JPS61225878A - Manufacture of semiconductor photodetector - Google Patents

Manufacture of semiconductor photodetector

Info

Publication number
JPS61225878A
JPS61225878A JP60065064A JP6506485A JPS61225878A JP S61225878 A JPS61225878 A JP S61225878A JP 60065064 A JP60065064 A JP 60065064A JP 6506485 A JP6506485 A JP 6506485A JP S61225878 A JPS61225878 A JP S61225878A
Authority
JP
Japan
Prior art keywords
type
layer
guard ring
groove
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065064A
Other languages
Japanese (ja)
Inventor
Takao Kaneda
隆夫 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60065064A priority Critical patent/JPS61225878A/en
Publication of JPS61225878A publication Critical patent/JPS61225878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a high withstand voltage by deeply forming a guard ring of a planar type semiconductor photodetector which operates by utilizing avalanche multiplying phenomenon. CONSTITUTION:An N-type GaInAs photoabsorbing layer 12, an N-type GaInAsP hetero barrier alleviation layer 13 and an N-type InP multiplying layer 14 are grown on an N<+> type InP substrate 11. The layer 14 is etched in mesa shape, then an N<-> type InP buried layer for burying the layer 14 is formed, and a groove 15A for copying a guard ring forming portion in a burying layer 15 is formed. Then, a P-type impurity is diffused through the groove 15A to form a guard ring 16. Thus, the ring 16 is deepened in the amount for forming the groove 15A to increase the curvature at the periphery of the P-N junction. Accordingly, the withstand voltage of the portion becomes substantially large to improve the guard ring effect.

Description

【発明の詳細な説明】 〔概要〕 本発明は、ガード・リングを備え、アバランシェ増倍現
象を利用して動作するプレーナ型の半導体受光素子を製
造する場合に於いて、半導体基板上の一導電型増倍層を
メサ状にエツチングし、次いで、前記メサ状一導電型増
倍層を埋め込む同導電型且つ低不純物濃度である埋め込
み層を形成し、次いで、前記一導電型低不純物濃度埋め
込み層内に於けるガード・リング形成予定部分に倣う溝
を形成し、次いで、前記溝を介して反対導電型不純物の
拡散を行ってガード・リングを形成することに依り、機
能的に優れ且つ信頼性が高いガード・リングを有する半
導体受光素子を得られるようにするものである。
[Detailed Description of the Invention] [Summary] The present invention provides a method for manufacturing a planar type semiconductor light receiving element that is equipped with a guard ring and operates using an avalanche multiplication phenomenon. The type multiplication layer is etched into a mesa shape, and then a buried layer of the same conductivity type and low impurity concentration is formed to bury the mesa-shaped one conductivity type multiplication layer, and then the one conductivity type low impurity concentration buried layer is etched. By forming a groove that follows the area in which the guard ring is to be formed, and then diffusing an opposite conductivity type impurity through the groove to form the guard ring, it is possible to achieve excellent functionality and reliability. This makes it possible to obtain a semiconductor light-receiving element having a high guard ring.

〔産業上の利用分野〕[Industrial application field]

本発明は、プレーナ型アバランシェ・フォト・ダイオー
ド(avalanche  phot。
The present invention relates to a planar avalanche photodiode (avalanche photodiode).

diode:APD)と呼ばれる半導体受光素子を製造
する方法の改良に関する。
This invention relates to an improvement in a method of manufacturing a semiconductor light receiving element called a diode (APD).

〔従来の技術〕[Conventional technology]

現在、l 〔μm〕帯の光通信用半導体受光素子として
、高感度であるm−v族化合物半導体を用いたAPDの
開発が盛んに行われている。
Currently, APDs using high-sensitivity m-v group compound semiconductors are being actively developed as semiconductor light-receiving devices for optical communication in the l [μm] band.

第2図は従来のプレーナ型APDの要部切断側面図を表
している。
FIG. 2 shows a cutaway side view of essential parts of a conventional planar APD.

