JPS61227325A - Gas insulated circuit breaker - Google Patents

Gas insulated circuit breaker

Info

Publication number
JPS61227325A
JPS61227325A JP60066949A JP6694985A JPS61227325A JP S61227325 A JPS61227325 A JP S61227325A JP 60066949 A JP60066949 A JP 60066949A JP 6694985 A JP6694985 A JP 6694985A JP S61227325 A JPS61227325 A JP S61227325A
Authority
JP
Japan
Prior art keywords
disconnector
gas
insulated
metal container
grounded metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066949A
Other languages
Japanese (ja)
Other versions
JPH077623B2 (en
Inventor
洋 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066949A priority Critical patent/JPH077623B2/en
Publication of JPS61227325A publication Critical patent/JPS61227325A/en
Publication of JPH077623B2 publication Critical patent/JPH077623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス絶縁機器に係り、ガス絶縁断路器を動作さ
せたときに発生する高周波サージを抑制することのでき
るようにしたガス絶縁断路器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to gas insulated equipment, and relates to a gas insulated disconnect switch that is capable of suppressing high frequency surges that occur when the gas insulated disconnect switch is operated. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

変電所に用いられる高電圧回路の開閉装置として、近年
ガス絶縁開閉装置が広く用いられている。このガス絶縁
開閉装置は、母線、し中断器、断路器を始めと゛して、
その他の付属設備を接地金属容器の中に収納し、この接
地金属容器内に封入した安定度が高く、不活性、不燃性
、無臭、無害であり、かつ空気の2〜3倍の絶縁耐力を
有するSF6がス等の絶縁性がスで絶縁保持し、高圧回
路の開閉装置としたものである。
Gas-insulated switchgears have been widely used in recent years as switchgears for high-voltage circuits used in substations. This gas insulated switchgear is used for busbars, interrupters, disconnectors, etc.
Other accessory equipment is housed in a grounded metal container, which is highly stable, inert, nonflammable, odorless, and harmless, and has a dielectric strength 2 to 3 times that of air. The SF6 having an insulating property such as S is insulated and maintained by S, and is used as a switching device for a high voltage circuit.

このような機器は一般に同軸構造で、その内部に発生し
たサージは殆ど減衰することなく伝搬する。断路器やし
中断器の操作により、ガス絶縁開閉装置内に高周波サー
ジが発生することはよく知られた事実である。特に断路
器の操作時に、波頭の立ち上がり部分が2〜3nsで、
それに続く数MHzの高周波振動の最大ピーク値が°′
常時運転電圧の波高値の2倍以上(2,0pu以上)な
るサージ電圧が発生し得る。このサージの急峻な波頭部
分が原因となって、オイルブッシングが絶縁破壊事故を
起こした例や、サージの波高値が原因となって断路器極
間アークから接地金属容器への地絡事故を起こした例が
報告されている。また、これらのサージはガス絶縁開閉
装置の接地系VC!!導し、様々な電波障害や、低圧制
御回路の破壊事故を引き起こす原因となる。
Such devices generally have a coaxial structure, and surges generated within the device propagate with almost no attenuation. It is a well-known fact that high frequency surges are generated in gas-insulated switchgear due to the operation of disconnectors and interrupters. Especially when operating a disconnector, the rising part of the wave crest is 2 to 3 ns.
The maximum peak value of the high frequency vibration of several MHz that follows is °'
A surge voltage that is twice or more (2.0 pu or more) the peak value of the constant operating voltage may occur. The steep wave crest of this surge has caused dielectric breakdown in oil bushings, and the peak value of the surge has caused ground faults from arcs between the poles of disconnectors to grounded metal containers. Examples have been reported. In addition, these surges are caused by the grounding system VC of the gas insulated switchgear! ! This can lead to various types of radio interference and damage to low-voltage control circuits.

したがってガス絶縁開閉装置内に発生する高周波サージ
を何らかの手段で抑える必要がある。
Therefore, it is necessary to suppress the high frequency surge generated within the gas insulated switchgear by some means.

断路器操作時に発生する高周波サージを抑える一方法と
して、第5図に示す方法が考えられている。
A method shown in FIG. 5 has been considered as one method for suppressing high frequency surges that occur when operating a disconnector.

