JPS6122632A - Surface processing of substrate - Google Patents

Surface processing of substrate

Info

Publication number
JPS6122632A
JPS6122632A JP10370885A JP10370885A JPS6122632A JP S6122632 A JPS6122632 A JP S6122632A JP 10370885 A JP10370885 A JP 10370885A JP 10370885 A JP10370885 A JP 10370885A JP S6122632 A JPS6122632 A JP S6122632A
Authority
JP
Japan
Prior art keywords
substrate
layer
semiconductor substrate
flatten
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370885A
Other languages
Japanese (ja)
Other versions
JPS641931B2 (en
Inventor
Yoshio Honma
喜夫 本間
Hisao Nozawa
野沢 悠夫
Yukiyoshi Harada
原田 征喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10370885A priority Critical patent/JPS6122632A/en
Publication of JPS6122632A publication Critical patent/JPS6122632A/en
Publication of JPS641931B2 publication Critical patent/JPS641931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To flatten the surface of substrate easily and securely by a method wherein a substrate with irregularities is coated with a film to flatten the surface thereof and then sputter-etched. CONSTITUTION:A coated layer 23 is formed on the surface of semiconductor substrate 21 with irregularities such as bump C and an upper part D of step difference etc. to flatten the surface. The etching speed almost similar to that of the substrate 21 is preferably required of the material of coated layer 23 but subject to practical allowance of + or -50% as for the material of coated layer 23. Next the surface is sputter-etched utilizing the gas mixed with gas of organic compound containing at least one out of chlorine, bromine and fluorine such as CF3, CHF3 etc. and oxygen. Through these procedures, the upper surface of coated layer 23 is firstly removed and then the layer 23 including the bump C and the upper part D of step difference is simultaneously removed to flatten the surface thereof. Finally the surface of substrate 21 may be coated with a formed layer 22 utilizing vacuum evaporating process and the like.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置を製造する過程で、半導体基板の表
面を平坦化する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for planarizing the surface of a semiconductor substrate during the process of manufacturing a semiconductor device.

〔発明の背景〕[Background of the invention]

一般に半導体基板を用いて半導体装置を製造する場合、
半導体基板表面に不純物拡散、絶縁層形成、ホトエツチ
ングによる表面加工等の処理を施す。こ几らの処理を経
る間に第1図(a)に示すように、半導体基板1工の表
面は非常に大きな凹凸もしくは段差(以下まとめて凹凸
という)を生じる。
Generally, when manufacturing a semiconductor device using a semiconductor substrate,
Processes such as impurity diffusion, formation of an insulating layer, and surface processing by photoetching are performed on the surface of the semiconductor substrate. During these processes, as shown in FIG. 1(a), the surface of the semiconductor substrate has very large irregularities or steps (hereinafter collectively referred to as irregularities).

この半導体基板11の上に真空蒸着法、化学蒸着法やス
パッタリング法などによって導体層もしくは絶縁層(以
下形成層と略す)12形成とすると第1図(b)におい
て、A、B部として示す如く、凹凸の底の部分において
形成層12が薄くなったり、甚だしい場合は切れたシす
ることが多く、該形成層12の信頼性を著しく低下させ
る。従来は半導体基板11上のこのような凹凸もしくは
段差を除去する有効な方法はなく、形成層12を厚りシ
タシする等の方法で必要最低限の信頼性を確保している
のが実情である。
When a conductive layer or an insulating layer (hereinafter referred to as a forming layer) 12 is formed on this semiconductor substrate 11 by a vacuum evaporation method, a chemical vapor deposition method, a sputtering method, etc., as shown as parts A and B in FIG. 1(b). The forming layer 12 often becomes thinner or, in severe cases, breaks at the bottom of the unevenness, which significantly reduces the reliability of the forming layer 12. Conventionally, there is no effective method for removing such unevenness or steps on the semiconductor substrate 11, and the reality is that the minimum necessary reliability is secured by methods such as increasing the thickness of the forming layer 12. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は上We従来の問題を解決し、基板の表面
を容易かつ確実に平担化する方法を提供することである
An object of the present invention is to solve the problems of the conventional method and provide a method for easily and reliably flattening the surface of a substrate.

