JPS61228634A - Manufacture of semiconductor crystal - Google Patents

Manufacture of semiconductor crystal

Info

Publication number
JPS61228634A
JPS61228634A JP7066285A JP7066285A JPS61228634A JP S61228634 A JPS61228634 A JP S61228634A JP 7066285 A JP7066285 A JP 7066285A JP 7066285 A JP7066285 A JP 7066285A JP S61228634 A JPS61228634 A JP S61228634A
Authority
JP
Japan
Prior art keywords
substrate
cdte
epitaxial growth
crystal substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7066285A
Other languages
Japanese (ja)
Inventor
Koji Hirota
廣田 耕治
Mitsuo Yoshikawa
吉河 満男
Michiharu Ito
伊藤 道春
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7066285A priority Critical patent/JPS61228634A/en
Publication of JPS61228634A publication Critical patent/JPS61228634A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02411Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the epitaxial growth on the bask side of a semiconductor crystal substrate by bringing a crystal body of exactly the same material as that of the semiconductor crystal substrate in close contact to the back side of the substrate during the epitaxial growth. CONSTITUTION:The front and back surfaces of a CdTe substrate 14 subjected to epitaxial growth are mirror-polished and furthermore these are etched with a boron methanol solution. The dummy substrate 15 of CdTe which is attached closely to the back side of the CdTe substrate 14 is also subjected to the mirror polishing of the plane to be in contact with the substrate and the similar treatment to that for the CdTe substrate. The CdTe crystal substrate 14 and the dummy substrate 15 contained in a growth ampoule 11 are immersed in an HgCdTe solution by the similar method to the conventional method to effect the epitaxial growth. Even during the epitaxial growth, because both single crystal substrate and dummy substrate are mirror-polished, a contact property is good and if there is a slight gap, CdTe molecules are in a saturation state so that mercury can not enter and accordingly the HgCdTe layer is not formed.

Description

【発明の詳細な説明】 [概要] 本発明は、半導体結晶基板の表面上に液相或いは気相状
態でエピタキシャル成長を行う製造方法であって、エピ
タキシャル成長中に、半導体結晶基板の裏面側に、半導
体結晶基板と全く同様の材質の結晶体を密着させること
により、半導体結晶基板裏面にエピタキシャル成長がな
されることを防止したものである。
Detailed Description of the Invention [Summary] The present invention is a manufacturing method in which epitaxial growth is performed on the surface of a semiconductor crystal substrate in a liquid phase or gas phase, and during epitaxial growth, a semiconductor crystal is grown on the back side of the semiconductor crystal substrate. Epitaxial growth on the back surface of a semiconductor crystal substrate is prevented by closely adhering a crystal body made of the same material as the crystal substrate.

[産業上の利用分野] 本発明は、半導体結晶の成長方法に係わり、特に赤外線
検知器等に利用されるカドミウムテルル(CdTe)結
晶基板上に、水銀カドミウムテルル(HgCdTe)結
晶をエピタキシャル成長をすることに関する。
[Industrial Field of Application] The present invention relates to a method for growing semiconductor crystals, and in particular to epitaxial growth of mercury cadmium tellurium (HgCdTe) crystals on cadmium telluride (CdTe) crystal substrates used in infrared detectors and the like. Regarding.

例えば、Cd T e結晶基板上に、HgCdTe結晶
を液相エピタキシャル成長をする場合には、一般に、C
dTe結晶基板の表面だけでなく、裏面にもCdTeと
HgTeの相互拡散が生ずる結果、Hg Cd T e
層が形成される。
For example, when growing an HgCdTe crystal on a CdTe crystal substrate by liquid phase epitaxial growth, generally
As a result of mutual diffusion of CdTe and HgTe occurring not only on the front surface of the dTe crystal substrate but also on the back surface, Hg Cd Te
A layer is formed.

このように基板裏面にHg Cd T e層が生成され
た結晶基板を、例えば赤外線素子に使用すると、その層
のために赤外線の透過率が低下するなどの不都合がある
When a crystal substrate with a Hg Cd Te layer formed on the back surface of the substrate is used, for example, in an infrared device, there are disadvantages such as a decrease in infrared transmittance due to the layer.

従って、それらの基板裏面の生成膜を除去のために機械
研磨などの煩雑な作業を必要とし、又このような結晶基
板の表面を機械研磨することは、結晶表面の結晶配列に
歪を与えることになって、結晶の品質を低下することに
なるため、その改善が要望されている。
Therefore, complicated operations such as mechanical polishing are required to remove the formed film on the back surface of these substrates, and mechanical polishing of the surface of such a crystal substrate may distort the crystal arrangement on the crystal surface. This leads to a decrease in the quality of the crystal, so there is a need for improvement.

