JP2736089B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2736089B2
JP2736089B2 JP63334887A JP33488788A JP2736089B2 JP 2736089 B2 JP2736089 B2 JP 2736089B2 JP 63334887 A JP63334887 A JP 63334887A JP 33488788 A JP33488788 A JP 33488788A JP 2736089 B2 JP2736089 B2 JP 2736089B2
Authority
JP
Japan
Prior art keywords
junction
depth
main
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63334887A
Other languages
Japanese (ja)
Other versions
JPH02177570A (en
Inventor
文彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63334887A priority Critical patent/JP2736089B2/en
Publication of JPH02177570A publication Critical patent/JPH02177570A/en
Application granted granted Critical
Publication of JP2736089B2 publication Critical patent/JP2736089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はMgイオン注入によって形成される半導体素
子、特にアバランシェ・フォトダイオード(以下、APD
と略称する)、およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a semiconductor device formed by Mg ion implantation, in particular, an avalanche photodiode (hereinafter, APD).
And a method for producing the same.

(従来の技術) APDは、PN接合の降伏に伴う雪崩増倍作用を利用して
キャリアの増倍を行う受光素子である。プレーナ型のAP
Dでは、PN接合の端部における局所的な降伏を抑えるた
めに、受光部の周りにガードリングが設けられるが、通
常、受光部は階段接合とし、ガードリングは傾斜接合と
して、両者の耐圧差を大きくすることにより、ガードリ
ング効果を得ている。そして波長1.55μmの如き長波長
帯受光用のInGaAs/InP APDでは、InP中にCdやZnの如き
不純物を拡散して受光部とし、Beをイオン注入してガー
ドリングとする方法が一般に用いられている。
(Prior Art) An APD is a light receiving element that multiplies carriers by utilizing an avalanche multiplication effect accompanying breakdown of a PN junction. Planar AP
In D, a guard ring is provided around the light-receiving part to suppress local breakdown at the end of the PN junction. The guard ring effect is obtained by increasing. In InGaAs / InP APDs for receiving light in a long wavelength band such as a wavelength of 1.55 μm, a method is generally used in which impurities such as Cd and Zn are diffused into InP to form a light receiving portion, and Be is ion-implanted to form a guard ring. ing.

ところで、我々はカードリングを形成する不純物とし
て、Beの代りにMgを使用する方法を出願している(特開
昭62−69689号公報参照)。MgはBeよりも緩やかな接合
を作るため、Beよりも大きな耐圧差が得られるからであ
る。更に、Mgの外方拡散を利用して横方向にも拡散させ
ると、一層効果が高い(特願昭62−43567参照)ことを
出願している。しかし、ガードリングにBeを使い、ある
いはMgを使っても、受光部に別の不純物を使う限り、工
程上の合わせマージンを取るために、両者の重なり部分
を作らざるを得ない。この様な重なりの部分では、せっ
かくのガードリングの傾斜部が受光部の高濃度の不純物
で覆われて階段接合に接近してしまうため、この部分か
らヘテロ界面に印加される電界値が高くなり、暗電流の
増大を招くことが我々の研究により明らかになった。こ
れを防ぐためには、特願昭63−8272に提案した方法が効
果がある。即ち、Mgをイオン注入した領域の一部にPを
イオン注入してアニールすると、Pを注入した領域はMg
の拡散が抑えられるために階段接合となり、Pを注入し
ない領域ではMgが拡散して傾斜接合となる。従って、前
に述べた様な合わせマージンを必要とせずに、2つの領
域を連結することができる。ここでも、特願昭62−4356
7に提案した方法を使うと一層効果があるのは言うまで
もない。
By the way, we have applied for a method of using Mg instead of Be as an impurity for forming a card ring (see JP-A-62-69689). This is because Mg forms a more gradual junction than Be, so that a larger breakdown voltage difference than Be can be obtained. Further, the applicant has filed an application in which the effect is further enhanced when Mg is diffused in the lateral direction using outward diffusion (see Japanese Patent Application No. 62-43567). However, even if Be or Mg is used for the guard ring, as long as another impurity is used for the light receiving portion, an overlapping portion must be formed in order to secure an alignment margin in the process. In such an overlapped portion, the inclined portion of the guard ring is covered with high-concentration impurities in the light receiving portion and approaches the stair junction, so that the electric field value applied to the hetero interface from this portion increases. , Our study has shown that dark current increases. To prevent this, the method proposed in Japanese Patent Application No. 63-8272 is effective. That is, when P is ion-implanted into a part of the region into which Mg is ion-implanted and annealed, the region into which P is implanted becomes Mg.
Diffusion is suppressed, and a stair junction is formed. In a region where P is not implanted, Mg is diffused to form an inclined junction. Therefore, the two regions can be connected without requiring the alignment margin as described above. Here, too, Japanese Patent Application No. 62-4356
It goes without saying that the method proposed in 7 is more effective.