〔発明の構成〕[Structure of the invention]

これに対して本発明は以上述べたような半導体基板表面
の凹凸を除去もしくは著しく減少させて、この上に形成
する層の信頼性を向上させる方法を提供するものである
。第2図によって本発明の詳細な説明する。ます、第2
図(a)に示す如く凹凸を有する半導体基板21の表面
に塗布によって絶縁層もしくは導体層(以下塗布層と略
す)23を形成した状態を示す。凹凸を有する半導体基
板21の表面に塗布によって形成された塗布層23は、
突起部Cや段差上部りなどには薄く被着するため、全体
として半導体基板21の表面は平坦化となる。
In contrast, the present invention provides a method for improving the reliability of a layer formed thereon by removing or significantly reducing the unevenness on the surface of a semiconductor substrate as described above. The present invention will be explained in detail with reference to FIG. Masu, 2nd
As shown in Figure (a), an insulating layer or a conductive layer (hereinafter abbreviated as a coating layer) 23 is formed by coating on the surface of a semiconductor substrate 21 having unevenness. The coating layer 23 formed by coating on the surface of the semiconductor substrate 21 having unevenness is
The surface of the semiconductor substrate 21 is flattened as a whole because it is thinly deposited on the protrusions C and the tops of the steps.

塗布層23の材料としては、半導体基板21のエツチン
グ速度と同程度のエツチング速度を有する材料を用いる
。エツチング速度は±50%の差であnは実用上好まし
く、特に±30%の範囲が好ましい。
As the material for the coating layer 23, a material having an etching rate comparable to that of the semiconductor substrate 21 is used. The difference in etching rate is ±50%, and n is practically preferable, and a range of ±30% is particularly preferable.

次にこのような半導体基板21の表面をエツチングする
が、エツチング方法としてはArガスを用いたスパッタ
エツチングが知られているが、Arガスを用いた場合、
S r + S i 02や塗布膜のエッチ速度かたか
だが200λ/m i nであって、エツチングに長時
間を要するという欠点がある。
Next, the surface of such a semiconductor substrate 21 is etched. As an etching method, sputter etching using Ar gas is known, but when Ar gas is used,
The etch rate of S r + S i 02 and the coating film is approximately 200λ/min, which has the drawback of requiring a long time for etching.

そnに対して本発明では塩素または臭素またはフッ素の
うちの少なくとも一部を含む有機系炭素化合物を用いる
。たとえばOF4、OHF 3、o2F4、C2HF3
等の少なくとも一部ガスと最高20%までの濃度での酸
素との混合ガスを用いてスパッタエツチングによってS
iもしくはS + 02 Kよる凹凸を有する半導体基
板21上に0部几(東京応化製)やK T F la 
(Kodak社製)、AZ1350(5hip1ey)
、あるいは東京応化工業製の0FPR1O8R,NM几
などのホトレジストやポリイミド樹脂などを塗布した表
面をエツチングする。またA7もしくはAtとSiある
いはAlとSiとMnの合金など、Sl、8 i 02
による凹凸が共存すル半導体基板214C対し、テハ0
0 t3F、 0Ot2F2、OHOtF2など塩素と
フッ素の両方を含むガスに必要に応じて酸素を0〜20
%の範囲で混合したガスを用いることが好ましい。以上
に述べた方法で半導体基板21の表面をエツチングする
と、まず塗布層23の上面が除去され、次いで第2図(
b)−に示す如く塗布層23と共に半導体基板21の表
面の突起部Cや段差上部りなども同時に除去さn。
In contrast, the present invention uses an organic carbon compound containing at least a portion of chlorine, bromine, or fluorine. For example OF4, OHF 3, o2F4, C2HF3
S by sputter etching using a gas mixture of at least some of the gases such as and oxygen at a concentration of up to 20%.
0 parts (manufactured by Tokyo Ohka) or K T F la is applied on the semiconductor substrate 21 having unevenness due to i or S
(manufactured by Kodak), AZ1350 (5hip1ey)
Alternatively, a surface coated with a photoresist such as 0FPR1O8R, NM (manufactured by Tokyo Ohka Kogyo Co., Ltd.) or polyimide resin is etched. Also, A7 or alloys of At and Si or Al, Si and Mn, etc., Sl, 8 i 02
For the semiconductor substrate 214C where unevenness coexists due to
If necessary, add 0 to 20% oxygen to a gas containing both chlorine and fluorine, such as 0t3F, 0Ot2F2, OHOtF2.
It is preferable to use a mixture of gases within a range of %. When the surface of the semiconductor substrate 21 is etched by the method described above, the upper surface of the coating layer 23 is first removed, and then the upper surface of the coating layer 23 is etched as shown in FIG.
As shown in b)--, along with the coating layer 23, the protrusions C and the tops of the steps on the surface of the semiconductor substrate 21 are also removed at the same time.

