JPS61225661A - Current sensor - Google Patents

Current sensor

Info

Publication number
JPS61225661A
JPS61225661A JP60068153A JP6815385A JPS61225661A JP S61225661 A JPS61225661 A JP S61225661A JP 60068153 A JP60068153 A JP 60068153A JP 6815385 A JP6815385 A JP 6815385A JP S61225661 A JPS61225661 A JP S61225661A
Authority
JP
Japan
Prior art keywords
magnetic
hall element
core
element chip
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60068153A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kouji
芳信 糀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60068153A priority Critical patent/JPS61225661A/en
Publication of JPS61225661A publication Critical patent/JPS61225661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity, by burying a magnetoelectric transducer element into a magnetic body forming a magnetic path. CONSTITUTION:A Hall element chip 6 is molded with a resin or the like to be insulated from a core 5. The Hall element chip 6 is buried into the core 5 in the form of powder at the stage where the core 5 is being molded from powdered magnetic material and solidified with the powdered magnetic material during the firing thereof. In such a manner, the Hall element chip 6 is buried into the core 5, thereby eliminating exposed portion of the Hall element chip 6 defining the gap length and hence the gap length can be reduced to the limit in the manufacture of the core 5 or in the combined growth of the core 5 molding material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁電変換素子を利用して電流を検出する電流セ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current sensor that detects current using a magnetoelectric conversion element.

〔従来の技術〕[Conventional technology]

第2(iUは例えば「日本シーメンス電子部品グループ
発行のカタログRHB203、P1〜P8Jに記載され
た従来のホール素子を磁電変換素子として利用した電流
センサの構成図である。
The second (iU) is a configuration diagram of a current sensor using a conventional Hall element as a magnetoelectric conversion element, for example, described in catalog RHB203, P1 to P8J published by Siemens Electronic Components Group of Japan.

第2図中aは従来から使用させているホール素子を利用
した電流センサの構成図であり、図において(1)は被
測定電施工が流れるコイル、(2)はコイル(1)によ
って発生した磁界による磁束φの通る閉磁路を形成する
磁性体である鉄心、(3)は磁束φを検出して電圧を発
生させるホール素子チップ、(4)はホール素子チップ
〔3)を鉄心(2)に固定しリード線を配線する為のセ
ラミック基板である。セラミック基板(4)上のホール
素子チップ(3)は、第2図すに示すように鉄心(2)
中に開けられた長さig、断面積Sのギャップ部Gに設
置されている。
Figure 2 a is a configuration diagram of a current sensor using a Hall element that has been used conventionally. The iron core is a magnetic material that forms a closed magnetic path through which the magnetic flux φ due to the magnetic field passes, (3) is a Hall element chip that detects the magnetic flux φ and generates a voltage, and (4) is the Hall element chip [3] connected to the iron core (2). This is a ceramic board for fixing to the board and wiring lead wires. The Hall element chip (3) on the ceramic substrate (4) is attached to the iron core (2) as shown in Figure 2.
It is installed in a gap G having a length ig and a cross-sectional area S.

次に、E記ホール素子の設置状態に基づいて電圧発生原
理を説明する。
Next, the principle of voltage generation will be explained based on the installation state of the Hall element E.

被測定電流Iが鉄心(2)ににターンに巻かれたコイル
(1)を流れることにより、該コイル(1)に発生した
磁界によって鉄心(2)に磁束φが発生する。該磁束は
閉磁路を通って鉄心(2)のギャップ部Gに磁束密度B
の磁界を発生させる。この磁界は、第2図Cに示される
ように、ギャップ部Gに設置されたホール素子(3)の
表面上に垂直にかけられる、この時ホール素子(3)に
は磁界と直角一方向に制御電流11が同時に作用してい
る為、出力電圧v2が上記磁界Bと制御電流i4と直角
方向(4a)、(4b)に発生する。
When the current to be measured I flows through the coil (1) wound around the iron core (2), a magnetic flux φ is generated in the iron core (2) due to the magnetic field generated in the coil (1). The magnetic flux passes through a closed magnetic path and reaches the gap G of the iron core (2) at a magnetic flux density B.
generates a magnetic field. As shown in Figure 2C, this magnetic field is applied perpendicularly to the surface of the Hall element (3) installed in the gap G. At this time, the Hall element (3) is controlled in one direction perpendicular to the magnetic field. Since the current 11 is acting at the same time, the output voltage v2 is generated in the directions (4a) and (4b) perpendicular to the magnetic field B and the control current i4.