(発明が解決しようとする課題) ところが、この方法にも解決すべき課題がいくつかあ
る。先ずこの方法には、Mgを注入する領域、Pを注入す
る領域、外方拡散を利用する領域と、少なくとも3回の
マスク合わせをする必要がある。
(Problems to be solved by the invention) However, this method also has some problems to be solved. First, in this method, it is necessary to perform mask alignment at least three times with a region into which Mg is implanted, a region into which P is implanted, and a region utilizing out-diffusion.

また、通常ガードリングとなるPN接合は受光部のPN接
合よりも深く形成されるが、この深さの差が大きすぎる
と、素子の暗電流はガードリングで支配されてしまう。
逆に深さの差が小さいか、またはガードリングの方が浅
くなると、ガードリングの効果が失なわれてしまう。即
ち、APDの設計に於いては、受光部の設計の他に受光部
とガードリングとの深さの関係についても最適に設計さ
れなければならない。これは設計パラメータを増大さ
せ、製造上の歩留まりの低下をもたらすという課題があ
る。
Also, the PN junction that normally serves as a guard ring is formed deeper than the PN junction of the light receiving portion. If the difference in depth is too large, the dark current of the element is dominated by the guard ring.
Conversely, if the difference in depth is small or the guard ring is shallower, the effect of the guard ring is lost. That is, in the design of the APD, in addition to the design of the light receiving unit, the depth relationship between the light receiving unit and the guard ring must be optimally designed. This has the problem of increasing the design parameters and reducing the manufacturing yield.

この発明は、上に述べた課題、即ち、Mgを有効に使っ
てAPDを製作するためには3回ものマスク合わせを必要
とする点、更に、通常のガードリング構造では設計パラ
メータが多すぎるという点を解決しようとするものであ
る。
The present invention has the problem described above, that is, it requires three mask alignments in order to manufacture an APD using Mg effectively, and furthermore, the usual guard ring structure has too many design parameters. It tries to solve the point.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明にかかる半導体素子は、低濃度の第1のn型層
および高濃度の第2のn型層が表面側から順次積層され
てなるIII−V族化合物半導体基体中に、この半導体基
体の表面側から深部にMgが1018cm-3台以上から1015cm-3
台以下まで急峻に分布してなるp型層および前記基体と
によって形成された階段型主PN接合と、この主PN接合の
周囲に前記半導体基体の表面側から深部にMgが1016cm-3
台以上から1015cm-3台以下まで緩やかに分布してなるp
型層および前記基体とによって形成された階段型副PN接
合とを有し、前記副PN接合の深さを前記主PN接合の深さ
より浅くするとともに、前記副PN接合の深さは前記第1
のn型層の深さより浅くしたことを特徴とするものであ
り、またその製造方法は、III−V族化合物半導体基体
に、その主表面の一領域にMgおよびPをイオン注入して
イオン注入領域を形成する工程と、前記主表面上にマス
ク層を形成する工程と、前記マスク層に前記イオン注入
領域よりも広い領域に開口部を設ける工程と、燐雰囲気
中にて熱処理を施して前記半導体基体に主PN接合と副PN
接合とを形成する工程を含むことを特徴とする。
(Means for Solving the Problems) A semiconductor device according to the present invention is a III-V compound in which a low-concentration first n-type layer and a high-concentration second n-type layer are sequentially laminated from the surface side. In the semiconductor substrate, Mg is from 10 18 cm -3 or more to 10 15 cm -3
A step-shaped main PN junction formed by the p-type layer and the base, which are distributed steeply below the base; and Mg around the main PN junction from the surface side of the semiconductor base to a depth of 10 16 cm -3.
Gradual distribution from above the table to below 10 15 cm -3
A step-type sub PN junction formed by a mold layer and the base, wherein the depth of the sub PN junction is smaller than the depth of the main PN junction, and the depth of the sub PN junction is the first
The manufacturing method is characterized in that Mg and P are ion-implanted into one region of the main surface of a III-V compound semiconductor substrate. Forming a region, forming a mask layer on the main surface, providing an opening in the mask layer in a region wider than the ion-implanted region, and performing a heat treatment in a phosphorus atmosphere. Primary PN junction and secondary PN on semiconductor substrate
And a step of forming a junction.

