JPS6122897B2 - - Google Patents

Info

Publication number
JPS6122897B2
JPS6122897B2 JP53052370A JP5237078A JPS6122897B2 JP S6122897 B2 JPS6122897 B2 JP S6122897B2 JP 53052370 A JP53052370 A JP 53052370A JP 5237078 A JP5237078 A JP 5237078A JP S6122897 B2 JPS6122897 B2 JP S6122897B2
Authority
JP
Japan
Prior art keywords
gas
sensitive
sensitivity
present
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53052370A
Other languages
Japanese (ja)
Other versions
JPS54145199A (en
Inventor
Masaki Katsura
Takashi Takahashi
Tadao Kaneda
Hideaki Hiraki
Masayuki Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5237078A priority Critical patent/JPS54145199A/en
Publication of JPS54145199A publication Critical patent/JPS54145199A/en
Publication of JPS6122897B2 publication Critical patent/JPS6122897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、選択性に優れた感ガス素子に関す
る。 酸化物半導体表面にガスが接触すると、酸化物
半導体の表面の比抵抗が変化することを利用した
感ガス素子が知られている。例えば、N型半導性
を示すZnO,SnO2,Fe2O3等に還元性ガスが接触
すると抵抗値は減少し、また酸化性ガスが接触す
ると、抵抗値は増加する。またP型半導性を示す
酸化物半導体においては抵抗値の増減が逆の関係
を示す。上記のごとき酸化物半導体において、各
種ガスとの反応性すなわち選択性は、半導体表面
温度、表面電子レベルの構造、気孔率および気孔
の大きさ等により決まるが、一般には酸化物半導
体のみでは感ガス素子として感度が小さく、選択
性も十分とは言えない。そこで酸化物半導体に、
Pt,Pdなどの触媒を添加含有せしめ感度を上げ
る事が試みられている。この場合、素子温度を選
択することにより、ある程度の選択性を得ること
ができる。例えば、Ptをガス感応体に添加したも
のでは、イソブタンガスに対しては感度が高く、
水素ガス、一酸化炭素ガスに対してはあまり反応
しない。一方Pdを添加した場合には、イソブタ
ンガス、水素ガス、一酸化炭素ガスに対して共に
大きな感度を示す。しかしながら両者ともエチル
アルコールガスなどのアルコール系ガスに対して
も大きな感度を示す。従つて上記の如き素子にお
いては、特に一般家庭では、食物、整髪料、化粧
品などにより発生するアルコール系ガスに対して
も、LPGガスと同様に感応し実用上大きな問題点
となつていた。 本発明は上記の点に鑑みアルコール系ガスに対
して感応することなく、イソブタンガスに対して
高い感度を有する信頼性の高いLPG用感ガス素子
を提供することを目的とする。 本発明はSiO2,Al2O3等の触媒担体に対し0.005
〜8重量%のPdと、モル比で前記Pdの0.05〜30
倍のPとを含む触媒層を酸化錫系半導体からなる
ガス感応体表面に設けた感ガス素子である。 なお本発明においてPdの添加量を0.005〜8重
量%としたのは、0.005重量%未満では、イソブ
タンガスに対する感度が小さくなり、また8重量
%を越えるとアルコールガスに対しても感応し易
くなるためである。またPの添加量をPdの添加
量に対しモル比で0.05〜30倍としたのは、0.05倍
未満ではイソブタンガスに対する感度とアルコー
ル系ガスに対する感度とに顕著な差が表れずイソ
ブタンガスに対する感度も小さくなり、また30倍
を越えるとイソブタンガスなどのLPGに対する感
度が小さくなるためである。 以下本発明を構造例により詳細に説明する。ま
ず本発明に係る感ガス素子は例えば第1図に断面
的に示すごとく、筒状絶縁基体1外周面に一対の
電極2を有し、前記筒状絶縁基体1および電極2
を被覆するように酸化物半導体からなるガス感応
体3が設けられている。さらに前記ガス感応体3
表面には所定量のPdおよびPを含むシリカ・ア
ルミナからなる触媒層4が設けられている。また
前記のように構成された感ガス素子は例えば第2
図に斜視的に示す如くピン足上に組立てられる。
なお、第2図中5はリード線を6は絶縁板を7は
ヒーターを示す。ヒーター7はガス感応体の感度
を向上させるために設けられたものであり、必要
に応じ適宜設けることができる。なお触媒層4は
ガス感応体3表面を必ずしも全面的に被覆してい
なくともよい。 また上記においては触媒層の担体としてシリ
カ・アルミナを用いたが、他に適宜選択してもよ
く、さらに担体を用いない場合も同様の効果が得
られる。 本発明に係る感ガス素子は例えば以下の如く製
造される。例えば酸化錫系半導体としてSnO2
SiO2系を用いる場合、SnO2およびSiO2粉末を所
定組成比で秤取し、混合したのち水またはバイン
ダーを加えペースト状とし、第1図に示すごとく
一対の電極2を設けた絶縁基板1に塗布し乾燥後
300〜1100℃で焼成し、ガス感応体を形成する。 一方、触媒層は例えばPdCl2またはPd(NO32
にH3PO4NH4H2PO4を加えの適当なPHの水溶液を
作り、本発明の組成範囲内となるように混合し、
これを担体としてのシリカ・アルミナ粉末を加え
泥漿とする。この泥漿をよく混合、乾燥した後、
300℃〜1000℃で焼成し、粉砕し微粉末とする。
この微粉末に水と適当なバインダーを加えペース
ト状とした後、前記ガス感応体表面に塗布、乾燥
し300〜1000℃で焼成して本発明に係る感ガス素
子が得られる。この触媒層はガス感応体層と同程
度の厚みであり、通常100μm前後である。なお
触媒層は担体表面にPt,Pが担持された形とな
り、体積のほとんどはAl2O3,SiO2等の担体であ
る。なおこの実施例ではSiO2/Al2O3が5程度
(重量比)であるが、SiO2,Al2O3等の単体でも
良い。 次に、上記の如き本発明に係る感ガス素子の諸
特性を測定し、第3図および第4図に示す。 第3図は本発明に係る感ガス素子におけるPd
およびPの添加量に対する0.2vol%のイソブタン
ガスに対する感度を示す。なお感度は空気中にお
ける抵抗値Roとガス中における抵抗値Rgとの比
をRo/Rgとして示したものであり、その値が大
きい程ガス検出が容易である。また第4図は
0.2vol%のアルコールガスに対する感度Ro/Rg
を示す。なお第3図、第4図の特性は素子温度
350℃の値である。 第3図および第4図から明らかな如く、触媒層
におけるPd,Pの添加量が本発明範囲内ではイ
ソブタンガスに対し優れた感度を示し、アルコー
ルガスには、ほとんど感応しない。 次に触媒を用いない場合、Pのみを含む触媒層
を用いた場合、Pdのみを含む触媒層を用いた場
合および本発明の如く、PおよびPdを含む触媒
層を用いた場合の感ガス素子について、0.2vol%
の各種ガスに対する感度Ro/Rgを測定し、第1
表に示す。
The present invention relates to a gas-sensitive element with excellent selectivity. Gas-sensitive elements are known that utilize the fact that the specific resistance of the surface of an oxide semiconductor changes when gas comes into contact with the surface of the oxide semiconductor. For example, when a reducing gas comes into contact with ZnO, SnO 2 , Fe 2 O 3 , etc., which exhibit N-type semiconductivity, the resistance value decreases, and when an oxidizing gas comes into contact with it, the resistance value increases. In addition, in an oxide semiconductor exhibiting P-type semiconductivity, increases and decreases in resistance value exhibit an inverse relationship. The reactivity, or selectivity, of the oxide semiconductors mentioned above with various gases is determined by the semiconductor surface temperature, surface electron level structure, porosity, pore size, etc., but in general, oxide semiconductors alone are sensitive to gases. As an element, the sensitivity is low and the selectivity is not sufficient. Therefore, in oxide semiconductors,
Attempts have been made to increase sensitivity by adding catalysts such as Pt and Pd. In this case, a certain degree of selectivity can be obtained by selecting the element temperature. For example, a gas sensitive material with Pt added has high sensitivity to isobutane gas;
It does not react much to hydrogen gas or carbon monoxide gas. On the other hand, when Pd is added, it exhibits high sensitivity to isobutane gas, hydrogen gas, and carbon monoxide gas. However, both exhibit high sensitivity to alcohol-based gases such as ethyl alcohol gas. Therefore, in the above-mentioned devices, especially in ordinary households, they are sensitive to alcohol-based gases generated by food, hair styling products, cosmetics, etc. in the same way as LPG gas, which has been a big problem in practical use. In view of the above points, an object of the present invention is to provide a highly reliable gas-sensitive element for LPG that is not sensitive to alcohol-based gas and has high sensitivity to isobutane gas. In the present invention, the catalyst carrier such as SiO 2 or Al 2 O 3 has a