出力電圧v2は、Rhをホール定数、dをホール素子の
厚さ、Bをギャップ部Gにおける磁束密度とすれば次の
関係で表わされる。
The output voltage v2 is expressed by the following relationship, where Rh is the Hall constant, d is the thickness of the Hall element, and B is the magnetic flux density at the gap G.

この場合センサの感度すなわち出力電圧v2を上げる方
法としては、制御電流i1を多く流すか、あるいは磁束
密度Bを高めることが考えられるが、前者の方法として
はホール素子自体の許容制御電流の関係から限界がある
ため、磁束密度Bの値を大きくすることが最良である。
In this case, as a method to increase the sensitivity of the sensor, that is, the output voltage v2, it is possible to flow more control current i1 or to increase the magnetic flux density B, but the former method depends on the allowable control current of the Hall element itself. Since there is a limit, it is best to increase the value of magnetic flux density B.

磁束密度BとギャップGの長さ交gの関係を式で表わす
と以下の2式で表わされる。
The relationship between the magnetic flux density B and the length intersection g of the gap G is expressed by the following two equations.

2g:キャー、プの磁気抵抗、S:ギヤ・、ブの断面積
ρ:ギャップの単位体積当りの磁気抵抗。
2g: Magnetic resistance of K, S: Cross-sectional area of gear, ρ: Magnetic resistance per unit volume of gap.

Zc:鉄心の磁気抵抗、N:コイルの巻数、■=被測定
電流、Φ:?a束 以Hの式(2)、(3)より明らかなように、磁束密度
BはギャップGの長さIgを小さくすることにより大き
くすることができる。それにより(1)式より分かれる
ように出力電圧v2を上げることが可能となる。
Zc: Magnetic resistance of iron core, N: Number of turns of coil, ■= Current to be measured, Φ: ? As is clear from equations (2) and (3) for a-flux H, the magnetic flux density B can be increased by reducing the length Ig of the gap G. Thereby, it becomes possible to increase the output voltage v2 as shown in equation (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の電流センサにおいては、ギャップ
Gの長さは、ホール素子チップ又はセラミック基板の厚
さにより縮少範囲が限定されてしまい、この結果磁気抵
抗によって、磁気密度の大きさは限定させセンサの感度
向上に限界を来たしていた。
However, in conventional current sensors, the range in which the length of the gap G can be reduced is limited by the thickness of the Hall element chip or the ceramic substrate, and as a result, the magnitude of the magnetic density is limited by the magnetic resistance. There was a limit to the improvement of sensitivity.

この発明は上記のような問題点を解消するためになされ
たもので、閉磁路の磁気抵抗成分となるギツプを限界ま
で縮め、より大きな磁束密度をホール素子に与え、感度
の良い電流センサを提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it reduces the gap, which is the magnetic resistance component of the closed magnetic circuit, to the limit, provides a larger magnetic flux density to the Hall element, and provides a highly sensitive current sensor. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電流センサは、磁電変換素子を磁性体に
埋設したもの゛である。
The current sensor according to the present invention has a magnetoelectric conversion element embedded in a magnetic material.

