or the external noise signal N2 is mixed between the rising side and falling trigger level of the signal detection pulse 206 as shown in FIG. In this case, the noise detection pulse 206 due to the external noise signal N2
Although a pseudo reception pulse may be generated at n, the measurement has already been completed by the normal reception pulse 207, so that erroneous measurement is not performed.

【0041】上記計測を行った際に図10で示すよう
に、周辺の物体からの疑似反射波によるエコーノイズ信
号N3が、次の測定期間の基準パルス201と受信パル
ス207の間に混入した場合には、このエコーノイズ信
号N3は受波信号204a,204b中でも期間の長い
ハイ(H)の部分に混入して埋没する確率が高く、送波
論理としてLアクティブを用いているので、ストップ信
号となる受信パルス207の生成には何ら影響を及ぼす
ことはなく、即ち外来ノイズ信号N1によって受信パル
ス207は生成されないので、Hアクティブを用いた従
来の方式の場合のように受波信号と誤認して誤った計測
することはない。
When the above measurement is performed, as shown in FIG. 10, when an echo noise signal N3 due to a pseudo reflection wave from a surrounding object is mixed between the reference pulse 201 and the reception pulse 207 in the next measurement period. In this case, the echo noise signal N3 has a high probability of being mixed and buried in the high (H) portion having a long period in the reception signals 204a and 204b. This has no effect on the generation of the received pulse 207, that is, the received pulse 207 is not generated by the external noise signal N1, so that it is erroneously recognized as a received signal as in the case of the conventional method using H active. There is no wrong measurement.

【0042】受波信号の相互干渉に対しては、例えば図
11で示すように、第1受波器14aが受けた受波信号
204aの一部が減衰し、第2受波器14bが受けた受
波信号204bは正常な場合に、OR結合回路15を介
して論理和出力が取り出された補正受波信号204c
は、計測のストップ信号となる受信パルス207を造る
のに十分なレベルと波形を備えているので、干渉による
受信レベルの低下などの影響を軽減させた状態で正確な
距離測定が可能となる。
With respect to the mutual interference of the received signals, for example, as shown in FIG. 11, a part of the received signal 204a received by the first receiver 14a is attenuated, and the received signal 204a is received by the second receiver 14b. When the received signal 204b is normal, the corrected received signal 204c from which the logical sum output is extracted through the OR combination circuit 15 is output.
Has a sufficient level and waveform to generate a reception pulse 207 serving as a measurement stop signal, so that accurate distance measurement can be performed in a state where the influence of a decrease in reception level due to interference is reduced.

【0043】次に、図13及び図14に基づいて本発明
の第2の実施形態による超音波距離計を説明するが、こ
の距離計は従来技術と同様のHアクティブによる送波論
理を用いたものに適用したものであり、特に干渉による
受信レベルの低下などの影響を軽減させた状態で正確な
距離測定を可能にするために、2個の受波器4とOR結
合回路10を備えている点を除けば図2による従来構成
と同様である。
Next, an ultrasonic range finder according to a second embodiment of the present invention will be described with reference to FIGS. 13 and 14. This range finder uses a transmission logic based on H active as in the prior art. It has two receivers 4 and an OR-coupling circuit 10 to enable accurate distance measurement in a state in which the influence of interference such as a decrease in reception level is reduced. Except for this point, it is the same as the conventional configuration shown in FIG.

【0044】即ち、図13のようにOR結合回路10を
備えた距離計本体C2に第1受波器4aと第2受波器4
bが装着され、第1受波器4aが受けた受波信号104
aと第1受波器4bが受けた受波信号104bの論理和
を、補正受波信号104cとしてOR結合回路10から
出力させることにより、図14のように受波信号104
a,104bの何れか一方の受信レベルが低くても他方
によってカバーされ、クロックパルス108のストップ
信号として機能する受信パルス107が確保されるの
で、干渉による受信レベルの低下などの影響を軽減させ
た状態で正確な距離測定が可能となる。
That is, as shown in FIG. 13, a first wave receiver 4a and a second wave receiver 4
b is received and the received signal 104 received by the first receiver 4a
By outputting the logical sum of “a” and the received signal 104b received by the first receiver 4b from the OR combination circuit 10 as a corrected received signal 104c, as shown in FIG.
Even if the reception level of one of the signals a and 104b is low, the reception pulse 107 which is covered by the other and functions as a stop signal of the clock pulse 108 is secured, so that the influence such as a decrease in the reception level due to interference is reduced. Accurate distance measurement is possible in the state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の技術による超音波距離計による送受波状
態を示す模式図。
FIG. 1 is a schematic diagram showing a transmitting / receiving state of an ultrasonic range finder according to a conventional technique.

【図2】従来の技術による超音波距離計の構成を示すブ
ロック図。
FIG. 2 is a block diagram showing a configuration of an ultrasonic distance meter according to a conventional technique.