さらに、前記半導体素子は、その副PN接合が、前記主
PN接合より浅く形成されており、かつ、前記第1のn型
層の深さより浅くしたことを特徴とする。
Further, in the semiconductor element, the sub PN junction is
It is formed shallower than the PN junction and shallower than the depth of the first n-type layer.

(作 用) 先の出願にかかる特願昭63−8272に詳しく述べた様
に、InPにMgとPとを同時に注入すると、MgはInP結晶中
のInの格子位置に入り易くなるために、Mgの基板内部へ
の拡散が抑えられ、急峻な接合が形成される。一方、襄
に出願した特願昭62−43567に詳しく説明した様に、Mg
は蒸気圧が非常に高いため、基板表面に何らマスクを装
着せずにアニールを行うと、Mgは一旦基板外へ外方拡散
し、再び基板内へ拡散してくる。再拡散したMgのプロフ
ァイルは、非常に緩やかなものである。従って、MgとP
とを同一領域にイオン注入した後に、ガードリングを形
成したい領域のみに窓を設けたマスクを基板表面に装着
してアニールを行うと、急峻な接合を持つ受光部と、緩
やかな接合を持つガードリングとが、1回のアニールで
形成される。
(Operation) As described in detail in Japanese Patent Application No. 63-8272 related to the earlier application, when Mg and P are simultaneously injected into InP, Mg easily enters the In lattice position in the InP crystal. The diffusion of Mg into the substrate is suppressed, and a steep junction is formed. On the other hand, as described in detail in Japanese Patent Application No.
Since the vapor pressure is extremely high, if annealing is performed without attaching any mask to the substrate surface, Mg diffuses out of the substrate once and then diffuses back into the substrate. The profile of the re-diffused Mg is very gentle. Therefore, Mg and P
After ion implantation into the same area, a mask with a window only in the area where the guard ring is to be formed is attached to the substrate surface and annealing is performed. A ring is formed in one anneal.

特願昭62−43567では、Mgをイオン注入した部分と、
外方拡散でMgが再拡散した部分とでガードリングを形成
していた。しかしその後の研究により、受光部をMgとP
とのイオン注入で形成した場合、Mgの外方拡散のみでも
ガードリング効果は充分であることが判明した。これ
は、InPの濃度が1016cm-3台以下であれば、どの様な濃
度でも同様である。しかもMgとPとは同一の領域に注入
されるため、マスク合わせは2回で済む。
In Japanese Patent Application No. 62-43567, a portion where Mg is ion-implanted,
A guard ring was formed with the portion where Mg was re-diffused by outward diffusion. However, later research showed that the light receiving part was Mg and P
It was found that the guard ring effect was sufficient only by outward diffusion of Mg when formed by ion implantation of This is the same regardless of the concentration of InP as long as the concentration is 10 16 cm −3 or less. In addition, since Mg and P are implanted into the same region, mask alignment only needs to be performed twice.

更に、本発明にかかる半導体素子は、その副PN接合
が、前記主PN接合より浅く形成されており、かつ、前記
第1のn型層の深さより浅くしたため、より耐圧が向上
し、ガードリングがAPDの特性に及ぼす影響は小さい。
従って、ガードリングの設計は無視して、受光部のみを
最適に設計できる。
Furthermore, in the semiconductor element according to the present invention, the sub PN junction is formed shallower than the main PN junction and is made shallower than the depth of the first n-type layer, so that the withstand voltage is further improved and the guard ring is formed. Has a small effect on APD characteristics.
Therefore, the design of the guard ring can be ignored, and only the light receiving section can be optimally designed.