〔作用〕[Effect]

この発明によれば、磁電変換素子を露出部を無くして磁
性体に埋設することによりギャップ長を限界まで縮少で
き、その結果、閉磁路のTj1気抵抗抵抗少せしめられ
、そして磁束密度が高くなり電流センサの感度が向上す
る。
According to this invention, the gap length can be reduced to the limit by burying the magnetoelectric transducer in a magnetic material with no exposed parts, and as a result, the Tj1 resistance of the closed magnetic circuit can be reduced and the magnetic flux density can be increased. This improves the sensitivity of the current sensor.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(5)は粉末磁性体を焼成した鉄心、
(6)は鉄心(5)に埋め込んだホール素子チー。
In Fig. 1, (5) is an iron core made of fired magnetic powder;
(6) is a Hall element Qi embedded in the iron core (5).

プである。該ホール素子チップ(6)は樹脂等でモール
ドされ、鉄心(5)とは絶縁されている。
It is a pool. The Hall element chip (6) is molded with resin or the like and is insulated from the iron core (5).

尚ホール素子チップ(6)は鉄心(5)が粉末磁性体よ
り成形させる段階で粉末状の鉄心内に埋め込まれ焼成時
に粉末磁性体と共に固められる。
The Hall element chip (6) is embedded in the powdered iron core when the iron core (5) is molded from the powdered magnetic material, and is solidified together with the powdered magnetic material during firing.

以とのようにホール素子チップ(6)は鉄心(5)内に
埋設可能となる為、鉄心(5)中のギャップには、ギャ
ップ長を限定するホール素子チップ(6)の露出部は無
くなる。その為ギャップ長は鉄心の工作、E又は鉄心成
形材料の組成上の限界まで縮少することが可能となる。
As described below, the Hall element chip (6) can be embedded in the iron core (5), so there is no exposed part of the Hall element chip (6) that limits the gap length in the gap in the iron core (5). . Therefore, the gap length can be reduced to the limit due to the machining of the core, E or the composition of the material for forming the core.

ギャップ長が縮少されるということは、(2)式より明
らかなようにギャップの磁気抵抗Rgが減少するという
ことである。磁気抵抗Rgの減少の結果、(3)式より
分かるようにホール素子にかかる磁束布1gBが増大し
、ホール素子に流れる制御電流11を一定の基により大
きな出力電圧v2を取り出すことができる。そのことは
、すなわち電流センサの感度が向上するということであ
る。
Reducing the gap length means that the magnetic resistance Rg of the gap decreases, as is clear from equation (2). As a result of the decrease in magnetic resistance Rg, as can be seen from equation (3), the magnetic flux distribution 1 gB applied to the Hall element increases, and a larger output voltage v2 can be extracted based on a constant control current 11 flowing through the Hall element. This means that the sensitivity of the current sensor is improved.

〔発明の効果〕〔Effect of the invention〕

以、ヒのようにこの発明によれば、磁電変換素子を磁路
を形成する磁性体に埋め込む構成としたので、磁電変換
素子設置に伴なう空隙を磁性体より縮少することができ
、この結果磁気抵抗成分を磁栓体より減少させてより多
くの磁束密度を磁電変換素子に与えそれによって大きな
電圧出力を取り出せる感度の良い電流センサを得られる
効果がある。
Hereinafter, according to the present invention, as shown in H, since the magnetoelectric conversion element is embedded in the magnetic material forming the magnetic path, the air gap associated with the installation of the magnetoelectric conversion element can be reduced compared to the magnetic material, As a result, the magnetoresistance component is reduced compared to the magnetic plug body, and more magnetic flux density is applied to the magnetoelectric conversion element, thereby providing a highly sensitive current sensor capable of producing a large voltage output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電流センサの一実施例を示す構成図、
第2図は従来の電流センサを示す構成図である。 (1):コイル、(2):磁性体、(3):磁電変換素
子、(4):セラミック基板、(5)二本発明による磁
性体、(6):埋込み可能としたホール素子。 代  理  人   大  岩  増  雄第1図 1:コイル 第2図 (a) (b) (C) 手続補正書(自発) 昭和  年  月  日
FIG. 1 is a configuration diagram showing an embodiment of the current sensor of the present invention,
FIG. 2 is a configuration diagram showing a conventional current sensor. (1): Coil, (2): Magnetic material, (3): Magnetoelectric conversion element, (4): Ceramic substrate, (5) Two magnetic materials according to the present invention, (6): Embeddable Hall element. Agent Masuo Oiwa Figure 1 Figure 1: Coil Figure 2 (a) (b) (C) Procedural amendment (voluntary) Showa year, month, day