遂には第2図(C)に示すように塗布層23と半導体基
板21の一部または全部が除去されて表面は平坦化され
る。次いでこの半導体基板21の表面に真空蒸着法や化
学蒸着法もしくはスパッタリング法によって形成層22
を被着する。
Finally, as shown in FIG. 2(C), part or all of the coating layer 23 and the semiconductor substrate 21 are removed and the surface is planarized. Next, a layer 22 is formed on the surface of the semiconductor substrate 21 by vacuum evaporation, chemical vapor deposition, or sputtering.
be coated with.

〔発明の実施例〕[Embodiments of the invention]

次に実施例によって本発明の詳細な説明する。 Next, the present invention will be explained in detail by way of examples.

実施例1゜ 半導体基板として3i基板を用いて半導体装置を製造す
る場合、通常−回収上の不純物拡散およびS r 02
膜の形成が行なわれる。これらの工程を経る間にSi基
板表面には様々の形状の8 + 02による凹凸が形成
される。第3図(a)はその−例を示す。同図で、半導
体基板として用いたSi基板31上に熱酸化法や真空蒸
着法や化学蒸着法もしくはスパッタリング法で810□
膜34が形成されている状態を示す。同図E部はたとえ
ば不純物拡散のために形成された開口に起因する凹凸を
、F部は厚い局所熱酸化によjl S r 02膜を形
成する際に生じた突起を示す。通常8部の段差h il
j 0.2〜0.7μ程度F部の高さkは0.5〜1.
2μ程度である。このような半導体基板に対して第3図
(b)の如く塗布によって、たとえば1.5μ程度の厚
さのKTFR(商品名)ホトレジストの塗布層33を形
成する。塗布層33はS i 02膜34の凹凸を埋め
るように形成され、その表面は平坦化される。
Example 1 When manufacturing a semiconductor device using a 3i substrate as a semiconductor substrate, impurity diffusion and S r 02 during normal recovery
Formation of the film takes place. During these steps, 8 + 02 irregularities of various shapes are formed on the surface of the Si substrate. FIG. 3(a) shows an example thereof. In the same figure, 810□ is deposited on a Si substrate 31 used as a semiconductor substrate by a thermal oxidation method, a vacuum evaporation method, a chemical vapor deposition method, or a sputtering method.
A state in which a film 34 is formed is shown. Section E in the figure shows irregularities caused by, for example, openings formed for impurity diffusion, and section F shows protrusions generated when forming the jl S r 02 film by thick local thermal oxidation. Normally 8 parts height difference
j about 0.2 to 0.7μ, and the height k of the F section to about 0.5 to 1.
It is about 2μ. A coating layer 33 of KTFR (trade name) photoresist having a thickness of, for example, about 1.5 μm is formed on such a semiconductor substrate by coating as shown in FIG. 3(b). The coating layer 33 is formed to fill in the irregularities of the Si 02 film 34, and its surface is flattened.