~8% by weight of Pd and 0.05~30% of said Pd in molar ratio
This is a gas-sensitive element in which a catalyst layer containing double the amount of P is provided on the surface of a gas-sensitive body made of a tin oxide semiconductor. In addition, in the present invention, the amount of Pd added is set to 0.005 to 8% by weight, because if it is less than 0.005% by weight, the sensitivity to isobutane gas will be small, and if it exceeds 8% by weight, it will become sensitive to alcohol gas. It's for a reason. In addition, the reason why the amount of P added is 0.05 to 30 times the amount of Pd added in terms of molar ratio is because if it is less than 0.05 times, there is no noticeable difference between the sensitivity to isobutane gas and the sensitivity to alcohol gas, so the sensitivity to isobutane gas is This is because the sensitivity to LPG such as isobutane gas decreases when the value exceeds 30 times. The present invention will be explained in detail below using structural examples. First, the gas-sensitive element according to the present invention has a pair of electrodes 2 on the outer peripheral surface of a cylindrical insulating base 1, as shown in cross section in FIG.
A gas sensitive body 3 made of an oxide semiconductor is provided so as to cover the. Furthermore, the gas sensitive body 3
A catalyst layer 4 made of silica-alumina containing predetermined amounts of Pd and P is provided on the surface. Further, the gas-sensitive element configured as described above may be used, for example, as a second
It is assembled on the pin foot as shown perspectively in the figure.
In FIG. 2, 5 represents a lead wire, 6 represents an insulating plate, and 7 represents a heater. The heater 7 is provided to improve the sensitivity of the gas sensitive element, and can be provided as appropriate if necessary. Note that the catalyst layer 4 does not necessarily need to completely cover the surface of the gas sensitive body 3. Further, in the above, silica/alumina is used as a carrier for the catalyst layer, but other materials may be selected as appropriate, and the same effect can be obtained even when no carrier is used. The gas-sensitive element according to the present invention is manufactured, for example, as follows. For example, SnO 2 − as a tin oxide semiconductor
When using the SiO 2 system, SnO 2 and SiO 2 powder are weighed out at a predetermined composition ratio, mixed, and then water or a binder is added to form a paste, and an insulating substrate 1 on which a pair of electrodes 2 are provided as shown in FIG. After applying and drying
Calcinate at 300-1100℃ to form a gas sensitive body. On the other hand, the catalyst layer is made of e.g. PdCl 2 or Pd(NO 3 ) 2
Add H 3 PO 4 NH 4 H 2 PO 4 to make an aqueous solution with an appropriate pH, mix it so that it falls within the composition range of the present invention,
Add silica/alumina powder as a carrier to this to form a slurry. After mixing this slurry well and drying it,
Calcinate at 300°C to 1000°C and crush into fine powder.
Water and a suitable binder are added to this fine powder to form a paste, which is then applied onto the surface of the gas sensitive member, dried and fired at 300 to 1000°C to obtain the gas sensitive element according to the present invention. This catalyst layer has a thickness comparable to that of the gas sensitive layer, and is usually around 100 μm. Note that the catalyst layer has a form in which Pt and P are supported on the surface of the carrier, and most of the volume is made up of carriers such as Al 2 O 3 and SiO 2 . In this embodiment, the SiO 2 /Al 2 O 3 ratio is about 5 (weight ratio), but a single substance such as SiO 2 or Al 2 O 3 may also be used. Next, various characteristics of the gas-sensitive element according to the present invention as described above were measured and are shown in FIGS. 3 and 4. Figure 3 shows Pd in the gas-sensitive element according to the present invention.
and the sensitivity to 0.2 vol% isobutane gas with respect to the amount of P added. Note that the sensitivity is expressed as Ro/Rg, which is the ratio of the resistance value Ro in air to the resistance value Rg in gas, and the larger the value, the easier the gas detection. Also, Figure 4
Sensitivity Ro/Rg to 0.2vol% alcohol gas
shows. The characteristics shown in Figures 3 and 4 depend on the element temperature.
The value is 350℃. As is clear from FIGS. 3 and 4, when the amounts of Pd and P added in the catalyst layer are within the range of the present invention, the catalyst layer exhibits excellent sensitivity to isobutane gas and is hardly sensitive to alcohol gas. Next, a gas-sensitive element in which no catalyst is used, a catalyst layer containing only P, a catalyst layer containing only Pd, and a catalyst layer containing P and Pd as in the present invention. About 0.2vol%
The sensitivity Ro/Rg to various gases was measured, and the first
Shown in the table.