すなわち、図はガス絶縁開閉装置の断路器の断面図であ
り、図中1は接地金属容器、2はこの接地金属容器1に
取り付けられた絶縁スペーサであり、接地金属容器J内
は密封され絶縁ガス3が封入されている。接地金属容器
1内には一対の固定電極4*、4bがその軸線を一致さ
せ近接対向して配されると共にそれぞれ前記絶縁ス(−
サ2VCより支持されている。各固定電極4ae4bは
中空であり、内周面に接触子5m、5bが設けられてい
る。一方の固定電極4b内には外周面を接触子5b)I
c接し且つ固定電極4bの軸方向に摺動可能な可動電極
6が設けられており、また、可動電極6の先端にはアー
クコンタクト8が設けられている。また、接地金属容器
】の外部には操作機構10が設けられ、この操作機構1
0の操作力は操作棒9を介して前記可動電極6に伝達さ
れ、可動電極6を固定電極4a方向に進退操作できるよ
うになりていて、これにより、固定電極4&に接離でき
るようになっている。7は固定電極4aの先端に設けら
れた抵抗である。また、1λは各固定電極4m、4bV
c接続された高圧中心導体、12は接続電極である。
That is, the figure is a cross-sectional view of a disconnector of a gas-insulated switchgear. In the figure, 1 is a grounded metal container, 2 is an insulating spacer attached to this grounded metal container 1, and the inside of the grounded metal container J is sealed and insulated. Gas 3 is sealed. Inside the grounded metal container 1, a pair of fixed electrodes 4* and 4b are disposed close to each other with their axes aligned and facing each other.
Supported by SA2VC. Each fixed electrode 4ae4b is hollow, and contacts 5m and 5b are provided on the inner peripheral surface. Inside one of the fixed electrodes 4b, the outer peripheral surface is connected to the contact 5b) I
A movable electrode 6 is provided which is in c-contact and is slidable in the axial direction of the fixed electrode 4b, and an arc contact 8 is provided at the tip of the movable electrode 6. Further, an operating mechanism 10 is provided outside the grounded metal container, and this operating mechanism 1
The operating force of 0 is transmitted to the movable electrode 6 via the operating rod 9, and the movable electrode 6 can be moved forward and backward in the direction of the fixed electrode 4a, thereby allowing it to move toward and away from the fixed electrode 4&. ing. 7 is a resistor provided at the tip of the fixed electrode 4a. Also, 1λ is 4m for each fixed electrode, 4bV
12 is a connecting electrode.

このような構成において、高周波サージは前記抵抗7に
よって抑える。
In such a configuration, high frequency surges are suppressed by the resistor 7.

これは、し中断器のいわゆる抵抗投入と同じ方法で、断
路器の固定電極4aの先端に抵抗2を接続している。断
路器の可動電極6との間に再点弧が発生した場合、この
電流は必ず抵抗7を通ることになる。したがって、サー
ジはこの抵抗によってすぐに吸収されてしまい、伝ばん
することはない。
This is the same method as the so-called resistor closing of the disconnector, in which the resistor 2 is connected to the tip of the fixed electrode 4a of the disconnector. If restriking occurs between the disconnector and the movable electrode 6, this current will necessarily pass through the resistor 7. Therefore, the surge is quickly absorbed by this resistance and does not propagate.

このとき、抵抗7には再点弧が発生する直前の極間電圧
が印加されるので、この電圧による抵抗2の絶縁破壊を
防ぐため、かなりの絶縁距離が必要となる。従って、可
動電極のストロークは、抵抗7を接続しない場合に比べ
て2倍以上になり、断路器そのものが長くなると同時k
At this time, the interelectrode voltage immediately before restriking is applied to the resistor 7, so a considerable insulation distance is required to prevent dielectric breakdown of the resistor 2 due to this voltage. Therefore, the stroke of the movable electrode is more than twice that of the case where the resistor 7 is not connected, and the length of the disconnector itself increases at the same time.
.