図に於いて、1はn++1nP基板、2はn型Ga1n
As光吸収層、3はn型Ga1nAsPへテロ・バリヤ
緩和層、4はn型1nP増倍層、5はn−型1nP埋め
込み層、6はp++1nP受光領域、7はp型1nPガ
ード・リング層、8は絶縁膜、9は電極をそれぞれ示し
ている。
In the figure, 1 is an n++1nP substrate, 2 is an n-type Ga1n
As light absorption layer, 3 is n-type Ga1nAsP hetero barrier relaxation layer, 4 is n-type 1nP multiplication layer, 5 is n-type 1nP buried layer, 6 is p++1nP light receiving region, 7 is p-type 1nP guard ring layer , 8 indicates an insulating film, and 9 indicates an electrode.

図示例では、p++1nP受光領域6及びその直下に在
るn型1nP増倍層4に依って生成されているpn接合
に於けるブレイク・ダウン耐圧を他の部分に於けるそれ
に対して相対的に低く維持する為、p++1nP受光領
域6及びn型1nP増倍層4をn−型1nP埋め込み層
5で囲むようにしたり、n−型InP埋め込み層5中に
p+型型光光領域6接するようにp型1nPガード・リ
ング層7を形成するようにしている。
In the illustrated example, the breakdown voltage at the pn junction generated by the p++1nP light-receiving region 6 and the n-type 1nP multiplication layer 4 located directly below it is compared to that at other parts. In order to maintain a low level, the p++ 1nP light-receiving region 6 and the n-type 1nP multiplication layer 4 are surrounded by the n-type 1nP buried layer 5, or the p+-type light region 6 is placed in contact with the n-type InP buried layer 5. A p-type 1nP guard ring layer 7 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、この種の半導体受光素子の信転性及び製造歩留
りを向上するにはプレーナ型にすることが望ましいが、
ブレーナ型半導体受光素子に於いては、第2図に関して
説明したようなブレイク・ダウン耐圧差を得る為の構成
、特に、ガード・リングを設ける構成は不可欠である。
Generally, in order to improve the reliability and manufacturing yield of this type of semiconductor photodetector, it is desirable to use a planar type.
In the Brehner-type semiconductor light-receiving element, a structure for obtaining a breakdown voltage difference as explained with reference to FIG. 2, especially a structure in which a guard ring is provided, is essential.

ところで、第2図の半導体受光素子に関して説明したよ
うな構成、即ち、p型InPガード・リング層7を形成
するには、イオン注入法を適用することに依り、ベリリ
ウム(Be)イオンを打ち込んでから熱処理を行って拡
散する技法を採用している。
By the way, in order to form the structure explained with respect to the semiconductor light receiving element in FIG. 2, that is, the p-type InP guard ring layer 7, beryllium (Be) ions are implanted by applying an ion implantation method. We use a technique that involves heat treatment and diffusion.

ところが、Beイオンを注入した後、例えば温度550
(’C)で熱処理を行っても、ガード・リング7の深さ
は高々工 〔μm〕程度にしかならない。
However, after implanting Be ions, for example, the temperature is 550°C.
Even if the heat treatment is performed in ('C), the depth of the guard ring 7 will only be about 10 μm.

このように、Beが深く拡散しないことは、ガード・リ
ング7の形状がBeイオンを注入したままの状態に於け
るそれと大差ないことを意味し、従って、ガード・リン
グ7で生成される接合面の周辺部分に於ける曲率はかな
り小さいものになっていて、当然、そこでの耐圧は低く
なってしまうから、充分なガード・リング効果が得られ
ないことになる。尚、現在、InPをp+型にするには
カドミウム(Cd)或いは亜鉛(Zn)など好ましい不
純物が知られているが、それよりも低濃度のp型にする
にはBeが最も良いとされでいる。
In this way, the fact that Be does not diffuse deeply means that the shape of the guard ring 7 is not much different from that in the state in which Be ions are implanted, and therefore the junction surface created by the guard ring 7 The curvature in the peripheral portion of the ring is quite small, and the withstand voltage there is naturally low, so a sufficient guard ring effect cannot be obtained. Currently, preferred impurities such as cadmium (Cd) and zinc (Zn) are known to make InP p+ type, but Be is said to be the best impurity to make it p type at a lower concentration. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明一実施例を説明する為の図である第1図を借りて
説明する。
An explanation will be given with reference to FIG. 1, which is a diagram for explaining one embodiment of the present invention.