【表】 この結果第1表から明らかな如く、無触媒の場
合、全搬的に感度が低くイソブタンガスよりもア
ルコールガスに対する感度が高いものとなつてい
る。またPのみあるいはPdのみを含む触媒層を
用いた場合も同様の傾向を示し、イソブタンガス
を検出することは困難であつた。これに対し本発
明に係る感ガス素子ではイソブタンガスおよび水
素ガスに対しのみ優れた感度を示し、アルコール
ガスに対してはほとんど感度が変らず選択性に優
れたものと言える。 このように本発明において優れた選択性を示す
原因は明らかではないが、PdとPとが混合され
るため反応性が高く、触媒層の製造工程で添加さ
れたPdとPの少なくとも一部が化合物化されて
いるためと考えられる。 また上記実施例においてはガス感応体として、
SnO2−SiO2系半導体を用いたが、必要に応じ他
の酸化錫系半導体を用いても同様の効果を有する
ことは言うまでもない。 さらに本発明においては触媒層とガス感応体と
が分離されているため製造が容易である上、経時
特性にも優れるという利点を有する。 なおPdおよびPをガス感応体中に混合した場
合も選択性の点においては従来のものに比べ向上
するものと思われる。 以上の如く本発明に係る感ガス素子を用いるこ
とにより、イソブタンガスに対し高い感度を有す
るため、LPG用感ガス素子として実用上極めて有
効なものと言える。
[Table] As is clear from the results in Table 1, in the case of no catalyst, the overall sensitivity is low and the sensitivity to alcohol gas is higher than to isobutane gas. A similar tendency was observed when a catalyst layer containing only P or only Pd was used, and it was difficult to detect isobutane gas. On the other hand, the gas-sensitive element according to the present invention shows excellent sensitivity only to isobutane gas and hydrogen gas, and can be said to have excellent selectivity with almost no change in sensitivity to alcohol gas. Although the reason for this excellent selectivity in the present invention is not clear, the reactivity is high because Pd and P are mixed, and at least part of the Pd and P added in the catalyst layer manufacturing process is This is thought to be because it is compounded. In addition, in the above embodiments, as the gas sensitive body,
Although a SnO 2 -SiO 2 based semiconductor was used, it goes without saying that other tin oxide based semiconductors may be used as needed to achieve similar effects. Further, in the present invention, since the catalyst layer and the gas sensitive body are separated, it is easy to manufacture and has the advantage of having excellent aging characteristics. Furthermore, when Pd and P are mixed in the gas sensitive material, it is thought that the selectivity will be improved compared to the conventional one. As described above, by using the gas-sensitive element according to the present invention, it has high sensitivity to isobutane gas, so it can be said that it is extremely effective in practice as a gas-sensitive element for LPG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る感ガス素子の構成例を示
す断面図。第2図は本発明に係る感ガス素子を用
いる装置例を示す斜示図。第3図および第4図は
本発明に係る感ガス素子の特性例を示す曲線図。 3……ガス感応体、4……触媒層。
FIG. 1 is a sectional view showing an example of the configuration of a gas-sensitive element according to the present invention. FIG. 2 is a perspective view showing an example of an apparatus using the gas-sensitive element according to the present invention. FIGS. 3 and 4 are curve diagrams showing characteristic examples of the gas-sensitive element according to the present invention. 3... Gas sensitive body, 4... Catalyst layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極を有する酸化錫系半導体からなる
ガス感応体の表面に、触媒担体に対し0.005〜8
重量%のPdと、モル比で前記Pdの0.05〜30倍の
Pとを含む触媒層を設けたことを特徴とする感ガ
ス素子。
1. On the surface of a gas sensitive body made of a tin oxide-based semiconductor having a pair of electrodes, an amount of 0.005 to 8
A gas-sensitive element comprising a catalyst layer containing Pd in a weight percent and P in a molar ratio of 0.05 to 30 times the Pd.
JP5237078A 1978-05-02 1978-05-02 Gas sensitive element Granted JPS54145199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237078A JPS54145199A (en) 1978-05-02 1978-05-02 Gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237078A JPS54145199A (en) 1978-05-02 1978-05-02 Gas sensitive element