【図3】図2の超音波距離計の動作を説明する各部の波
形図。
FIG. 3 is a waveform chart of each part for explaining the operation of the ultrasonic range finder of FIG. 2;

【図4】図2の超音波距離計に外来ノイズが混入した際
における動作を説明する各部の波形図。
FIG. 4 is a waveform chart of each unit for explaining an operation when external noise is mixed in the ultrasonic distance meter of FIG. 2;

【図5】本発明による超音波距離計の第1の実施形態の
構成を示すブロック図。
FIG. 5 is a block diagram showing a configuration of a first embodiment of an ultrasonic range finder according to the present invention.

【図6】本発明の超音波距離計による送受波状態を示す
模式図。
FIG. 6 is a schematic diagram showing a state of transmission and reception by the ultrasonic distance meter of the present invention.

【図7】本発明の超音波距離計における送受波器の配置
状態を示す平面図。
FIG. 7 is a plan view showing an arrangement state of a transducer in the ultrasonic range finder of the present invention.

【図8】図5の超音波距離計の動作を説明する各部の波
形図であって、特に受波信号のハイの部分に外来ノイズ
が混入した場合を示す。
8 is a waveform diagram of each section for explaining the operation of the ultrasonic range finder of FIG. 5, particularly showing a case where external noise is mixed in a high portion of a received signal.

【図9】図5の超音波距離計の動作を説明する各部の波
形図であって、特に受波信号のローの部分に外来ノイズ
が混入した場合を示す。
9 is a waveform diagram of each part for explaining the operation of the ultrasonic range finder of FIG. 5, particularly showing a case where external noise is mixed in a low portion of a received signal.

【図10】図5の超音波距離計の動作を説明する各部の
波形図であって、特に受波信号に疑似反射波が混入した
場合を示す。
10 is a waveform diagram of each part for explaining the operation of the ultrasonic range finder of FIG. 5, particularly showing a case where a pseudo reflected wave is mixed in a received signal.

【図11】図5の超音波距離計の動作を説明する各部の
波形図であって、特に受波信号に二重反射波が混入した
場合を示す。
11 is a waveform diagram of each unit for explaining the operation of the ultrasonic range finder of FIG. 5, particularly showing a case where a double reflected wave is mixed into a received signal.

【図12】図9の詳細な要部波形図。FIG. 12 is a detailed waveform diagram of a main part of FIG. 9;

【図13】本発明による超音波距離計の第2の実施形態
の構成を示すブロック図。
FIG. 13 is a block diagram showing the configuration of a second embodiment of the ultrasonic range finder according to the present invention.

【図14】図13の超音波距離計の動作を説明する各部
の波形図。
14 is a waveform chart of each part for explaining the operation of the ultrasonic range finder of FIG.

【符号の説明】[Explanation of symbols]