次にたとえば0OJ2F2ガスを用い真空度4×10T
orr、高周波電力1.5 W / cm2(2)条件
テスパッタエッチングを行なう。上の条件下で、S 1
02のエッチ速度は約600X/min 、 KT F
 Rノエッチ速度は550Aであって両者は図3(c)
に示す如< l’tぼ一様にエツチングさnる。約25
m1nのスパッタエツチングを行なうと、第3図(d)
に示すように塗布層33全体と5io2膜34の突出部
が除去されて、Si基板31上の830□膜34表面は
平坦化される。この上にたとえば真空蒸着法や化学蒸着
法もしくはスパッタリング法で導体層や絶縁層32を形
成すると、第1図(b)に示した如き基板の凹凸部分で
形成層が薄くなったシ切断したりする欠陥は存在せずそ
の信頼性は従来法に比して著しく向上する。
Next, for example, using 0OJ2F2 gas, the vacuum level is 4 x 10T.
orr, high frequency power 1.5 W/cm2 (2) condition test sputter etching is performed. Under the above conditions, S 1
Etch speed of 02 is about 600X/min, KTF
The R no etch speed is 550A, and both are shown in Fig. 3(c).
It is etched almost uniformly as shown in the figure. Approximately 25
When sputter etching of m1n is performed, the result is as shown in Fig. 3(d).
As shown in FIG. 3, the entire coating layer 33 and the protruding portions of the 5io2 film 34 are removed, and the surface of the 830□ film 34 on the Si substrate 31 is flattened. If a conductive layer or an insulating layer 32 is formed on this layer by, for example, a vacuum evaporation method, a chemical vapor deposition method, or a sputtering method, the formed layer may be thinned and cut due to uneven parts of the substrate as shown in FIG. 1(b). There are no defects, and its reliability is significantly improved compared to conventional methods.

なおホトレジストやポリイミド樹脂の種類によってエッ
チ速度に多少の変化が生ずるが、樹脂の方がエッチ速度
が小さいとき酸素を混合することでエッチ速度を8 +
 02や8iのそれと等しくなるよう調整できる。
Note that the etch rate will vary slightly depending on the type of photoresist or polyimide resin, but when the etch rate of the resin is lower, mixing oxygen can increase the etch rate to 8 +
It can be adjusted to be equal to that of 02 and 8i.

実施例2゜ 本発明は半導体基板上に形成されfcl、2μ厚のAj
配線の側面形状をなだらかにする場合に適用できる。
Embodiment 2゜The present invention is formed on a semiconductor substrate, fcl, 2μ thick Aj
It can be applied when making the side shape of the wiring smooth.

第4図(a)は半導体基板41上にホトエツチング(よ
ってAA配線45を形成した状態を示す。配線側面の角
度は45〜65° となっており、この上に絶縁被膜を
形成するとAt配線45の端部で段切nが生じたりする
ことが多い。そこで第4図(b)に示す如く、半導体基
板4’l上に厚さ4000Aポリイミド樹脂の層43を
塗布する。次いで00t2Fガスに酸素を4%混入した
ガスを用い、ガス圧4 X 1.0−2Tort、高周
波電力IW/Cm2でスパッタエツチングを行なう。こ
の条件でポリイミド樹脂のエッチ速度は約800 A 
/min 、 A tのエツチング速度は約750^/
minであった。従って第4図(C)に示す如く、Aj
、ポリイミド樹脂は同時にエツチングされる。約8m1
nのエツチングで第4図(d)に示す如く、ポリイミド
樹脂はほぼ完全に除去され、Aj配線もなだらかな形状
にエツチングされる(At厚は約1μが残る)。また半
導体基板41の表面の8 i 02のエッチ速度は約1
5′0^/ m l nであって上記のエツチングでは
僅かしかエツチングされない。第4図(dlの如き配線
形状は第1図(b)で説明した如く、半導体集積回路の
製造において極めて望ましいものである。
FIG. 4(a) shows a state in which an AA wiring 45 is formed on a semiconductor substrate 41 by photoetching.The angle of the side surface of the wiring is 45 to 65 degrees, and when an insulating film is formed on this, an At wiring 45 is formed. In many cases, a step n is formed at the edge of the semiconductor substrate 4'l.Therefore, as shown in FIG. Sputter etching is performed using a gas mixed with 4% of polyimide resin at a gas pressure of 4 x 1.0-2 Tort and a high frequency power of IW/Cm2. Under these conditions, the etch rate of the polyimide resin is approximately 800 A.
/min, the etching speed of At is about 750^/
It was min. Therefore, as shown in FIG. 4(C), Aj
, the polyimide resin is etched at the same time. Approximately 8m1
As shown in FIG. 4(d), as shown in FIG. 4(d), the polyimide resin is almost completely removed, and the Aj wiring is also etched into a gentle shape (about 1 μm of At thickness remains). Further, the etch rate of 8 i 02 on the surface of the semiconductor substrate 41 is approximately 1
5'0^/ml n, and the above etching etches only a small amount. The wiring shape as shown in FIG. 4 (dl) is extremely desirable in the manufacture of semiconductor integrated circuits, as explained in FIG. 1(b).