Publications (2)

Publication Number Publication Date
JPS54145199A JPS54145199A (en) 1979-11-13
JPS6122897B2 true JPS6122897B2 (en) 1986-06-03

Family

ID=12912912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237078A Granted JPS54145199A (en) 1978-05-02 1978-05-02 Gas sensitive element

Country Status (1)

Country Link
JP (1) JPS54145199A (en)

Also Published As

Publication number Publication date
JPS54145199A (en) 1979-11-13

Similar Documents

Publication Publication Date Title
JPS6360339B2 (en)
GB1596095A (en) Carbon monoxide detecting device
JPS6122776B2 (en)
JPH01227951A (en) Gas sensor and its production
JPS6122897B2 (en)
JPS58623B2 (en) gas sensing element
JPS58624B2 (en) gas sensing element
JPS58622B2 (en) gas sensing element
JPS5847018B2 (en) gas sensing element
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP2570440B2 (en) Gas sensor
JP3046387B2 (en) Gas sensor
JPS5848059B2 (en) gas sensing element
JP3191544B2 (en) Thick film type gas sensor
JPH06100565B2 (en) Gas sensor
JPS6013142B2 (en) gas sensing element
JPS6128932B2 (en)
JPS58118953A (en) Preparation of gas sensitive element
JPS5848060B2 (en) gas sensing element
JPS6128933B2 (en)
JPS5952781B2 (en) gas sensing element
JPH0322584B2 (en)
JPS5848056B2 (en) gas sensing element
JP2573323B2 (en) Gas sensor
JPS6133128B2 (en)