[従来の技術] 第2図は、従来の液相エピタキシャル結晶成長装置の模
式要部断面図である。
[Prior Art] FIG. 2 is a schematic sectional view of a main part of a conventional liquid phase epitaxial crystal growth apparatus.

石英製の成長アンプル1があり、その成長アンプルの内
部には、石英製のメルトホルダ2があって、このメルト
ホルダの両端面部の溝3によって、Cd T e単結晶
基板4が保持されており、このCdTe単結晶基板4上
に、液相エピタキシャル成長法で単結晶のHg Cd 
T eを成長させるために、Hg Cd T e溶液5
が成長アンプル内に充填されている。
There is a growth ampoule 1 made of quartz, and inside the growth ampoule there is a melt holder 2 made of quartz, and a Cd Te single crystal substrate 4 is held by grooves 3 on both end faces of this melt holder. Single-crystal HgCd is grown on a CdTe single-crystal substrate 4 by liquid phase epitaxial growth.
To grow Te, Hg Cd Te solution 5
is filled into the growth ampoule.

第3図は、メルトホルダ2の一例を示す斜視図であるが
、連結バー6によって保持されたメルトホルダ2には、
基板を支持するための溝3が対向して形成されている。
FIG. 3 is a perspective view showing an example of the melt holder 2, and the melt holder 2 held by the connecting bar 6 includes:
Grooves 3 for supporting the substrate are formed facing each other.

この成長アンプルを加熱炉に挿入して、結晶素材を高温
溶融した後、成長アンプルを180度回板回転ることに
より、Hg Cd T e溶液5に単結晶基板4が浸漬
されることになり、次に溶液の温度を所定の時間徐冷す
ることにより、厚みが30μ−〜40μ−のHgCdT
e層がエピタキシャル成長する。
After inserting this growth ampoule into a heating furnace and melting the crystal material at a high temperature, the single crystal substrate 4 is immersed in the Hg Cd Te solution 5 by rotating the growth ampoule 180 degrees. Next, by slowly cooling the temperature of the solution for a predetermined period of time, HgCdT with a thickness of 30 μ- to 40 μ-
The e-layer is epitaxially grown.

このように、Cd T e単結晶基板4をHgCdTe
溶液5に浸漬してエピタキシャル成長がなされるが、C
dTeとHg Cd T eの双方の材料の化学ポテン
シャルの差異により、高温になった際に、Cd T e
単結晶基板は比較的安定であって拡散が遅いが、他方H
gCdTeは拡散が速いために、CdTe単結晶基板の
裏面に多結晶のHgCdTe層が形成される。
In this way, the CdTe single crystal substrate 4 is replaced with HgCdTe.
Epitaxial growth is performed by immersing in solution 5, but C
Due to the difference in chemical potential of both materials, dTe and Hg Cd Te, Cd Te
Single-crystal substrates are relatively stable and slow to diffuse, but on the other hand, H
Since gCdTe diffuses quickly, a polycrystalline HgCdTe layer is formed on the back surface of the CdTe single crystal substrate.

この裏面に被着したH g Cd T e層は研磨によ
って除去する以外になく、この研磨工程はアルミナ等の
微粉末を液体に混入して、そのアルミナ混入液により基
板裏面を研磨するものであるが、この研磨方法では、H
g Cd T a基板の結晶に歪を発生させることにな
り、結果的に、デバイス特性を劣化させる欠点がある。
The only way to remove the HgCdTe layer deposited on the back surface is by polishing, and this polishing process involves mixing fine powder such as alumina into a liquid and polishing the back surface of the substrate with the alumina mixed liquid. However, with this polishing method, H
This has the drawback of causing distortion in the crystal of the g Cd Ta substrate, resulting in deterioration of device characteristics.

[発明が解決しようとする問題点] Cd T a単結晶基板上に、Hg Cd T e単結
晶を液相エピタキシャル成長をする場合に、CdTe結
晶基板の裏面にCdTeとHgTeの相互拡散が生じて
、多結晶のHg Cd T e層が形成されることが問
題点である。
[Problems to be Solved by the Invention] When a Hg Cd Te single crystal is liquid-phase epitaxially grown on a Cd Ta single crystal substrate, interdiffusion of CdTe and HgTe occurs on the back surface of the CdTe crystal substrate. The problem is that a polycrystalline Hg Cd Te layer is formed.

[問題点を解決するための手段] 第1図は、上記問題点を解決するための、本発明による
液相エピタキシャル成長装置の断面図であり、成長アン
プル1の内部に配置された半導体単結晶基板の表面に、
溶液によってエピタキシャル成長を行う際に、半導体単
結晶基板の裏面側に、その半導体単結晶基板と同種基板
を密着させてエピタキシャル成長を行うことにより、溶
液と半導体単結晶基板との相互拡散が阻止されて、半導
体単結晶基板の裏面に多結晶の成長膜が生成されるのを
防止するものである。
[Means for Solving the Problems] FIG. 1 is a sectional view of a liquid phase epitaxial growth apparatus according to the present invention for solving the above problems. on the surface of
When epitaxial growth is performed using a solution, mutual diffusion between the solution and the semiconductor single crystal substrate is prevented by closely contacting the back side of the semiconductor single crystal substrate with a substrate of the same type as the semiconductor single crystal substrate. This prevents a polycrystalline growth film from being formed on the back surface of a semiconductor single crystal substrate.