本発明に依る手段では、n1型1nP基板11(半導体
基板)上のn型1nP増倍層14(−導電型増倍層)を
メサ状にエツチングし、次いで、前記メサ状n型1nP
増倍層14を埋め込むn−型1nP埋め込み層15(同
導電型且つ低不純物濃度である埋め込み層)を形成し、
次いで、前記n′″型1nP埋め込み層15内に於ける
ガード・リング形成予定部分に倣う溝15Aを形成し、
次いで、前記溝15Aを介してp型不純物(反対導電型
不純物)の拡散を行ってガード・リング16を形成する
工程を採っている。
In the method according to the present invention, the n-type 1nP multiplication layer 14 (-conductivity type multiplication layer) on the n1-type 1nP substrate 11 (semiconductor substrate) is etched into a mesa shape, and then the mesa-shaped n-type 1nP
Forming an n-type 1nP buried layer 15 (a buried layer of the same conductivity type and low impurity concentration) that buries the multiplication layer 14,
Next, a groove 15A is formed in the n''' type 1nP buried layer 15 to follow the part where the guard ring is to be formed.
Next, a step is adopted in which a p-type impurity (opposite conductivity type impurity) is diffused through the groove 15A to form a guard ring 16.

〔作用〕[Effect]

前記手段に依ると、ガード・リング16はn−型1nP
埋め込み層15に予め形成された溝15Aを介してp型
不純物を拡散して形成されるものであるから、溝15A
を形成した分だけ深くなって、pn接合面の周辺に於け
る曲率は大きくなるので、その部分の耐圧は充分に高く
なり、ガード・リング効果は向上する。
According to the above means, the guard ring 16 is of n-type 1nP.
Since the trench 15A is formed by diffusing p-type impurities through the trench 15A previously formed in the buried layer 15, the trench 15A is
The depth increases by the amount that is formed, and the curvature around the pn junction surface increases, so the withstand voltage at that portion becomes sufficiently high and the guard ring effect improves.

〔実施例〕〔Example〕

第1図(A)及び(B)は本発明一実施例を解説する為
の工程要所に於ける半導体受光素子の要部切断側面図を
表し、以下、これ等の図を参照しつつ説明する。
FIGS. 1(A) and 1(B) are cross-sectional side views of essential parts of a semiconductor light-receiving element at key points in the process for explaining one embodiment of the present invention, and the following description will be made with reference to these figures. do.

第1図(A)参照 +a)  例えば液相成長(liquid  phas
eepitaxy:LPE)法を適用することに依り、
n++1nP基板11上にn型Ga1nAs光吸収層1
2、n型GaInASPヘテロ・バリヤ緩和層−13、
n型InP増倍層14のそれぞれを成長させる。
See Figure 1 (A) +a) For example, liquid phase growth (liquid phas growth)
By applying the eepitaxy:LPE) method,
n-type Ga1nAs light absorption layer 1 on n++1nP substrate 11
2, n-type GaInASP hetero barrier relaxation layer-13,
Each of the n-type InP multiplication layers 14 is grown.

この場合の各半導体層のデータを示すと次の通りである
The data for each semiconductor layer in this case is as follows.

(1)n型Ga I nAsAs光吸収層厚2厚約2〔
μm〕程度 不純物濃度: l X I Q” (am−’)(2)
n型Ga1nAsPへテロ・バリヤ緩和層厚さ:約0.
5〔μm〕程度 不純物濃度: I X 1016(cm−’)(3)n
型1nP増倍層14 厚さ:約2.5〔μm〕 不純物濃度71〜2X 10” (c!m−’)(b)
  例えばプラズマCVD (plasma  che
mical  vapour  depositton
)法を適用することに依り、窒化シリコン膜を形成し、
これを通常のフォト・リソグラフィ技術を適用すること
に依ってバターニングしてn型1nP増倍層14の表面
を選択的に覆う保護膜とする。
(1) N-type Ga I nAsAs light absorption layer thickness 2 thickness approx.
[μm] impurity concentration: l X I Q” (am-') (2)
N-type Ga1nAsP hetero barrier relaxation layer thickness: approx. 0.
About 5 [μm] Impurity concentration: I x 1016 (cm-') (3) n
Type 1nP multiplication layer 14 Thickness: Approximately 2.5 [μm] Impurity concentration 71~2X 10"(c!m-') (b)
For example, plasma CVD
medical vapor deposition
) method to form a silicon nitride film,
This is patterned by applying ordinary photolithography technology to form a protective film that selectively covers the surface of the n-type 1nP multiplication layer 14.

(C)  前記保護膜をマスクに、そして、エッチャン
トを硫酸と過酸化水素と水(H2SO4+H2O2+H
20)の混合液とするウェット・エツチング法を適用す
ることに依り、n型1nP増倍層14のメサ・エツチン
グを行う。
(C) Using the above protective film as a mask, etchant is sulfuric acid, hydrogen peroxide, and water (H2SO4+H2O2+H2SO4+H2O2+H
Mesa etching of the n-type 1nP multiplication layer 14 is performed by applying the wet etching method using the mixed solution of 20).

+d)  メサ・エツチングのマスクとして用いた前記
窒化シリコンからなる保護膜を除去してから、再び、L
PE法を適用することに依り、n−型InP埋め込み層
15を形成する。尚、この場合、n−型InP埋め込み
層15の厚さは約2〔μm〕となる。
+d) After removing the protective film made of silicon nitride used as a mesa etching mask, repeat the L etching process.
By applying the PE method, an n-type InP buried layer 15 is formed. In this case, the thickness of the n-type InP buried layer 15 is about 2 [μm].

(e)  工程(blと同様にして窒化シリコンからな
り且つ溝状の開口を有している保護膜を形成してから、
それをマスクとして、受光領域形成予定部分を囲む深さ
約0.5〔μm〕程度、幅約20〔μm〕の溝15Aを
形成する。
(e) Step (After forming a protective film made of silicon nitride and having a groove-shaped opening in the same manner as in bl,
Using this as a mask, a groove 15A having a depth of approximately 0.5 [μm] and a width of approximately 20 [μm] is formed surrounding the portion where the light receiving region is to be formed.

尚、この場合のエッチャントとしては、例えば(Br+
HBr+H20)混合液を用いることができる。
In this case, the etchant is, for example, (Br+
A mixture of HBr+H20) can be used.

(fl  溝15Aを形成する為にマスクとして用いた
保護膜をそのまま残し、イオン注入法を適用すことに依
り、Beイオンの打ち込みを行い、熱処理を行って、p
型ガード・リング16を形成する。
(fl By leaving the protective film used as a mask for forming the groove 15A as it is and applying the ion implantation method, Be ions are implanted, heat treatment is performed, and p
A mold guard ring 16 is formed.

Beイオンの注入を行う場合、 ドーズN: l x l Q 13(am−”)注入エ
ネルギ:100(KeV) とし、また、熱処理は、 温度:550(”C) 時間=60〔分〕 とした。
When implanting Be ions, the dose N: l x l Q 13 (am-"), the implantation energy: 100 (KeV), and the heat treatment was performed at the following temperature: 550 ("C) and time = 60 [minutes]. .

これに依り、p型ガード・リング16゛の深さは溝15
Aの底から約1 〔μm〕程度になり、接合周辺の曲率
は充分になだらかなものとなって、耐圧向上に寄与する
ことができる。
Accordingly, the depth of the p-type guard ring 16 is the groove 15.
The distance is about 1 [μm] from the bottom of A, and the curvature around the junction becomes sufficiently gentle, which can contribute to improving the breakdown voltage.