〔発明の効果〕〔Effect of the invention〕

上記発明から明らかなように、本発明によれば、基板上
の凹凸を極めて容易かつ確実に平坦化することが可能で
あり、集積密度の高い半導体装置の形成に有用である。
As is clear from the above invention, according to the present invention, unevenness on a substrate can be planarized extremely easily and reliably, and is useful for forming semiconductor devices with high integration density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明に供する従来法を示す断面図、第
2図は本発明を説明する断面図、第3図、第4図は本発
明の実施例を示す断面図。 第7の (72,) (b) YZ刀 (b) (こ) 第1 (こ)
FIG. 1 is a sectional view showing a conventional method for explaining the present invention, FIG. 2 is a sectional view for explaining the present invention, and FIGS. 3 and 4 are sectional views showing embodiments of the present invention. 7th (72,) (b) YZ sword (b) (ko) 1st (ko)

Claims (1)

【特許請求の範囲】[Claims] 表面に凹凸を有する基板上に、上記凹凸を埋めるように
塗布被膜を形成して表面を平坦化する工程と、塩素、臭
素およびフッ素より成る群から選ばれた少なくとも1種
を含むガス状の有機化合物と酸素を含むガスを用いたス
パッタエッチングを行なって上記塗布被膜と上記基板の
突出部の少なくとも一部を同時に除去し上記表面を平坦
化する工程を含み、上記ガスを用いたスパッタエッチン
グに対する上記塗布被膜と上記基板のエッチング速度の
差は±50%以内であることを特徴とする基板の処理方
法。
A step of forming a coating film on a substrate having an uneven surface to fill the unevenness to flatten the surface, and a step of flattening the surface by forming a coating film on a substrate having an uneven surface; The step of performing sputter etching using a gas containing a compound and oxygen to simultaneously remove the applied film and at least a part of the protrusion of the substrate to flatten the surface, A method for processing a substrate, characterized in that the difference in etching rate between the applied film and the substrate is within ±50%.
JP10370885A 1985-05-17 1985-05-17 Surface processing of substrate Granted JPS6122632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10370885A JPS6122632A (en) 1985-05-17 1985-05-17 Surface processing of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10370885A JPS6122632A (en) 1985-05-17 1985-05-17 Surface processing of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4771576A Division JPS52131471A (en) 1976-04-28 1976-04-28 Surface treatment of substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19538286A Division JPS6276520A (en) 1986-08-22 1986-08-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6122632A true JPS6122632A (en) 1986-01-31
JPS641931B2 JPS641931B2 (en) 1989-01-13

Family

ID=14361233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10370885A Granted JPS6122632A (en) 1985-05-17 1985-05-17 Surface processing of substrate

Country Status (1)

Country Link
JP (1) JPS6122632A (en)

Also Published As

Publication number Publication date
JPS641931B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
US4919748A (en) Method for tapered etching
KR100372742B1 (en) Interconnection forming method utilizing an inorganic antireflection layer
US5464500A (en) Method for taper etching metal
JPH11214370A (en) Etching method of aluminum-containing metal film and wiring layer forming method of semiconductor device using the same
JPS62219923A (en) Manufacture of semiconductor device
JPS6122632A (en) Surface processing of substrate
JP2950110B2 (en) Plasma etching method
JPH0313744B2 (en)
JP2000077396A (en) Semiconductor device and fabrication thereof
JPS6276520A (en) Manufacture of semiconductor device
JPS59167021A (en) Manufacture of semiconductor device
JPH06283460A (en) Dry etching of semiconductor device
JPH05109702A (en) Manufacture of semiconductor device
JPH04370934A (en) Manufacture of semiconductor device
US5650040A (en) Interfacial etch of silica to improve adherence of noble metals
JPS63296353A (en) Formation of contact hole
JPH0265256A (en) Manufacture of semiconductor device
JP3252014B2 (en) Manufacturing method of semiconductor integrated circuit
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2001185549A (en) Method for manufacturing semiconductor device
JPH02254741A (en) Manufacture of multilayer wiring
JPH0621055A (en) Semiconductor device and manufacture thereof
JPS59215746A (en) Manufacture of semiconductor device
JPS58220428A (en) Manufacture of semiconductor device