この半導体単結晶基板の裏面に多結晶の成長膜が生成さ
れるのを防止する方法は、液相エピタキシャル成長に限
定されるものではな(、気相エピタキシャル成長の場合
でも採用することができるものである。
This method of preventing the formation of a polycrystalline growth film on the back surface of a semiconductor single crystal substrate is not limited to liquid phase epitaxial growth (it can also be adopted in the case of vapor phase epitaxial growth). .

[作用] CdTe結晶基板の裏面にHg Cd T e層が形成
されることは、CdTeとHgCdTaのケミカルポテ
ンシャルが異なるために、相互拡散が生ずるからであり
、そのために、Cd T e裏面に化学ポテンシャルが
同一のCdTe結晶を密着しておけば、Cd T e基
板の裏面上の微少空間のCdTo分子は、直ちに飽和し
Cd T e結晶から蒸発することがなくなり、相互拡
散による多結晶HgCd T e層の成長がなく、従っ
て後工程によって成長膜の研磨を要しないし、良好なエ
ピタキシャル成長がなされることになる。
[Function] The Hg Cd Te layer is formed on the back surface of the CdTe crystal substrate because mutual diffusion occurs because the chemical potentials of CdTe and HgCdTa are different. If the same CdTe crystals are placed in close contact with each other, the CdTo molecules in the microspace on the back surface of the CdTe substrate will be immediately saturated and will not evaporate from the CdTe crystal, resulting in a polycrystalline HgCdTe layer due to interdiffusion. Therefore, there is no need to polish the grown film in a post-process, and good epitaxial growth can be achieved.

[実施例] 本発明による液相エピタキシャル成長装置を、第1図の
模式要部断面図によって、詳細に説明する。
[Example] A liquid phase epitaxial growth apparatus according to the present invention will be explained in detail with reference to a schematic cross-sectional view of main parts in FIG.

石英製の成長アンプル11があり、その内部には成長ア
ンプル内で回転する石英製のメルトホルダ12があって
、このメルトホルダの両面の溝13により支持された、
エピタキシャル成長がなされる、CdTe単結晶基板1
4と、このCdTe単結晶基板14の裏面側に密着載置
された、ダミー用のCdTe単結晶基板15とが二重に
メルトホルダに保持されている。
There is a growth ampoule 11 made of quartz, and inside thereof there is a melt holder 12 made of quartz which rotates within the growth ampoule and is supported by grooves 13 on both sides of the melt holder.
CdTe single crystal substrate 1 on which epitaxial growth is performed
4 and a dummy CdTe single crystal substrate 15 placed in close contact with the back side of this CdTe single crystal substrate 14 are held in the melt holder in a double manner.

又、成長アンプル内にはCdTe結晶基板14の表面上
に液相エピタキシャル成長を行うための、HgCdTe
熔液16が溶液されている。
Further, in the growth ampoule, HgCdTe is placed for liquid phase epitaxial growth on the surface of the CdTe crystal substrate 14.
The molten liquid 16 is dissolved.

エピタキシャル成長がなされる、Cd T e基板14
の表面と裏面は、鏡面研磨された上、更に、臭素メタノ
ール液でエツチング処理が行われ、このCd T e基
板14の裏面に密着されるCdTaのダミー基板15に
ついても、基板と密着する面を鏡面研磨を行って、Cd
Te基板と同様の処理が行われる。
Cd Te substrate 14 on which epitaxial growth is performed
The front and back surfaces of the CdTe substrate 14 are polished to a mirror surface, and then etched with a bromine-methanol solution. Perform mirror polishing and Cd
The same treatment as for the Te substrate is performed.

成長アンプル11内に収納された、CdTe結晶基板1
4とダミー基板15は、従来と同様の方法によってHg
 Cd T a溶液に浸漬されて、エピタキシャル成長
がなされる。
CdTe crystal substrate 1 housed in growth ampoule 11
4 and the dummy substrate 15 are coated with Hg using the same method as before.
Epitaxial growth is performed by immersing in a Cd Ta solution.

エピタキシャル成長時でも、単結晶基板とダミー基板は
双方ともに、鏡面研磨がなされているために密着性がよ
く、僅かに間隙があってもCdTe分子の飽和状態とな
るために、水銀がはいることがなく、従ってHgCdT
e層が形成されることがない。
Even during epitaxial growth, both the single crystal substrate and the dummy substrate have good adhesion because they are mirror polished, and even if there is a slight gap, the CdTe molecules become saturated, so mercury does not get in. Therefore, HgCdT
No e-layer is formed.