(実施例) 以下、本発明の一実施例としてInGaAs/InP APDに適用
した例につき第1図を参照して説明する。
Embodiment An embodiment of the present invention applied to an InGaAs / InP APD will be described below with reference to FIG.

n型InP基板1上に夫々n型のInGaAs層2をキャリア
濃度5×1015cm-3,層厚2μmに、ついでInGaAs層3を
キャリア濃度8×1015cm-3,層厚0.3μmに、さらにInP
層4をキャリア濃度3×1016cm-3,層厚0.5μmに、InP
層5をキャリア濃度8×1015cm-3,層厚0.6μmに順次積
層させて形成する(第1図(a))。次いで表面にイオ
ン注入のマスクとなるSiO2膜6を膜厚が8000Å以上にな
るように堆積し、マスク合わせを施して直径30μmのイ
オン注入窓7を形成する。次いで、このイオン注入窓7
を通してMg、およびPを加速電圧150KeVでドース量1×
1014cm-2に、さらに加速電圧180KeVでドース量1×1014
cm-2にイオン注入する(第1図(b))。次に、前記イ
オン注入窓7よりも半径が5μm大きい再拡散窓8を形
成し、PH3雰囲気中750℃で35分間のアニールを施して受
光部のPN接合9a,ガードリングのPN接合9bが形成される
(第1図(c))。次に、通常のAPDの製造と同様に、
パッシベーション膜10,P側電極11p,N側電極11nを装着し
てInGaAs/InP APDが完成する(第1図(d))。
On the n-type InP substrate 1, the n-type InGaAs layer 2 is made to have a carrier concentration of 5 × 10 15 cm −3 and a layer thickness of 2 μm, and then the InGaAs layer 3 is made to have a carrier concentration of 8 × 10 15 cm −3 and a layer thickness of 0.3 μm. And even InP
Layer 4 is adjusted to a carrier concentration of 3 × 10 16 cm −3 and a layer thickness of 0.5 μm by using InP
The layer 5 is formed by sequentially laminating a carrier concentration of 8 × 10 15 cm −3 and a layer thickness of 0.6 μm (FIG. 1A). Next, an SiO 2 film 6 serving as an ion implantation mask is deposited on the surface so as to have a film thickness of 8000 ° or more, and the mask is aligned to form an ion implantation window 7 having a diameter of 30 μm. Next, the ion implantation window 7
Mg and P through a dose of 1 × at an acceleration voltage of 150 KeV
10 14 cm -2 and dose of 1 × 10 14 at 180 KeV acceleration voltage
Ions are implanted into cm -2 (FIG. 1 (b)). Next, a re-diffusion window 8 having a radius larger than that of the ion implantation window 7 by 5 μm is formed, and annealed at 750 ° C. for 35 minutes in a PH 3 atmosphere to form a PN junction 9a of the light receiving portion and a PN junction 9b of the guard ring. It is formed (FIG. 1 (c)). Next, as in the manufacture of normal APD,
The InGaAs / InP APD is completed by mounting the passivation film 10, the P-side electrode 11p, and the N-side electrode 11n (FIG. 1 (d)).

MgとPとを同時に注入した領域と、外方拡散によりMg
が再拡散した領域とのアニール後のMgのプロファイルの
比較を第2図に示す。MgとPとを同時に注入した領域で
は、Mgは1018cm-3台以上から1015cm-3台以下まで急峻に
分布しているのに対して、外方拡散によりMgが再拡散し
た領域では、Mgは1016cm-3台から1015cm-3台以下まで緩
やかに分布している。従ってInPの濃度が5〜10×1015c
m-3であれば、Mgの再拡散により形成されるガードリン
グのPN接合9bは、受光部のPN接合9aと同等が、それより
浅い位置にPN接合を形成する。
A region in which Mg and P are implanted simultaneously, and Mg
FIG. 2 shows a comparison of the Mg profile after annealing with the region in which is diffused again. In the region where Mg and P are simultaneously implanted, Mg is steeply distributed from 10 18 cm -3 or more to 10 15 cm -3 or less, whereas Mg is re-diffused by out-diffusion. , Mg is gently distributed from 10 16 cm -3 to 10 15 cm -3 or less. Therefore, when the concentration of InP is 5 to 10 × 10 15 c
If m− 3 , the PN junction 9b of the guard ring formed by re-diffusion of Mg is equivalent to the PN junction 9a of the light receiving unit, but forms a PN junction at a position shallower than that.