Claims (1)

【特許請求の範囲】[Claims] 被測定電流の流れるコイルによって発生する磁束の通る
閉磁路を形成する磁性体と、該閉磁路中を通る磁束を検
出して磁電変換する磁電変換素子とを備えた電流センサ
において、上記磁電変換素子を磁性体内に埋設して閉磁
路の磁気抵抗を減少せしめたことを特徴とする電流セン
サ。
A current sensor comprising: a magnetic body forming a closed magnetic path through which a magnetic flux generated by a coil through which a current to be measured passes; and a magnetoelectric conversion element that detects the magnetic flux passing through the closed magnetic path and performs magnetoelectric conversion; A current sensor characterized in that the magnetic resistance of a closed magnetic circuit is reduced by embedding in a magnetic body.
JP60068153A 1985-03-29 1985-03-29 Current sensor Pending JPS61225661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068153A JPS61225661A (en) 1985-03-29 1985-03-29 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068153A JPS61225661A (en) 1985-03-29 1985-03-29 Current sensor

Publications (1)

Publication Number Publication Date
JPS61225661A true JPS61225661A (en) 1986-10-07

Family

ID=13365509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068153A Pending JPS61225661A (en) 1985-03-29 1985-03-29 Current sensor

Country Status (1)

Country Link
JP (1) JPS61225661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937521A (en) * 1987-07-07 1990-06-26 Nippondenso Co., Ltd. Current detecting device using ferromagnetic magnetoresistance element
DE4202296A1 (en) * 1991-01-29 1992-08-06 Asahi Kasei Electronics Co ELECTRIC CURRENT PROBE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937521A (en) * 1987-07-07 1990-06-26 Nippondenso Co., Ltd. Current detecting device using ferromagnetic magnetoresistance element
DE4202296A1 (en) * 1991-01-29 1992-08-06 Asahi Kasei Electronics Co ELECTRIC CURRENT PROBE
DE4202296B4 (en) * 1991-01-29 2004-09-09 Asahi Kasei Electronics Co., Ltd. Magnetically compensated current transformer

Similar Documents

Publication Publication Date Title
EP1581817B1 (en) Integrated sensor
EP0419040A1 (en) Speed/position sensor based upon magnetoresistive effect
US6717403B2 (en) Method and system for improving the efficiency of the set and offset straps on a magnetic sensor
JP2010243512A (en) Current sensor
JP2006242946A (en) Surface-mount integrated current sensor
US10036785B2 (en) Temperature-compensated magneto-resistive sensor
US5729137A (en) Magnetic field sensors individualized field reducers
JP2000249725A (en) Manufacture of current sensor
JP5284024B2 (en) Magnetic sensor
JPS61225661A (en) Current sensor
US5103163A (en) Current transducer
RU2465609C1 (en) Contactless current metre
JP6555421B2 (en) Magnetic sensor and current sensor including the same
JPH0293373A (en) Current detector
JPH0424453Y2 (en)
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JPH01113674A (en) Current detector
Brown High sensitivity magnetic field sensor using GMR materials with integrated electronics
JPS5931150B2 (en) magnetic bubble module
JPS63313880A (en) Ferromagnetic substance magnetic sensor
JPS62148813A (en) Magnetic sensor
JPH02271258A (en) Position detector
JPS60123782A (en) Ferromagnetic thin film magnetic resistance sensor
JP2004037354A (en) Current sensing system
JPS60130481A (en) Gun arm with hall element for detecting welding current