操作機構10も長いストロークに対応した強力なもので
ある必要がある。また、抵抗7を高電圧側に接続するこ
とによってその構造が複雑となり、故障の原因となって
ガス絶縁開閉装置の信頼性低下を引き起こしかねない、
特に高圧側導体には高電流が流れ熱に対する配慮が必要
であると同時に、断路器操作時の振動に対する対策も必
要となる。このような悪環境の場所に複雑な構造の機構
を設置するのは得策ではない。
The operating mechanism 10 also needs to be strong enough to handle long strokes. In addition, connecting the resistor 7 to the high voltage side complicates its structure, which may cause failure and reduce the reliability of the gas-insulated switchgear.
In particular, high current flows through the high-voltage side conductor, so consideration must be given to heat, and at the same time, countermeasures against vibrations when operating the disconnector are also required. It is not a good idea to install a mechanism with a complicated structure in such a bad environment.

断路器は、し中断器とは異なり、−変電所に多数設置す
るのが常であるので、この部分のコスト、信頼性は変電
所全体のコストおよび信頼性にとって非常に重要である
Unlike interrupters, disconnectors are usually installed in large numbers in a substation, so the cost and reliability of this part are very important to the cost and reliability of the entire substation.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、断路器サー
ジを効果的に抑えることができ、しかも信頼性が高く小
形で安価な構造のガス絶縁断路器を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a gas-insulated disconnect switch that can effectively suppress disconnector surges, has a highly reliable, compact, and inexpensive structure.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、電極を包囲して接
地金属容器の内側に磁性材にょる略円筒状の構造物を絶
縁を保持して設置したことを特徴とする。
In order to achieve the above object, the present invention is characterized in that a substantially cylindrical structure made of a magnetic material is installed inside a grounded metal container surrounding the electrode while maintaining insulation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す正面断面図であり、図
中第5図と同一物には同一符号を付°して説明は省略す
る。
FIG. 1 is a front cross-sectional view showing one embodiment of the present invention, and the same parts in the figure as in FIG. 5 are given the same reference numerals, and their explanation will be omitted.

図に示すように本装置は固定電極4aに設けた従来のサ
ージ吸収用の抵抗7を廃止し、固定電極4ge 4b間
の距離をその分、短、〈・シて、可動電極6の操作系の
機械的強度を緩和し、且つ電極構造も抵抗7のない分、
単純化する0代って、円筒状の構造体16を用意し、と
れを電極4m、4bの配設領域全域を包囲すべく絶縁ス
ペーサ2間に配したかたちで接地金属容器1内忙取り付
ける。このとき、接地金属容器ノの中心軸と上記構造体
16の中心軸は絶縁設計上、一致させるのが好ましい、
また、接地金属容器1は中央を7ラング1f部分の内径
より大きくしてあり、接地金属容器Jと構造体J6との
間に空隙3aを設けて電気的に絶縁するよう忙する。
As shown in the figure, this device eliminates the conventional surge absorbing resistor 7 provided on the fixed electrode 4a, shortens the distance between the fixed electrodes 4ge and 4b, and reduces the distance between the fixed electrodes 4ge and 4b. Since the mechanical strength of the electrode structure is relaxed and the electrode structure has no resistance 7,
For simplification, a cylindrical structure 16 is prepared and installed inside the grounded metal container 1 in such a way that the ribs are placed between the insulating spacers 2 to surround the entire area where the electrodes 4m and 4b are provided. At this time, it is preferable that the central axis of the grounded metal container and the central axis of the structure 16 coincide with each other in terms of insulation design.
Further, the grounded metal container 1 has a center part larger than the inner diameter of the seventh rung 1f, and a gap 3a is provided between the grounded metal container J and the structure J6 to provide electrical insulation.

尚、構造体16は薄い磁性材を複数枚積層したものを用
いている。
Note that the structure 16 is made of a plurality of thin magnetic materials laminated.

ところで磁性材は一般に大きな比透磁率を有する・例え
ば鉄はμ=soooであり、真空中の5000倍の磁束
が発生することになる。従って、このような磁性体f:
接地金属容器の内部に設置しておけば、この部分のイン
ダクタンスがかなり大きくなる。例えば、外径503厚
さ1clI&長さ1mの鉄が持つインダクタンスは、た
だしμ・:真空中の透磁率、μミ5000 。
By the way, magnetic materials generally have a large relative magnetic permeability. For example, iron has μ=sooo, and a magnetic flux 5000 times that in a vacuum is generated. Therefore, such a magnetic body f:
If it is installed inside a grounded metal container, the inductance of this part will be quite large. For example, the inductance of iron with an outer diameter of 503, a thickness of 1 clI, and a length of 1 m is μ.: Magnetic permeability in vacuum, μmi 5000.

do:磁性材16の外径、 dI:磁性材16の内径、 tn() :自然対数である。do: outer diameter of the magnetic material 16, dI: inner diameter of the magnetic material 16, tn(): Natural logarithm.