この方法によれば、Cd T eの裏面に多結晶のHg
 Cd T e層が形成されず、成長後の研磨工程をす
る必要がない。
According to this method, polycrystalline Hg is formed on the back surface of CdTe.
No CdTe layer is formed and there is no need for a post-growth polishing step.

[発明の効果] 以上、詳細に説明したように、本発明によるエピタキシ
ャル成長を行うことにより、成長基板の裏面に拡散によ
る多結晶の成長層が形成されることなく、高品質の基板
を供しうるという効果大なるものである。
[Effects of the Invention] As explained above in detail, by performing epitaxial growth according to the present invention, a high-quality substrate can be provided without forming a polycrystalline growth layer due to diffusion on the back surface of the growth substrate. It is very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の液相エピタキシャル成長装置の断面
図、 第2図は、従来の液相エピタキシャル成長装置の要部断
面図、 第3図は、メルトホルダの斜視図、 図において、 11は成長アンプル、  12はメルトホルダ、13は
溝、 14はエピタキシャル成長がなされる単結晶基板15は
ダミー用の単結晶基板、 16は溶液、 をそれぞれ示している。 、i−兇gJ4−力’tarビア久シャル八蓑喀1のV
1馳(2)mt  !A
FIG. 1 is a sectional view of a liquid phase epitaxial growth apparatus of the present invention, FIG. 2 is a sectional view of main parts of a conventional liquid phase epitaxial growth apparatus, and FIG. 3 is a perspective view of a melt holder. , 12 is a melt holder, 13 is a groove, 14 is a single crystal substrate 15 on which epitaxial growth is performed, is a dummy single crystal substrate, and 16 is a solution. , V
1st(2)mt! A

Claims (1)

【特許請求の範囲】 液相或いは気相エピタキシャル成長を行う成長アンプル
(11)内に、半導体単結晶基板(14)と溶液(16
)を配置して、 該半導体単結晶基板(14)の表面にエピタキシャル成
長を行う際に、 該半導体単結晶基板(14)の裏面側に該半導体単結晶
基板と同種類のダミー用の単結晶基板(15)を密着さ
せて、エピタキシャル成長を行うことを特徴とする半導
体結晶の成長方法。
[Claims] A semiconductor single crystal substrate (14) and a solution (16) are placed in a growth ampoule (11) for performing liquid phase or vapor phase epitaxial growth.
), and when epitaxial growth is performed on the surface of the semiconductor single crystal substrate (14), a dummy single crystal substrate of the same type as the semiconductor single crystal substrate is placed on the back side of the semiconductor single crystal substrate (14). (15) A method for growing a semiconductor crystal, characterized in that epitaxial growth is performed with the crystals in close contact with each other.
JP7066285A 1985-04-02 1985-04-02 Manufacture of semiconductor crystal Pending JPS61228634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7066285A JPS61228634A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7066285A JPS61228634A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS61228634A true JPS61228634A (en) 1986-10-11

Family

ID=13438095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7066285A Pending JPS61228634A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS61228634A (en)

Similar Documents

Publication Publication Date Title
JP3109659B2 (en) Crystal growth method and apparatus
JPS61228634A (en) Manufacture of semiconductor crystal
JPH0478598B2 (en)
JPS6021897A (en) Process for liquid phase epitaxial crystal growth
JPH0310598B2 (en)
JPH0260065B2 (en)
JP3151277B2 (en) Liquid phase epitaxial growth method
JP2574122B2 (en) Compound semiconductor crystal growth method and crystal growth apparatus
JP4870859B2 (en) Liquid phase epitaxial growth apparatus and growth method
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPS60123024A (en) Liquid-phase epitaxial crystal growth method and device thereof
JPS61101488A (en) Molecular beam crystal growth apparatus
JPH03214634A (en) Manufacture of compound semiconductor crystal and manufacture of optical detection element
JPH02233585A (en) Base plate holder
JPS62163334A (en) Device for liquid-phase epitaxial growth
JPH04148532A (en) Liquid-phase epitaxial growth apparatus
JPH02263432A (en) Manufacture of epitaxial crystal
JPH06279178A (en) Production of semiconductor device and device therefor
JPH05330984A (en) Device for liquid-phase epitaxial growth
JPS63137436A (en) Liquid phase epitaxial growing system
JPH02130839A (en) Liquid epitaxially growing method
JPH04119988A (en) Liquid phase epitaxial growth system
JPS63199413A (en) Sliding boat for liquid growth
JPH02312247A (en) Substrate holder for liquid phase epitaxial growth
JPS60182140A (en) Liquid phase epitaxial crystal growth method and device thereof