(幻 新たに適当なマスクを形成し、イオン注入法を適
用することに依り、Cdイオン或いはZnイオンの打ち
込みを行ってp+型InP受光領域17を形成する。
(Illusion) By forming a new appropriate mask and applying the ion implantation method, Cd ions or Zn ions are implanted to form the p+ type InP light-receiving region 17.

尚、この工程は、p型ガード・リング16を形成する一
連の工程以前、即ち、工程(e)の前に行うこともでき
る。
Note that this step can also be performed before the series of steps for forming the p-type guard ring 16, that is, before step (e).

第1図(B)参照 (h)  通常の技法を適用するごとに依り、新たな窒
化シリコンからなる絶縁膜18、電極19及び20など
を形成して完成する。尚、電極19はT i / P 
t / A u或いはAu−Zn/Auなどを、また、
電極20としてはAu−Ge合金を用いることができる
Refer to FIG. 1(B) (h) A new insulating film 18 made of silicon nitride, electrodes 19 and 20, etc. are formed by applying the usual techniques to complete the process. Note that the electrode 19 is T i /P
t/Au or Au-Zn/Au, etc.
As the electrode 20, an Au-Ge alloy can be used.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体受光素子の製造方法では、半導体基
板上の一導電型増倍層をメサ状にエツチングし、次いで
、前記メサ状一導電型増倍層を埋め込む同導電型且つ低
不純物濃度である埋め込み層を形成し、次いで、前記一
導電型低不純物濃度埋め込み層内に於けるガード・リン
グ形成予定部分に倣う溝を形成し、次いで、前記溝を介
して反対導電型不純物の拡散を行ってガード・リングを
形成するようにしている。
In the method for manufacturing a semiconductor light-receiving device according to the present invention, a multiplier layer of one conductivity type on a semiconductor substrate is etched into a mesa shape, and then a multiplier layer of the same conductivity type and with a low impurity concentration is etched to bury the mesa-shaped multiplier layer of one conductivity type. A certain buried layer is formed, and then a groove is formed in the low impurity concentration buried layer of one conductivity type to follow a portion where a guard ring is to be formed, and then an impurity of the opposite conductivity type is diffused through the groove. to form a guard ring.

このようにすると、ガード・リングは、溝を形成した分
だけ深(形成され、しかも、pn接合の周辺部分での曲
率を大きくして、なだらかに立ち上げることができるの
で、良好な傾斜接合が生成れ、高い耐圧、即ち、確実な
ガード・リング効果を得ることができるものであり、例
えば第2図に見られる従来例に於けるガード・リングの
耐圧が約140(V)であるのに対し、第1図に見られ
る本発明一実施例のそれは約20(V)程度向上し、約
160(V)にも達した。
In this way, the guard ring is formed as deep as the groove is formed, and the curvature at the peripheral part of the pn junction is increased so that it can rise gently, resulting in a good sloped junction. It is possible to obtain a high withstand voltage, that is, a reliable guard ring effect.For example, the withstand voltage of the guard ring in the conventional example shown in Fig. 2 is about 140 (V). On the other hand, that of the embodiment of the present invention shown in FIG. 1 was improved by about 20 (V), reaching about 160 (V).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)は本発明一実施例を説明する為
の工程要所に於ける半導体受光素子の要部切断側面図、
第2図は従来例の要部切断側面図をそれぞれ表している
。 図に於いて、11はn+型1nP基板、12はn型Ga
 I nAs光吸収層、13はn型Ga1nAsPへテ
ロ・バリヤ緩和層、工4はn型1nP増倍層、15はn
−型!nP埋め込み層、15Aは溝、16はp型1nP
ガード・リング、17はp+型InP受光領域、18は
絶縁膜、19及び20は電極をそれぞれ示している。 (A) 第1図 (B) 受光素子の要部切断側面図 第1図 従来例の要部切断側面図 第2図
FIGS. 1A and 1B are cross-sectional side views of essential parts of a semiconductor light-receiving element at key points in the process for explaining one embodiment of the present invention;
FIG. 2 each shows a cutaway side view of the main part of the conventional example. In the figure, 11 is an n+ type 1nP substrate, 12 is an n-type Ga
13 is an n-type Ga1nAsP hetero barrier relaxation layer, 4 is an n-type 1nP multiplication layer, 15 is an nAs light absorption layer, 13 is an n-type Ga1nAsP hetero barrier relaxation layer,
-Type! nP buried layer, 15A is groove, 16 is p-type 1nP
A guard ring, 17 a p+ type InP light receiving region, 18 an insulating film, and 19 and 20 electrodes, respectively. (A) Fig. 1 (B) Cutaway side view of main parts of light receiving element Fig. 1 Cutaway side view of main parts of conventional example Fig. 2

Claims (1)

【特許請求の範囲】 半導体基板上の一導電型増倍層をメサ状にエッチングし
、 次いで、前記メサ状一導電型増倍層を埋め込む同導電型
且つ低不純物濃度である埋め込み層を形成し、 次いで、前記一導電型低不純物濃度埋め込み層内に於け
るガード・リング形成予定部分に倣う溝を形成し、 次いで、前記溝を介して反対導電型不純物の拡散を行っ
てガード・リングを形成する工程が含まれてなることを
特徴とする半導体受光素子の製造方法。
[Claims] A multiplication layer of one conductivity type on a semiconductor substrate is etched into a mesa shape, and then a buried layer of the same conductivity type and with a low impurity concentration is formed to bury the multiplication layer of one conductivity type in the mesa shape. Next, a groove is formed in the low impurity concentration buried layer of one conductivity type to follow the part where a guard ring is to be formed, and then an impurity of the opposite conductivity type is diffused through the groove to form a guard ring. 1. A method for manufacturing a semiconductor light-receiving device, comprising the steps of:
JP60065064A 1985-03-30 1985-03-30 Manufacture of semiconductor photodetector Pending JPS61225878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065064A JPS61225878A (en) 1985-03-30 1985-03-30 Manufacture of semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065064A JPS61225878A (en) 1985-03-30 1985-03-30 Manufacture of semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS61225878A true JPS61225878A (en) 1986-10-07

Family

ID=13276149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065064A Pending JPS61225878A (en) 1985-03-30 1985-03-30 Manufacture of semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS61225878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148618A (en) * 1995-11-24 1997-06-06 Hamamatsu Photonics Kk Silicon avalanche photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148618A (en) * 1995-11-24 1997-06-06 Hamamatsu Photonics Kk Silicon avalanche photodiode

Similar Documents

Publication Publication Date Title
CA2474560C (en) Planar avalanche photodiode
EP0053513A2 (en) Avalanche photodiodes
US7741141B2 (en) Photodiode having increased proportion of light-sensitive area to light-insensitive area
US5866936A (en) Mesa-structure avalanche photodiode having a buried epitaxial junction
US4794439A (en) Rear entry photodiode with three contacts
US4654678A (en) Avalanche photodiode
JPS61225878A (en) Manufacture of semiconductor photodetector
JP4401036B2 (en) Photodiode manufacturing method
JP2763352B2 (en) Semiconductor light receiving element
JP2014207392A (en) Photodiode suppressing noise current
JPS61191082A (en) Semiconductor light receiving element
JPS6214478A (en) Photo-sensor
JP7115108B2 (en) semiconductor equipment
CN114420777B (en) Avalanche photodiode and manufacturing method thereof
JP2658013B2 (en) Manufacturing method of semiconductor light receiving element
JP2736089B2 (en) Semiconductor device and manufacturing method thereof
JP3074574B2 (en) Manufacturing method of semiconductor light receiving element
JPS6248079A (en) Semiconductor light receiving element
JPS6328349B2 (en)
JPH02253666A (en) Semiconductor photodetector
KR19990075459A (en) PAI photodiode and manufacturing method thereof
JP2722699B2 (en) pin photodiode
KR890004430B1 (en) Constructure of photo diode
JPH02144974A (en) Manufacture of semiconductor photodetector
JPH0241185B2 (en)