となる、この大きなインダクタンスは断路器の再点弧時
に発生する波頭長が2 ns〜3 nsのステップ波の
波頭を鈍らせる作用をする。これを説明するために、1
g2図に示す等価回路を考える。15が(1)式で与え
られる磁性材構造体16゛の等価インダクタンス、14
はがス絶縁開閉装置の特性インピーダンスで、この等測
的な抵抗に流れる電流が、ガス絶縁開閉装置内を伝搬す
るサージを表わしている。13は断路器極間の再点弧に
よるステップ波電圧を示す、t=0でステップ波が発生
したとして回路万福式(2)を解けば、抵抗JIK流れ
る電流lが求められる。
This large inductance acts to blunt the wavefront of a step wave with a wavefront length of 2 ns to 3 ns that occurs when the disconnector is re-ignited. To explain this, 1
Consider the equivalent circuit shown in figure g2. 15 is the equivalent inductance of the magnetic material structure 16′ given by equation (1), 14
This is the characteristic impedance of gas insulated switchgear, and the current flowing through this isometric resistance represents the surge propagating within the gas insulated switchgear. 13 shows the step wave voltage due to restriking between the disconnector poles.If the step wave is generated at t=0 and the circuit Manpuku equation (2) is solved, the current l flowing through the resistor JIK can be found.

1=0でi=0なる初期条件を満足する(2)式の解は
、 で与えられる。量の変化を第3図忙示す。LO値を(1
)式で与えられる20μにとすれば、一般的なガス絶縁
開閉装置の特性インピーダンスは700程度であるので
、1の波頭部分の立ち上がり時間は+÷=0.3(μ秒
)となり、インダクタンスのない場合に比べて100倍
になりている。
The solution to equation (2) that satisfies the initial conditions of 1=0 and i=0 is given by: Figure 3 shows the changes in the amount. LO value (1
), the characteristic impedance of a typical gas-insulated switchgear is about 700, so the rise time of the wavefront portion of 1 is +÷=0.3 (μ seconds), and the inductance This is 100 times more than without it.

磁性材からなる円筒状の構造体16を接地金属容器1と
電気的に絶縁してシ〈ことは、サージ電流が、磁性材構
造体16の内側を流れてしまって、インダクタンスとし
ての効果を失うことを防止する上で重要である。
If the cylindrical structure 16 made of magnetic material is electrically insulated from the grounded metal container 1, the surge current will flow inside the magnetic material structure 16 and lose its effect as an inductance. It is important to prevent this from happening.

次に構造体16のサージ抑制効果を具体的に説明する。Next, the surge suppressing effect of the structure 16 will be specifically explained.

例えば、550kV系において(3)式で与えられるサ
ージ波形の波頭部分での電圧上昇率を計算してみる。V
として波高値450kVを与え、立ち上がり時間を0.
3μ秒とすれば、電圧変化率は、 この値は%550kV系の雷イン/量ルス試験波形のも
つ電圧変化率1800 kV/A秒より小さい値であり
、油ブッシングの絶縁破壊や、接地系への鰐導す−ジ忙
対して問題のない値である。
For example, let us calculate the voltage increase rate at the wavefront portion of the surge waveform given by equation (3) in a 550 kV system. V
Assign a peak value of 450 kV and set the rise time to 0.
If the voltage change rate is 3 μ seconds, this value is smaller than the voltage change rate of 1800 kV/A seconds of the 550 kV system lightning in/out test waveform, which may cause dielectric breakdown of the oil bushing or the grounding system. This is an acceptable value for those who are busy.

(3)式で与えられる電圧変化率は1=0で最大となる
が、この点忙おける主要な周波数成分を求めてみる。
The voltage change rate given by equation (3) is maximum when 1=0, but let's find the main frequency components at this point.