完成したAPDの面内感度分布を第3図に示す。ガード
リング部での応答は良く抑えられ、受光部のみで増倍が
起こっていることが分かる。以上により、この発明の効
果が証明された。
FIG. 3 shows the in-plane sensitivity distribution of the completed APD. It can be seen that the response at the guard ring portion is well suppressed, and multiplication occurs only at the light receiving portion. As described above, the effect of the present invention has been proved.

尚、各成長層の濃度や厚さ、MgやPの注入条件、アニ
ール条件等は、上に示すものに限られるものではない。
特に再上層のInP層の濃度は、5×1015cm-3以下であっ
ても、APDとしては有効に機能する。ただしこのとき
は、カードリングは受光部よりも深く作成されるため、
設計自由度の向上という本発明の効果の一つは失われ
る。
Note that the concentration and thickness of each growth layer, the Mg and P implantation conditions, the annealing conditions, and the like are not limited to those described above.
In particular, even if the concentration of the upper InP layer is 5 × 10 15 cm −3 or less, it functions effectively as an APD. However, at this time, the card ring is made deeper than the light receiving section,
One of the effects of the present invention of improving the degree of freedom in design is lost.

また、InPに限らず他の組成の基板でもこの発明は有
効であり、MgやP以外の他の不純物でも、この発明の精
神を逸脱することなく応用が可能である。
Further, the present invention is effective not only for InP but also for substrates having other compositions, and it is possible to apply impurities other than Mg and P without departing from the spirit of the present invention.

〔発明の効果〕〔The invention's effect〕

この発明によれば、効果の大きいガードリングを備え
たAPDが、少ないマスク合わせ工程で容易に製造できる
顕著な利点がある。しかもこのAPDはガードリングのPN
接合が受光部よりも浅く形成されるので、受光部の設計
自由度が向上する利点もある。
According to the present invention, there is a remarkable advantage that an APD having a guard ring having a large effect can be easily manufactured with a small number of mask alignment steps. And this APD is a guard ring PN
Since the junction is formed shallower than the light receiving portion, there is an advantage that the degree of freedom in designing the light receiving portion is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)はこの発明の実施例の製造方法を
工程順に示すいずれも断面図、第2図はMgのプロファイ
ルを示す線図、第3図はこの発明によって製造されたAP
Dの面内感度分布を示す線図である。 1……n−InP基板、2……n−InGaAs層 3……n−InGaAsP層、4……n−InP層 5……n−InP層、9a……受光部のPN接合 9b……ガードリング部のPN接合
1 (a) to 1 (d) are sectional views showing a manufacturing method according to an embodiment of the present invention in the order of steps, FIG. 2 is a diagram showing a profile of Mg, and FIG. 3 is manufactured by the present invention. AP
FIG. 4 is a diagram showing an in-plane sensitivity distribution of D. 1 n-InP substrate, 2 n-InGaAs layer 3 n-InGaAsP layer 4, n-InP layer 5 n-InP layer, 9a PN junction of light-receiving part 9b guard PN junction of ring