1,1 パルス発生回路 2,12 搬送波発生回路 3,13 送波器 4,14 受波器 5 増幅回路 6,16 検波回路 7,19 信号レベル判定回路 8,20 クロック発生回路 9,21 計数回路 10,15 OR結合回路 17 リミット回路 18 極性反転回路 A 距離計本体 B 被測定物 C1,C2 距離計本体 1,1 pulse generating circuit 2,12 carrier generating circuit 3,13 transmitting device 4,14 receiving device 5 amplifying circuit 6,16 detecting circuit 7,19 signal level judging circuit 8,20 clock generating circuit 9,21 counting circuit 10, 15 OR connection circuit 17 Limit circuit 18 Polarity inversion circuit A Distance meter body B DUT C1, C2 Distance meter body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基準パルスと超音波搬送波による送波信
号を送波器から被測定物に発射させ、被測定物から反射
した受波信号を受波器で受信すると共に、当該受波信号
に基づいて受信パルスを造り、上記基準パルス(スター
ト信号)と受信パルス(ストップ信号)の時間差を計測
して距離の測定を行う超音波距離計において、上記受波
信号を異なった入力条件で受信する位置に配置した2つ
の受波器で受信させ、各受波信号は論理和回路を介して
補正受波信号として取出し、当該補正受波信号から上記
受信パルスを造ることを特徴とした超音波距離計。
A transmitter transmits a transmission signal based on a reference pulse and an ultrasonic carrier wave from a transmitter to an object to be measured, receives a received signal reflected from the object to be measured by the receiver, and generates a signal corresponding to the received signal. An ultrasonic range finder that generates a reception pulse based on the reference pulse (start signal) and a time difference between the reference pulse (start signal) and the reception pulse (stop signal) to measure a distance receives the reception signal under different input conditions. The ultrasonic wave distance is received by two receivers arranged at positions, each received signal is taken out as a corrected received signal via an OR circuit, and the received pulse is formed from the corrected received signal. Total.
【請求項2】 基準パルスと超音波搬送波による送波信
号を送波器から被測定物に発射させ、被測定物から反射
した受波信号を受波器で受信すると共に、当該受波信号
に基づいて受信パルスを造り、上記基準パルス(スター
ト信号)と受信パルス(ストップ信号)の時間差を計測
して距離の測定を行う超音波距離計において、上記送波
信号として、上記基準パルスの発生期間中を除いた期間
に上記超音波搬送波を送波する負論理(Lアクティブ)
信号を用いたことを特徴とした超音波距離計。
2. A transmission signal based on a reference pulse and an ultrasonic carrier is emitted from a transmitter to an object to be measured, a received signal reflected from the object to be measured is received by a receiver, and the received signal is An ultrasonic range finder that generates a reception pulse based on the reference pulse, and measures a time difference between the reference pulse (start signal) and the reception pulse (stop signal) to measure a distance. Negative logic (L active) for transmitting the above ultrasonic carrier during the period except for the inside
An ultrasonic rangefinder using a signal.
【請求項3】 請求項1の超音波距離計において、上記
送波信号として、上記基準パルスの発生期間中を除いた
期間に上記超音波搬送波を送波する負論理(Lアクティ
ブ)信号を用いたことを特徴とした超音波距離計。
3. The ultrasonic range finder according to claim 1, wherein a negative logic (L active) signal for transmitting said ultrasonic carrier during a period excluding a period during which said reference pulse is generated is used as said transmission signal. Ultrasonic rangefinder characterized by the fact that
【請求項4】 上記受信パルスは、上記請求項2におけ
る受波信号又は上記請求項3における補正受波信号から
検波回路で超音波搬送波成分を除去すると共に、リミッ
ト回路でエンベロープの脈動分を除去して得られた一定
レベル以上の基準パルス成分を信号検出パルスとし、当
該信号検出パルスをトリガパルスとして波形整形して造
られる請求項2又は請求項3に記載した超音波距離計。
4. The reception pulse removes an ultrasonic carrier component from a reception signal according to claim 2 or a correction reception signal according to claim 3 by a detection circuit, and removes a pulsating component of an envelope by a limit circuit. 4. The ultrasonic distance meter according to claim 2, wherein a reference pulse component having a predetermined level or higher obtained as a result is used as a signal detection pulse, and the signal detection pulse is used as a trigger pulse to shape the waveform.
JP13497298A 1998-05-18 1998-05-18 Ultrasonic range finder Pending JPH11326512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13497298A JPH11326512A (en) 1998-05-18 1998-05-18 Ultrasonic range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13497298A JPH11326512A (en) 1998-05-18 1998-05-18 Ultrasonic range finder

Publications (1)

Publication Number Publication Date
JPH11326512A true JPH11326512A (en) 1999-11-26

Family

ID=15140919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13497298A Pending JPH11326512A (en) 1998-05-18 1998-05-18 Ultrasonic range finder

Country Status (1)

Country Link
JP (1) JPH11326512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476078A (en) * 2017-04-20 2019-11-19 通用电气公司 Detection system and its operating method including sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476078A (en) * 2017-04-20 2019-11-19 通用电气公司 Detection system and its operating method including sensor
CN110476078B (en) * 2017-04-20 2023-06-16 海德里美国分销有限责任公司 Detection system including a sensor and method of operating the same

Similar Documents

Publication Publication Date Title
JPH0575970B2 (en)
US5671190A (en) Method and device for measuring the distance of an object from an ultrasonic transmission/reception unit
US6314055B1 (en) Range measuring system
EP0142733A2 (en) Ultrasonic rangefinder
JPH11326512A (en) Ultrasonic range finder
JP2002090452A (en) Ultrasonic range finder
JPS648313B2 (en)
US20240027613A1 (en) Object detection apparatus and object detection method
JPH08201514A (en) Ultrasonic distance measuring instrument
JPH11202050A (en) Ultrasonic distance meter
JPS63193085A (en) Ultrasonic range finder
JPS59218973A (en) On-vehicle obstacle detector
JPH0666620A (en) Ultrasonic level indicator
JPS61241685A (en) Ultrasonic range finder
JP3388660B2 (en) Underwater position measurement method and device
JP2006292461A (en) Range finder
JPS63311192A (en) Ultrasonic range finder
JPS61229108A (en) Self-standing unmanned vehicle
JPH04250387A (en) Ultrasonic object detector
JPH0882673A (en) Ultrasonic distance-measuring apparatus
JPS62192679A (en) Pulse radar
JPH06300840A (en) Water depth measuring device
JPS62288592A (en) Ultrasonic range finder
JPS62886A (en) Obstacle detecting device for vehicle
JPS62187272A (en) Pulse radar