(3)式で与えられる1をtで微分し、t’=oI−−
゛に入すれば、t=OVcおける電流変化率として次式
を得る。
Differentiate 1 given by equation (3) with respect to t, t'=oI--
If we enter , we obtain the following equation as the current change rate at t=OVc.

一般に、波高値71周波数!なる電圧νは、τ;V幽2
πft         ・−(7)で表わされ、t=
0における電圧変化率は、となる、(6)式で与えられ
る電圧変化率と(8)式で与えられる電圧変化率を等し
いものとすればを得る。R=700、I、−20μHを
代入すれば、周波数fは550 kHzとなる。従って
、第3図で与えられる電流波形は550 kHz以下の
周波数成分しか含まず、このサージ波形がガス絶縁開閉
装置内に伝ばんしても、550kHz以上の高周波は発
生し得ない0発明者らが現在までに経験した様々なオー
ルGLSタイプの変電所での断路器サージはすべてI 
MH!以上であった。従ってこのようなタイプの変電所
に本発明による新路器を採用すれば、絶縁上問題となる
高周波は発生できず、大きな効果が得られる仁とがわか
る。
In general, the peak value is 71 frequencies! The voltage ν is τ;
It is expressed as πft ・−(7), and t=
The voltage change rate at 0 is obtained by making the voltage change rate given by equation (6) equal to the voltage change rate given by equation (8). By substituting R=700, I, and -20 μH, the frequency f becomes 550 kHz. Therefore, the current waveform given in Fig. 3 only includes frequency components of 550 kHz or less, and even if this surge waveform propagates inside the gas-insulated switchgear, high frequencies of 550 kHz or more cannot be generated. All of the disconnector surges at various all-GLS type substations that have been experienced to date have been caused by I.
MH! That was it. Therefore, it can be seen that if the new circuit device according to the present invention is adopted in such a type of substation, high frequencies that cause insulation problems will not be generated, and a great effect will be obtained.

磁性材からなる円筒状構造体16を断路器極間から離れ
た場所に設置した場合、断路器極間で発生した急峻波は
、円筒状構造体16を設置した部分の開・放端とみなし
、反射してしまう。
When the cylindrical structure 16 made of magnetic material is installed at a location away from the poles of the disconnector, the steep waves generated between the poles of the disconnector are considered to be the open end of the part where the cylindrical structure 16 is installed. , it will be reflected.

従って、急峻波が伝搬するのを防止する上では効果的で
あるが、急峻波の除去には効果はない。
Therefore, although it is effective in preventing steep waves from propagating, it is not effective in removing steep waves.

これに比べて、急峻波の発生源である断路器の極間近傍
に円筒状構造体16を設置すれば、急峻波は、この部分
を通過しなげれば、ガス絶縁開閉装置の他の場所に伝搬
できず、従って急峻波を効果的に除去できることになる
In comparison, if the cylindrical structure 16 is installed near the poles of the disconnect switch, which is the source of steep waves, the steep waves will be transmitted to other locations in the gas-insulated switchgear unless they pass through this part. Therefore, steep waves can be effectively removed.

尚、本発明は上記し且つ図面に示す実施例k・議定する
ことなく、その要旨を変更しない範囲内で適宜変形して
実施し得ることは勿論であり、例えば先の実施例では構
造体16として鉄などの導電性の磁性材を用いることを
前提としていたが、フェライトなどの高抵抗の磁性材を
用いれば、接地金属容器Jとの絶縁を保つ必要はなく設
計上有利である。また、μの大きな他の磁性材料、例え
ば、ノf−マロイμ=100,000純鉄fi = 2
00,000 ス−p4−マaイp = 1,000,
000などを用いれば、さらに小さな円筒状構造物で同
様な効果が得られる。
It goes without saying that the present invention can be carried out by appropriately modifying the embodiment k described above and shown in the drawings without changing the gist of the invention. For example, in the previous embodiment, the structure 16 Although it was assumed that a conductive magnetic material such as iron is used as the material, if a high resistance magnetic material such as ferrite is used, there is no need to maintain insulation from the grounded metal container J, which is advantageous in terms of design. Also, other magnetic materials with large μ, such as f-malloy μ = 100,000 pure iron fi = 2
00,000 sp4-my ap = 1,000,
If 000 or the like is used, a similar effect can be obtained with an even smaller cylindrical structure.

また、第1図では、磁性材からなる円筒状構造体16を
、断路器極間を被5ように設置したが、第4図に示すよ
うに、断路器の極間を外して、その左右に円筒状構造物
16m、16bを設置しても同様な効果が得られるとと
もに、極間部分の空間を広くとることができるので、構
造が複雑な断路器極間の絶縁設計が容易となり、断路器
の直径をノj\さくできる。
In addition, in FIG. 1, the cylindrical structure 16 made of magnetic material is installed to cover the poles of the disconnector, but as shown in FIG. A similar effect can be obtained by installing cylindrical structures 16m and 16b in the cylindrical structure, and since the space between the poles can be widened, the insulation design between the poles of the disconnector, which has a complicated structure, can be easily designed. You can reduce the diameter of the vessel.

またここでは、単相構造の断路器への実施例1説明して
きたが、三相一括断路器への適用についても効果は同様
である。特に三相一括断路器に適用した場合には、磁性
材内部を流れる交流電流の総和がゼロとなるので磁性体
の発熱などを考慮する必要がなく好都合である。
In addition, although the first embodiment has been described here for a single-phase disconnector, the same effect can be obtained when applied to a three-phase bulk disconnector. Particularly when applied to a three-phase collective disconnector, the total sum of alternating current flowing inside the magnetic material becomes zero, which is advantageous since there is no need to consider heat generation of the magnetic material.

〔発明の効果〕〔Effect of the invention〕

以上述べたよ5に本発明は磁性体による筒状の構造体を
接地金属容器内に電極を包囲して設置するものであり、
構造体は接地金属容器内に設置されることあるから、高
電圧導体の発熱による熱の影響を受けず、構造を単純化
できると同時に、安価に製作できる。また、接地電位に
設置できるので、高電圧導体側は複雑な構造とはならず
、信頼性をとくに低下させることもない、従って、本発
明によって、ガス絶縁開閉装置の信頼性を低下させるこ
となく、また、ガス絶縁断路器の大、きさも従来のもの
とそれほど変化させることなく、しかも安価な方法によ
って断路器サージを減衰させることができ、安価な高信
頼性のガス絶縁断路器を提供することができる。
As stated above, in the present invention, a cylindrical structure made of a magnetic material is installed in a grounded metal container surrounding an electrode.
Since the structure may be installed in a grounded metal container, it is not affected by heat generated by the high voltage conductor, and the structure can be simplified and manufactured at low cost. In addition, since it can be installed at ground potential, the high voltage conductor side does not have a complicated structure and does not particularly reduce reliability. Therefore, the present invention can be used without reducing the reliability of gas insulated switchgear. Furthermore, the present invention provides an inexpensive and highly reliable gas insulated disconnector that can attenuate the disconnector surge by an inexpensive method without significantly changing the size and size of the gas insulated disconnector from conventional ones. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による断路器の断面図、第2
図は本発明の作用を示す等価回路、第3図は本発明の効
果を示すためのステップ波応答波形、@4図は本発明の
他の実施例を示す断路器の断面図、第5図は従来例を示
す断面図である。 1・・・接地金属容器、2・・・スペーサ、3・・・絶
縁ガス、4・・・固定電極、5・・・接触子、6・・・
可動電極、7・・・抵抗、8・・・アークコンタクト、
9・・・操作棒、10−・・操作機構、11・・・高電
圧中心導体、12・・・接続電極、13・・・ステツブ
波発生源、14・・・ガス絶縁開閉装置の特性インピー
ダンス(70Ω)、15−・・磁性材構造物160等価
インダクタンス、16・・・磁性材の構造体。 出願人代理人 弁理士 鈴 江 武 彦第2図 第3図
FIG. 1 is a sectional view of a disconnector according to an embodiment of the present invention, and FIG.
The figure is an equivalent circuit showing the action of the present invention, Figure 3 is a step wave response waveform showing the effect of the present invention, Figure 4 is a sectional view of a disconnector showing another embodiment of the present invention, and Figure 5 is a sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1... Grounded metal container, 2... Spacer, 3... Insulating gas, 4... Fixed electrode, 5... Contact, 6...
Movable electrode, 7... Resistor, 8... Arc contact,
9... Operating rod, 10-... Operating mechanism, 11... High voltage center conductor, 12... Connection electrode, 13... Step wave generation source, 14... Characteristic impedance of gas insulated switchgear (70Ω), 15--magnetic material structure 160 equivalent inductance, 16--magnetic material structure. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)固定側及び可動側の対を成す開閉電極を絶縁性ガ
スとともに接地金属容器内に絶縁保持してなるガス絶縁
断路器において、接地金属容器内に前記開閉電極を包囲
して磁性材による筒状の構造体を設けると共にこの構造
体は絶縁したことを特徴とするガス絶縁断路器。
(1) In a gas-insulated disconnect switch in which a pair of switching electrodes on a fixed side and a movable side are insulated and held together with an insulating gas in a grounded metal container, the switching electrodes are surrounded in a grounded metal container and are made of magnetic material. A gas insulated disconnector characterized in that a cylindrical structure is provided and the structure is insulated.
(2)構造体は開閉電極をほぼ全域にわたって包囲する
寸法とすることを特徴とする特許請求の範囲第1項記載
のガス絶縁断路器。
(2) The gas insulated disconnector according to claim 1, wherein the structure has a size that surrounds the switching electrode over almost the entire area.
(3)構造体は断路器極間に対して可動及び、固定側の
各電極それぞれに少なくとも1個分割設置したことを特
徴とする特許請求の範囲第1項記載のガス絶縁断路器。
(3) The gas insulated disconnect switch according to claim 1, characterized in that at least one structure is installed separately for each of the movable and fixed electrodes with respect to the gap between the poles of the disconnect switch.
JP60066949A 1985-03-30 1985-03-30 Gas insulated disconnector Expired - Lifetime JPH077623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066949A JPH077623B2 (en) 1985-03-30 1985-03-30 Gas insulated disconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066949A JPH077623B2 (en) 1985-03-30 1985-03-30 Gas insulated disconnector

Publications (2)

Publication Number Publication Date
JPS61227325A true JPS61227325A (en) 1986-10-09
JPH077623B2 JPH077623B2 (en) 1995-01-30

Family

ID=13330771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066949A Expired - Lifetime JPH077623B2 (en) 1985-03-30 1985-03-30 Gas insulated disconnector

Country Status (1)

Country Link
JP (1) JPH077623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217809A (en) * 1988-07-04 1990-01-22 Toshiba Corp High voltage equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217809A (en) * 1988-07-04 1990-01-22 Toshiba Corp High voltage equipment

Also Published As

Publication number Publication date
JPH077623B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
KR101072518B1 (en) Disconnecting switch
US4539448A (en) Disconnect switch for metal-clad, pressurized-gas insulated, high-voltage switchgear installation
EP0488695B1 (en) Surge suppression in electric apparatus
JPS61227325A (en) Gas insulated circuit breaker
US4623767A (en) Disconnect switch for metal-clad, pressurized gas-insulated high-voltage switchgear with damping resistors
JPH0382305A (en) Gas-insulated switchgear
JPH01278210A (en) Gas insulated switchgear
RU2159971C2 (en) Gas-filled disconnecting switch
RU2101794C1 (en) Gas-filled isolator
JPH0917288A (en) Gas-disconnector
JPH04190612A (en) Gas insulated electrical machinery and apparatus
JPS61227323A (en) Gas insulated gear
JPS6260408A (en) Gas insulated switching device
Swindler A comparison of vacuum and SF6 technologies at 5-38 kV
RU2168787C2 (en) Gas-filled disconnecting switch of sulfur hexafluoride high-voltage metalclad switchgear
JPH0819135A (en) Gas insulated switch
JPH0224927A (en) Disconnecting switch
JPH0218824A (en) Gas insulated disconnecting switch
JPS6260407A (en) Gas insulated switching device
JPH0265019A (en) Gas insulating switching device
JPH02303310A (en) High voltage electric apparatus
JPS6158415A (en) Conduit bus
JPH02247926A (en) Gas insulation electric equipment
JPH0336908A (en) Gas insulated unit
JPH01308114A (en) Gas insulated electric apparatus