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低濃度の第1のn型層および高濃度の第2
のn型層が表面側から順次積層されてなるIII−V族化
合物半導体基体中に、この半導体基体の表面側から深部
にMgが1018cm-3台以上から1015cm-3台以下まで急峻に分
布してなるp型層および前記基体とによって形成された
階段型主PN接合と、この主PN接合の周囲に前記半導体基
体の表面側から深部にMgが1016cm-3台以上から1015cm-3
台以下まで緩やかに分布してなるp型層および前記基体
とによって形成された階段型副PN接合とを有し、前記副
PN接合の深さを前記主PN接合の深さより浅くするととも
に、前記副PN接合の深さは前記第1のn型層の深さより
浅くしたことを特徴とする半導体素子。
1. A low-concentration first n-type layer and a high-concentration second n-type layer.
In the III-V compound semiconductor substrate in which the n-type layer is sequentially laminated from the surface side, Mg is from 10 18 cm -3 or more to 10 15 cm -3 or less from the surface side of the semiconductor substrate to the deep portion. A staircase-type main PN junction formed by a steeply distributed p-type layer and the base, and from the surface side of the semiconductor base to a depth of 10 16 cm −3 or more around the main PN junction around the main PN junction. 10 15 cm -3
A step-type sub-PN junction formed by the p-type layer and the base, which are gently distributed to the base or lower, and
A semiconductor device, wherein the depth of the PN junction is smaller than the depth of the main PN junction, and the depth of the sub PN junction is smaller than the depth of the first n-type layer.
【請求項2】III−V族化合物半導体基体に、その主表
面の一領域にMgおよびPをイオン注入してイオン注入領
域を形成する工程と、前記主表面上にマスク層を形成す
る工程と、前記マスク層に前記イオン注入領域よりも広
い領域に開口部を設ける工程と、燐雰囲気中にて熱処理
を施して前記半導体基体に主PN接合と副PN接合を形成す
る工程を含むことを特徴とする半導体素子の製造方法。
2. A step of forming an ion-implanted region by ion-implanting Mg and P into one region of a main surface of a III-V compound semiconductor substrate, and a step of forming a mask layer on the main surface. Providing an opening in the mask layer in a region wider than the ion-implanted region; and performing a heat treatment in a phosphorus atmosphere to form a main PN junction and a sub PN junction in the semiconductor substrate. A method of manufacturing a semiconductor device.
JP63334887A 1988-12-28 1988-12-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2736089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63334887A JP2736089B2 (en) 1988-12-28 1988-12-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63334887A JP2736089B2 (en) 1988-12-28 1988-12-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02177570A JPH02177570A (en) 1990-07-10
JP2736089B2 true JP2736089B2 (en) 1998-04-02

Family

ID=18282339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63334887A Expired - Fee Related JP2736089B2 (en) 1988-12-28 1988-12-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2736089B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601129B2 (en) * 2000-06-29 2010-12-22 Okiセミコンダクタ株式会社 Semiconductor light receiving element manufacturing method
JP2008051698A (en) * 2006-08-25 2008-03-06 Yokogawa Electric Corp Bidirectional optical module and optical pulse tester using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131574A (en) * 1984-11-30 1986-06-19 Fujitsu Ltd Semiconductor light-receiving element
JPS62132375A (en) * 1985-12-04 1987-06-15 Toshiba Corp Semiconductor photo detector and manufacture thereof
JPS6373676A (en) * 1986-09-17 1988-04-04 Fujitsu Ltd Semiconductor photodetector

Also Published As

Publication number Publication date
JPH02177570A (en) 1990-07-10

Similar Documents

Publication Publication Date Title
EP0159544B1 (en) Avalanche photodiode and its manufacturing method
US5157473A (en) Avalanche photodiode having guard ring
JP2833588B2 (en) Photodetector and method of manufacturing the same
JP2867983B2 (en) Photodetector and method of manufacturing the same
KR101553817B1 (en) method of manufacturing Avalanche Photodiode
CA2007670C (en) Semiconductor photodetector device and method of manufacturing the same
JP2573201B2 (en) Method for forming diffusion layer of semiconductor device
US6146957A (en) Method of manufacturing a semiconductor device having a buried region with higher impurity concentration
JP2736089B2 (en) Semiconductor device and manufacturing method thereof
US4729963A (en) Fabrication method for modified planar semiconductor structures
US4415370A (en) Method of beryllium implantation in germanium substrate
JP4401036B2 (en) Photodiode manufacturing method
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JP2763352B2 (en) Semiconductor light receiving element
JPH0276260A (en) Integrated semiconductor device and its manufacture
JPS6281780A (en) Manufacture of light receiving element
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JP2899018B2 (en) Semiconductor device
KR970009732B1 (en) Fabrication method of planar pin photodiode
JPH0559590B2 (en)
JPS633448B2 (en)
JP2658013B2 (en) Manufacturing method of semiconductor light receiving element
JPH02232980A (en) Avalanche photodiode
KR920003322B1 (en) Horizontal type photo receiving device and its manufacturing method
JPH0271567A (en) Manufacture of semiconductor photodetecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees