JPH01113674A - Current detector - Google Patents

Current detector

Info

Publication number
JPH01113674A
JPH01113674A JP62270294A JP27029487A JPH01113674A JP H01113674 A JPH01113674 A JP H01113674A JP 62270294 A JP62270294 A JP 62270294A JP 27029487 A JP27029487 A JP 27029487A JP H01113674 A JPH01113674 A JP H01113674A
Authority
JP
Japan
Prior art keywords
hall element
temperature
temperature sensor
current detector
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270294A
Other languages
Japanese (ja)
Inventor
Toshio Naoi
直井 敏男
Ichiro Shibazaki
一郎 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd, Asahi Chemical Industry Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP62270294A priority Critical patent/JPH01113674A/en
Publication of JPH01113674A publication Critical patent/JPH01113674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To enable the accurate compensation of temperature in a Hall element and to improve the precision of measurement of a current, by a method wherein the Hall element inserted into a gap of a ferromagnetic core forming a closed magnetic circuit is combined with a temperature sensor by a material having an excellent heat conductivity. CONSTITUTION:A minute gap is formed in a part of a ferromagnetic core FC being formed by winding around a conductor, through which a current to be measured flows, to form a closed magnetic circuit. The magnetic flux density of a magnetic field generated in the gap is detected by a Hall element HE inserted into this gaps, and a current in the proportional relationship with the magnetic flux density is measured therefrom. Since the Hall element HE is combined with a temperature sensor TS by a material TC having an excellent heat conductivity, the generation of a temperature difference can be prevented. Moreover, a driving circuit DU of a current detector, the Hall element HE including the ferromagnetic core FC, and a temperature sensor TS, are integrated with a base plate BP interposed, and therefore it is unnecessary to connect a number of leads with a cable wiring. According to this constitution, it is made possible to improve the accuracy and reliability of the current detector, resulting in the enhancement of miniaturization and quantity production thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はホール素子を用いた電流検出器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a current detector using a Hall element.

【従来の技術] 第15図はホール素子を用いた電流検出器の基本的な構
成を示す。電流検出器の原理は電流の流れる導体11を
周回する強磁性体コア21の一部に形成された空隙22
に発生する磁界の磁束密度をホール素子23で検出する
ことにより、磁束密度と比例関係にある電流を測定する
。電流検出器に用いられるホール素子は、1nAsbあ
るいはInまたは八sを含む化合物半導体薄膜からなる
ホール素子等、種々のものがある。ホール素子の感度は
温度依存性があるため、電流検出器の精度は、温度範囲
が広い場合には悪化する。従って、高精度の電流検出器
では、温度補償回路を使用して、ホール素子の感度の温
度依存性に由来する誤差を回避することが一般になされ
ている。
[Prior Art] FIG. 15 shows the basic configuration of a current detector using a Hall element. The principle of the current detector is that a gap 22 is formed in a part of a ferromagnetic core 21 that surrounds a conductor 11 through which current flows.
By detecting the magnetic flux density of the magnetic field generated by the Hall element 23, a current that is proportional to the magnetic flux density is measured. There are various types of Hall elements used in current detectors, such as a Hall element made of a compound semiconductor thin film containing 1nAsb, In, or 8S. Since the sensitivity of the Hall element is temperature dependent, the accuracy of the current detector deteriorates over a wide temperature range. Therefore, in high-precision current detectors, a temperature compensation circuit is generally used to avoid errors resulting from the temperature dependence of the sensitivity of the Hall element.

[発明が解決しようとする問題点] 温度補償回路によるホール素子の温度補償が正確に行わ
れるためには、ホール素子の正確な温度を温度センサー
によって検出することが必要である。しかし、第16図
に例示される電流検出器のように、温度センサー26を
ホール素子23の近傍に配置する構造では空間の温度が
検出され、ホール素子の正確な温度は検出されない、な
お第16図(a)は電流検出器の上面図、同図(b)は
側面図である。基板25上には、空隙22内にホール素
子23が挿入されている強磁性体コア21、駆動回路2
4および温度センサー26が設けられている。29は外
部接続端子である。
[Problems to be Solved by the Invention] In order for the temperature compensation circuit to accurately compensate for the temperature of the Hall element, it is necessary to detect the accurate temperature of the Hall element using a temperature sensor. However, in a structure in which the temperature sensor 26 is placed near the Hall element 23, as in the current detector illustrated in FIG. Figure (a) is a top view of the current detector, and figure (b) is a side view. On the substrate 25 are a ferromagnetic core 21 in which a Hall element 23 is inserted in the air gap 22, and a drive circuit 2.
4 and a temperature sensor 26 are provided. 29 is an external connection terminal.

そこで、これを解決するには、温度センサーをホール素
子に密着させればよいが、この方法は次の理由から問題
がある。
To solve this problem, the temperature sensor may be brought into close contact with the Hall element, but this method has problems for the following reasons.

(A)  ホール素子が挿入されている強磁性体コアの
空隙は微小であり、温度センサーをホール素子と共に空
陣内へ置くと、狭い所からリードが多数用てきて、ケー
ブル配線との多線接続が必要となり、接触不良や断線の
危険性から長期安定性および信頼性に欠りる。
(A) The gap in the ferromagnetic core in which the Hall element is inserted is minute, and if the temperature sensor is placed in the gap with the Hall element, many leads will be used from the narrow space, making multi-wire connection with cable wiring. is required, and lacks long-term stability and reliability due to the risk of poor contact and disconnection.

(It)  温度センサーを微小な空隙に挿入すると電
流検出器の機能を下げるばかりでなく、製作工程が複雑
化し、安価かつ量産可能な高性能の電流検出器を作るの
が難しい。
(It) Inserting a temperature sensor into a minute gap not only reduces the functionality of the current detector, but also complicates the manufacturing process, making it difficult to make a high-performance current detector that can be mass-produced at low cost.

このため、温度センサーとホール素子とを離すと両者に
温度差が生じ、ホール素子の温度を正確に検出すること
が困難になり、温度補償が正しく機能しないという問題
が起る。従来のホール素子を用いた電流検出器は電流測
定精度が悪く、しかも、工業的な量産には大きな支障と
なっていたが、ここに−因する。
For this reason, when the temperature sensor and the Hall element are separated, a temperature difference occurs between the two, making it difficult to accurately detect the temperature of the Hall element, and causing a problem that temperature compensation does not function properly. This is due to the fact that conventional current detectors using Hall elements have poor current measurement accuracy, which is a major hindrance to industrial mass production.

[問題点を解決するための手段] 本発明は上述した問題点を解決するためになされたもの
であり、閉磁路をなす強磁性体コアと、 −強磁性体コ
アの一部に形成された微小な空隙に挿入されたホール素
子と、温度補償回路を含む駆動回路とが、一体止された
構造をもつ電流検出器において、温度検出素子とホール
素子とが熱伝導体を介して結合されていることを特徴と
する。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes: a ferromagnetic core forming a closed magnetic path; In a current detector that has a structure in which a Hall element inserted into a minute gap and a drive circuit including a temperature compensation circuit are integrated, the temperature detection element and the Hall element are coupled via a thermal conductor. It is characterized by the presence of

即ち、本発明では、第1図に示す主要構造のように、温
度センサーTSとホール素子HEが熱伝導性の良い材料
TCで結合されて、温度差の発生を防止する構造を有す
る。さらに、電流検出器の駆動回路DOと強磁性体コア
FCを含むホール素子11Eおよび温度センサーTSが
一体化されて、多数のリードとケーブル配線との接続の
必要がない。
That is, in the present invention, as in the main structure shown in FIG. 1, the temperature sensor TS and the Hall element HE are coupled with a material TC having good thermal conductivity, thereby preventing the generation of a temperature difference. Furthermore, the drive circuit DO of the current detector, the Hall element 11E including the ferromagnetic core FC, and the temperature sensor TS are integrated, so there is no need to connect many leads and cable wiring.

これらにより電流検出器の精度と信頼性を向上し、さら
に小型化と量産性の向上を図ることができる。
By these means, it is possible to improve the accuracy and reliability of the current detector, and also to reduce the size and improve mass productivity.

温度センサーとホール素子の結合に使われる熱伝導権の
良い材料は、好ましくは非磁性の金属やセラミックス、
ガラスセラミックス、あるいは高熱伝導性樹脂等がある
。中でも、より好ましくは金属ではアルミニウムまたは
銅、次いで、セラミックスではアルミナまたは窒化アル
ミニウム、高強度ガラスセラミックス、高熱伝導性樹脂
では高熱伝導性充填剤を含有するエポキシ樹脂、アクリ
ル樹脂等、熱伝導率が1.OW/mK以上のものである
The material with good thermal conductivity used to connect the temperature sensor and the Hall element is preferably non-magnetic metal, ceramics,
Examples include glass ceramics and highly thermally conductive resins. Among these, metals are more preferably aluminum or copper, ceramics are alumina or aluminum nitride, high-strength glass ceramics, and highly thermally conductive resins are epoxy resins, acrylic resins, etc. containing highly thermally conductive fillers, and materials with a thermal conductivity of 1 are more preferred. .. It is more than OW/mK.

次に、温度センサーとホール素子を結合する熱伝導体に
ついて説明する。
Next, the thermal conductor that connects the temperature sensor and the Hall element will be explained.

熱伝導体の構造は多種多様であり、以下にその代表的な
ものを例示するが、本発明はそれらのみに限定されるも
のではない、 図面を参照して熱伝導体の構造を説明する。
Thermal conductors have a wide variety of structures, and typical ones are illustrated below, but the present invention is not limited thereto.The structure of the thermal conductor will be explained with reference to the drawings.

第2図に、熱伝導体が板状の構造の場合を示すが、同図
(al) 、(a2)はそれぞれポール素子11Eと強
磁性体コアFCとの間に熱伝導体TCを挟んで温度セン
サーTSと結合する構造の上面図および側面図、同図(
bl) 、 (b2)はそれぞれホール素子11Eの端
面に熱伝導体TCを接して温度センサー1’Sと結合す
る構造の上面図および側面図、同図(cl) 、 (c
2)はそれぞれ強磁性体コアFCの平面方向からホール
素子11Hの端面に熱伝導体TCが接して温度センサー
TSと結合する構造の上面図および側面図で、前述した
材料のいずれをも使用することができる。
Figure 2 shows a case where the thermal conductor has a plate-like structure, and in the same figure (al) and (a2), the thermal conductor TC is sandwiched between the pole element 11E and the ferromagnetic core FC. Top and side views of the structure coupled to the temperature sensor TS, the same figure (
bl) and (b2) are a top view and a side view of a structure in which a thermal conductor TC is brought into contact with the end surface of the Hall element 11E and coupled to the temperature sensor 1'S, respectively, and (cl) and (c
2) is a top view and a side view, respectively, of a structure in which the thermal conductor TC contacts the end face of the Hall element 11H from the planar direction of the ferromagnetic core FC and is coupled to the temperature sensor TS, using any of the materials mentioned above. be able to.

次に、第3図に熱伝導体が塊状の構造の場合を示す、同
図(al) 、 (a2)はそれぞれホール素子+1E
と温度センサーTSとを包むように塊状の熱伝導体TC
を形成して結合する構造の上面図および側面図、同図(
bl) 、 (b2)はそれぞれ強磁性体コアFC,ホ
ール素子+1Eおよび温度センサーTSの全体をモール
ドして結合する構造の上面図および側面図、同図(cl
) 、 (c2)はそれぞれホール素子+1Eと温度セ
ンサーTSとの間に塊状の熱伝導体TCを形成して結合
する構造の上面図および側面図で、前述した材料のうち
高熱伝導性樹脂に適している。
Next, Fig. 3 shows the case where the thermal conductor has a block-like structure.
A bulky thermal conductor TC surrounds the temperature sensor TS and the temperature sensor TS.
Top and side views of the structure forming and joining the
bl) and (b2) are a top view and a side view of a structure in which the entire ferromagnetic core FC, Hall element +1E, and temperature sensor TS are molded and combined, respectively, and the same figure (cl
) and (c2) are top and side views of a structure in which a lumpy thermal conductor TC is formed and bonded between the Hall element +1E and the temperature sensor TS, respectively. ing.

上記の構造は熱伝導体TCが直接ホール素子HEに接す
る場合であるが、第4図は強磁性体コアFCが熱伝導体
TCを兼ねて介在する構造を示す、同図(al) 、 
(a2)は竿れぞれ強磁性体コアFCの外周に熱伝導体
TCが接する構造の上面図および側面図、同図(bl)
 、 (b2)はそれぞれ強磁性体コアFCに温度セン
サーTSを密着させる構造の上面図および側面図である
The above structure is a case where the thermal conductor TC is in direct contact with the Hall element HE, but FIG. 4 shows a structure in which the ferromagnetic core FC also serves as the thermal conductor TC.
(a2) is a top view and side view of the structure in which the thermal conductor TC is in contact with the outer periphery of the ferromagnetic core FC, and the same figure (bl)
, (b2) are a top view and a side view of a structure in which a temperature sensor TS is brought into close contact with a ferromagnetic core FC, respectively.

次に、電流検出器の駆動回路Dll、強磁性体コアFC
を含むホール素子+1Eおよび温度センサーTSを一体
化する構造、材質および各構成体の相互関係を説明する
Next, the drive circuit Dll of the current detector, the ferromagnetic core FC
The structure, material, and mutual relationship of each component that integrates the Hall element +1E including the temperature sensor TS will be explained.

まず、熱伝導体TCを形成してホール素子11Eと温度
センサーTSを結合する第1図に示すような構造の場合
、基板BPの材質は金属、セラミックスまたは強化樹脂
が好ましい。強磁性体コアFCが熱伝導体TCを兼ねる
構造(後に第12図、第14図に示す)では1.基板[
lPの材質は金属、セラミックスまたは強化樹脂が好ま
しい、基板BPが熱伝導体TCを兼ねる構造(後に第9
図に示す)では、基板81’の材質は金属またはセラミ
ックスが好ましい。
First, in the case of the structure shown in FIG. 1 in which a thermal conductor TC is formed to couple the Hall element 11E and the temperature sensor TS, the material of the substrate BP is preferably metal, ceramics, or reinforced resin. In the structure in which the ferromagnetic core FC also serves as the thermal conductor TC (later shown in FIGS. 12 and 14), 1. substrate[
The material of IP is preferably metal, ceramics, or reinforced resin, and the structure in which the substrate BP also serves as a thermal conductor TC (later the 9th
(shown in the figure), the material of the substrate 81' is preferably metal or ceramic.

次に、第3図(al) 、 (a2)のような高熱伝導
性樹脂でホール素子+1Eと温度センサーTSを局部的
にモールドして熱伝導体TCを形成する構造、あるいは
高熱伝導性樹脂により全体をモールドして、一体止と熱
伝導体TCを兼ねる第3図(bl) 、 (b2)に示
すような構造があり、ともに量産性に優れる。
Next, a structure in which the Hall element +1E and the temperature sensor TS are locally molded with a highly thermally conductive resin to form a thermal conductor TC as shown in FIGS. There is a structure as shown in FIGS. 3(bl) and (b2) in which the entire structure is molded and serves both as an integral fixing member and as a thermal conductor TC, both of which are excellent in mass production.

さらに、強磁性体コアFC上に他の構成体を形成する構
造は、第3図(cl) 、 (c2)に示すような熱伝
導体TCを形成してホール素子HEと温度センサーTS
Furthermore, a structure in which other components are formed on the ferromagnetic core FC is to form a thermal conductor TC as shown in FIGS.
.

を結合する構造、あるいは第4図(bl) 、 (b2
)に示すような強磁性体コアFCが熱伝導体TCを兼ね
る構造があり、単純な構造の電流検出器の実現が可能で
実用価値が高い。
Structures that connect
) has a structure in which the ferromagnetic core FC also serves as the thermal conductor TC, which makes it possible to realize a current detector with a simple structure and has high practical value.

電流検出器に用いる温度センサーは、熱伝導体を上記の
ような材料、および構造で形成するならば、一般に用い
られているセンサーの何れでもよいが、温度係数の大き
い性質を持つ素子が好ましい。ここで要求される温度係
数とは、抵抗、キャパシタンス、あるいはりアクタンス
等のインピーダンス、および、接触電位、あるいは、ホ
ール電圧等の起電力などの温度に関する変化率である。
The temperature sensor used in the current detector may be any commonly used sensor as long as the thermal conductor is made of the material and structure described above, but an element with a large temperature coefficient is preferred. The temperature coefficient required here is the rate of change with respect to temperature of impedance such as resistance, capacitance, or actance, and contact potential or electromotive force such as Hall voltage.

そのような温度センサーの例としては、金属または半導
体の薄膜抵抗素子、可変容量または可変誘導素子、およ
び、熱電対、ホール素子等がある。
Examples of such temperature sensors include metal or semiconductor thin film resistive elements, variable capacitance or variable inductive elements, thermocouples, Hall elements, and the like.

そのうちInSb薄膜抵抗、サーミスタ等は特に好まし
い。また、薄膜型! nsbホール素子は入力抵抗の温
度係数が大きく最も好ましい例である。
Among these, InSb thin film resistors, thermistors, etc. are particularly preferred. Also, thin film type! The NSB Hall element is the most preferable example because it has a large temperature coefficient of input resistance.

[作 用] 本発明の電流検出器は、温度センサーとホール素子とが
熱伝導体を介して結合され、かつ、電流検出器の各要素
が一体化された構造を持つが、その効果について説明す
る。
[Function] The current detector of the present invention has a structure in which the temperature sensor and the Hall element are coupled via a thermal conductor, and each element of the current detector is integrated.The effects thereof will be explained below. do.

まず、第5図および第6図を参照して熱伝導体を介して
温度センサーとホール素子が結合されたことによる効果
を説明する。
First, with reference to FIGS. 5 and 6, the effect of coupling the temperature sensor and the Hall element through the thermal conductor will be explained.

ホール素子、温度センサーおよび強磁性体コアの温度を
各々T、、TsおよびT2と記す。時刻t0で電流検出
器の環境温度TAが階段状にToからT、に、また、時
刻t、で四柱にT1からT。に変化すると、各温度は熱
伝導体が無い場合は第5図に示すようになり、熱伝導体
で結合されている場合は第6図に示すようになる。即ち
、熱伝導体が無い従来の構造の場合は、温度センサーの
温度Tsが環境温度TAに追従して変化するため、温度
センサーの温度rsとホール素子の温度T□の温度差Δ
Tは過渡的に大きくなり、かつ両者が一定の誤差範囲で
温度平衡に達する時間は非常に大きい。一方、熱伝導体
を介して両者が結合されている本発明の場合は、温度セ
ンサーの温度TSがホール素子の温度THに追従して変
化するためΔTは過渡的に大きくならず、かつ、両者が
一定の誤差範囲で温度平衡に達する時問は短い。従って
、環境温度が変化してもTL流検出器の温度補償は常時
正しく機能するので精度の良い電流測定が可能である。
The temperatures of the Hall element, temperature sensor, and ferromagnetic core are denoted as T, Ts, and T2, respectively. At time t0, the environmental temperature TA of the current detector changes stepwise from To to T, and at time t, it changes from T1 to T in four columns. When the temperature changes to , the respective temperatures become as shown in FIG. 5 when there is no heat conductor, and as shown in FIG. 6 when they are connected by a heat conductor. That is, in the case of the conventional structure without a thermal conductor, the temperature Ts of the temperature sensor changes following the environmental temperature TA, so the temperature difference Δ between the temperature rs of the temperature sensor and the temperature T of the Hall element is
T increases transiently, and the time required for both to reach temperature equilibrium within a certain error range is extremely long. On the other hand, in the case of the present invention in which both are coupled via a thermal conductor, the temperature TS of the temperature sensor changes to follow the temperature TH of the Hall element, so ΔT does not increase transiently, and both The time required for temperature equilibrium to be reached within a certain error range is short. Therefore, even if the environmental temperature changes, the temperature compensation of the TL flow detector always functions correctly, allowing accurate current measurement.

次に第7図および第8図を参照して電流検出器の各要素
が一体化された構造を持つことによる効果に2いて説明
する。第7図は電流検出器CSが一体化されておらず、
駆動回路Duが分離しているため多芯ケーブルll1c
の芯線数が非常に増大することを示している。第8図は
本発明の一体化構造の場合、多芯ケーブルmcの芯線数
は半分以下に低減することを示している。即ち、通常、
ホール素子HEと温度センサー’TSのリード線は最低
6本あるが、駆動回路の出力は3本または2木となり、
多数の電流検出器CSを使用する場合、駆動回路DOが
電流検出器C5に一体化されていることによる芯線数の
低減効果は非常に大きくなり、多線接続時に問題となる
接触不良や断線、あるいは混信の危険性を回避でき、電
流測定システムとして見た場合に、長期安定性と信頼性
が大きく向上する。
Next, with reference to FIGS. 7 and 8, the effects of having a structure in which each element of the current detector is integrated will be explained. In Figure 7, the current detector CS is not integrated.
Since the drive circuit Du is separated, the multi-core cable ll1c
This shows that the number of core wires increases significantly. FIG. 8 shows that in the case of the integrated structure of the present invention, the number of core wires of the multicore cable mc is reduced to less than half. That is, usually
There are at least 6 lead wires for the Hall element HE and temperature sensor 'TS, but the output of the drive circuit is 3 or 2 wires.
When using a large number of current detectors CS, the effect of reducing the number of core wires by integrating the drive circuit DO into the current detector C5 becomes very large, which reduces contact failure, disconnection, and wire breakage, which can be problems when connecting multiple wires. Alternatively, the risk of interference can be avoided, and long-term stability and reliability are greatly improved when viewed as a current measurement system.

[実施例] 第1図は本発明の電流検出器の主要構造を示す。即ち、
被測定電流の流れる導体を周回して閉磁路をなす強磁性
体コアFCと、強磁性体コアFCの一部に形成された空
隙に挿入されたホール素子+12と、温度補償回路Te
mp、を含む駆動回路[11とが一体化されてなる電流
検出器において、温度検出素子TSとホール素子11E
とが、熱伝導体TCを介して結合されている。なお、駆
動回路DIは制御電源Vc、増幅器へmpおよび温度補
償回路Temp 、からなる。
[Example] FIG. 1 shows the main structure of a current detector of the present invention. That is,
A ferromagnetic core FC that goes around a conductor through which a current to be measured forms a closed magnetic path, a Hall element +12 inserted into a gap formed in a part of the ferromagnetic core FC, and a temperature compensation circuit Te.
In the current detector integrated with the drive circuit [11 including mp], the temperature detection element TS and the Hall element 11E
are coupled via a thermal conductor TC. The drive circuit DI includes a control power supply Vc, an amplifier mp, and a temperature compensation circuit Temp.

第9図は本発明の第1の実施例を示す、同図(a)は上
面図、同図(b)は側面図である。本実施例は被測定電
流の流れる導体11を周回する強磁性体コア21が比透
磁率u r = 4000.外径20n+m、内径10
mm、厚さ5 mmのフェライトコアからなり、間隔1
mmの空隙22に薄膜型1n八sホール素子23が挿入
され、温度補償回路を含む駆動回路24と共に厚さ1m
mのガラス繊維強化エポキシ樹脂製の基板25上に配設
されて一体化されている。
FIG. 9 shows a first embodiment of the present invention; FIG. 9(a) is a top view and FIG. 9(b) is a side view. In this embodiment, the ferromagnetic core 21 surrounding the conductor 11 through which the current to be measured flows has a relative magnetic permeability ur = 4000. Outer diameter 20n+m, inner diameter 10
It consists of a ferrite core with a thickness of 5 mm and a spacing of 1
A thin film type 1n8s Hall element 23 is inserted into a gap 22 with a thickness of 1 m and a drive circuit 24 including a temperature compensation circuit.
It is arranged on and integrated with a substrate 25 made of glass fiber reinforced epoxy resin.

薄膜型1nSbホール素子からなる温度センサー26は
フェライトコア21と基板25とに挟まれて固定されて
いる厚さ200μmの銅板27にエポキシ系接着剤を用
いて固定されている。
A temperature sensor 26 consisting of a thin film type 1nSb Hall element is fixed using an epoxy adhesive to a 200 μm thick copper plate 27 which is sandwiched and fixed between the ferrite core 21 and the substrate 25.

次に、第1の実施例による温度補償結果を説明する。上
記実施例1の電流検出器と熱伝導体を持たない第16図
に示した参照品を一緒に恒温槽に納めて、温度25℃で
各電流検出器の温度が安定するまで放置した後、階段状
に10℃の変化を与えた場合の温度センサーとホール素
子の温度変化を測定した。第16図に示した電流検出器
のように熱伝導体が無い従来法では、第1θ図に示すよ
うに温度センサーとホール素子の温度差ΔTは極大値で
7℃となり、かつ温度平衡に要する時間L2は20a+
inであるため、変化が連続する環境では、電流検出器
の温度補償はほとんど正常に機能しない。
Next, the temperature compensation results according to the first example will be explained. The current detector of Example 1 and the reference product shown in FIG. 16, which does not have a thermal conductor, are placed together in a constant temperature oven and left until the temperature of each current detector stabilizes at 25°C. The temperature change of the temperature sensor and Hall element was measured when a stepwise change of 10° C. was applied. In the conventional method without a thermal conductor, such as the current detector shown in Fig. 16, the temperature difference ΔT between the temperature sensor and the Hall element is 7°C at its maximum value, as shown in Fig. 1θ, and it is necessary for temperature equilibrium to occur. Time L2 is 20a+
In an environment where changes occur continuously, the temperature compensation of the current detector hardly functions normally.

−力木発明の熱伝導体を持つ場合の結果は第11図に示
すように、ΔTが極大値でも0.3℃となり、相対誤差
は室温付近では0.1%程度であって、総合的に1%以
内の測定精度の電流検出器が可能である。
- As shown in Figure 11, when using the thermal conductor invented by Riki, the maximum value of ΔT is 0.3°C, the relative error is about 0.1% near room temperature, and the overall Current detectors with measurement accuracy within 1% are possible.

第12図(a) 、 (b)に本発明の第2の実施例の
上面図および側面図を示す。ここで、フェライトコア2
1、ポール素子23、基板25、駆動回路24等は前述
した第1の実施例と同じであるから説明を省略する。本
実施例では、フェライトコア21と温度センサー26と
を熱伝導性の良い樹脂28で局部的に結合している。樹
脂は、ダレイス社製、2液系高熱伝導性エポキシ樹脂、
スタイキャスト285OKT型(主剤)およびキャタリ
スト9型(硬化剤)を使用している。この樹脂の熱伝導
率は4.31W/+nにである。樹脂28は駆動回路2
4と接してもよく、また離れていてもよい。
FIGS. 12(a) and 12(b) show a top view and a side view of a second embodiment of the present invention. Here, ferrite core 2
1. The pole element 23, the substrate 25, the drive circuit 24, etc. are the same as in the first embodiment described above, so their explanation will be omitted. In this embodiment, the ferrite core 21 and the temperature sensor 26 are locally bonded using a resin 28 having good thermal conductivity. The resin is a two-component high thermal conductive epoxy resin manufactured by Dalais.
Stycast 285 OKT type (base resin) and Catalyst type 9 (curing agent) are used. The thermal conductivity of this resin is 4.31 W/+n. The resin 28 is the drive circuit 2
It may be in contact with 4 or may be apart.

第13図(a) 、 (b)に本発明の第3の実施例の
上面図および側面図を示す。ここで、フェライトコア2
1、ホール素子23、基板25、駆動回路24等は第1
の実施例と同じであるから説明を省略する。本実施例で
は、電流検出器の全体を熱伝導性の良い樹脂28でモー
ルドしている。樹脂28は前述した第2の実施例と同じ
ものを使用し、別途製作された型枠を使用して、キャス
ティング法によりモールドしている。
FIGS. 13(a) and 13(b) show a top view and a side view of a third embodiment of the present invention. Here, ferrite core 2
1. The Hall element 23, the substrate 25, the drive circuit 24, etc. are the first
Since this is the same as the embodiment, the explanation will be omitted. In this embodiment, the entire current detector is molded with a resin 28 having good thermal conductivity. The resin 28 is the same as in the second embodiment described above, and is molded by a casting method using a separately manufactured mold.

第14図(a) 、 (b) に木発明の第4の実施例
の上面図および側面図を示す。ここで、フェライトコア
21、ホール素子23、基板25、駆動回路24等は第
1の実施例と同じであるから説明を省略する。本実施例
では、温度センサー26をフェライトコア21に接着剤
を用いて直接取付けている。
FIGS. 14(a) and 14(b) show a top view and a side view of a fourth embodiment of the wooden invention. Here, the ferrite core 21, Hall element 23, substrate 25, drive circuit 24, etc. are the same as in the first embodiment, so their explanation will be omitted. In this embodiment, the temperature sensor 26 is directly attached to the ferrite core 21 using an adhesive.

なお、第16図に示した従来構造の電流検出器は、本発
明によって性能が向上する効果を評価する際に、比較の
ために製作した参照品で、使用している部品の規格・寸
法等は前記実施例1〜4と同じである。゛ [発明の効果] 以上説明したように木発明によれば、電流検出器を使用
する温度範囲が広く、かつ急速に温度変化が起った場合
でも測定精度が高く、ケーブル接続の接触不良や断線、
混信等の危険性の低い、長期安定性と偏傾性の高い、安
価かつ量産し易い電流検出器を実現することが可能であ
る。
The current detector with the conventional structure shown in Fig. 16 is a reference product manufactured for comparison when evaluating the effect of improving performance by the present invention, and the specifications and dimensions of the parts used are is the same as in Examples 1 to 4 above. [Effects of the Invention] As explained above, according to the invention, the current detector can be used over a wide temperature range, has high measurement accuracy even when rapid temperature changes occur, and is free from poor connections in cable connections. Disconnection,
It is possible to realize a current detector that has low risk of interference, high long-term stability and eccentricity, and is inexpensive and easy to mass-produce.

また、温度センサーの型式、および形状は自由てあり、
コストの低減や、−休止による小型化の効果もある。
In addition, the model and shape of the temperature sensor are free.
There are also effects of cost reduction and downsizing due to suspension.

さらに、第3の実施例のように熱伝導体を形成する樹脂
が保護層をなし、耐環境性の向上を得ることもできる。
Furthermore, as in the third embodiment, the resin forming the heat conductor forms a protective layer, thereby improving environmental resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の主要構造を示す図、 第2図、第3図および第4図は熱伝導体の構造を説明す
る図、 第5図は従来型の電流検出器の温度変化を示す図、 第6図は木発明の電流検出器の温度変化を示す図、 第7図は従来型の電流検出器のケーブル接続を説明する
図、 第8図は本発明の電流検出器のケーブル接続を説明する
図、 第9図、第12図、第13図および第14図は、それぞ
れ木発明の実施例を示す図、 第10図および第11図はそれぞれ従来構造および本発
明による試作電流検出器の各部の温度変化の結果を示す
図、 第15図は電流検出器の基本的な構成を示す図、第16
図は従来構造の電流検出器を示す図である。 11・・・導体、 21、FC・・・強磁性体コア、 22・・・空隙、 23、IIE・・・ホール素子、 24、Dtl・・・駆動回路、 25、BP・・・基板、 2B、TS・・・温度センサー、 27・・・銅板、 28・・・樹脂、 29・・・外部接続端子。 FC残ボ社休体ァ トし 本絶明の支(楕止を示す因 第1図 TS %、U大k 、)!inイネ、フTfづセ(イ大、き1
6ト、を草りろ才専鱈ヒを示す図イ芝米型オ史出* /
)4宸変イ巳を不す同第5図 ネi75.明の才大出gのン乙貞変イbを氷す図第6 
図 す足1(、型書乞ンICJ才に出((0ケーフーンレか
針子(54欠尾を勺(1−1−図第7図
Figure 1 is a diagram showing the main structure of the present invention. Figures 2, 3 and 4 are diagrams explaining the structure of the thermal conductor. Figure 5 is a diagram showing the temperature change of a conventional current detector. Figure 6 is a diagram showing the temperature change of the current detector of the invention; Figure 7 is a diagram explaining the cable connection of the conventional current detector; Figure 8 is the cable connection of the current detector of the present invention. FIGS. 9, 12, 13 and 14 are diagrams each showing an embodiment of the tree invention, and FIGS. 10 and 11 are diagrams showing a conventional structure and a prototype current detection according to the present invention, respectively. Figure 15 is a diagram showing the basic configuration of the current detector, Figure 16 is a diagram showing the results of temperature changes in each part of the
The figure shows a current detector with a conventional structure. DESCRIPTION OF SYMBOLS 11... Conductor, 21, FC... Ferromagnetic core, 22... Air gap, 23, IIE... Hall element, 24, Dtl... Drive circuit, 25, BP... Substrate, 2B , TS...Temperature sensor, 27...Copper plate, 28...Resin, 29...External connection terminal. FC Zanbo's company has been suspended and this is the main reason for the current crisis (Fig. in rice, FuTfzuse (I large, Ki 1
6. A diagram showing a grass-fed rice type Oshide* /
) 4. Figure 5, i75. Diagram 6 of the Ming Dynasty's Talent Output
(1-1-Figure 7

Claims (1)

【特許請求の範囲】[Claims] 被測定電流の流れる導体を周回して閉磁路をなす強磁性
体コアと、該強磁性体コアの一部に形成された空隙に挿
入されたホール素子と、温度補償回路を含む駆動回路と
が一体化されてなる電流検出器において、温度検出素子
とホール素子とが熱伝導体を介して結合されていること
を特徴とする電流検出器。
A ferromagnetic core that circles a conductor through which a current to be measured flows to form a closed magnetic path, a Hall element inserted into a gap formed in a part of the ferromagnetic core, and a drive circuit including a temperature compensation circuit. What is claimed is: 1. An integrated current detector, characterized in that a temperature detection element and a Hall element are coupled via a thermal conductor.
JP62270294A 1987-10-28 1987-10-28 Current detector Pending JPH01113674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270294A JPH01113674A (en) 1987-10-28 1987-10-28 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270294A JPH01113674A (en) 1987-10-28 1987-10-28 Current detector

Publications (1)

Publication Number Publication Date
JPH01113674A true JPH01113674A (en) 1989-05-02

Family

ID=17484256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270294A Pending JPH01113674A (en) 1987-10-28 1987-10-28 Current detector

Country Status (1)

Country Link
JP (1) JPH01113674A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148870A (en) * 1990-10-12 1992-05-21 Murata Mfg Co Ltd Detection coil
EP1408594A2 (en) * 2002-10-10 2004-04-14 Sanyo Electric Co. Ltd DC ground fault detector and system-interconnected generation device using the DC ground fault detector
JP2005037323A (en) * 2003-07-18 2005-02-10 Denso Corp Electric current detector
JP2009042003A (en) * 2007-08-07 2009-02-26 Denso Corp Current sensor
JP2016217962A (en) * 2015-05-25 2016-12-22 株式会社デンソー Current detection device
JP2019211396A (en) * 2018-06-07 2019-12-12 日本セラミック株式会社 Current sensor
JP2020180797A (en) * 2019-04-23 2020-11-05 富士電機メーター株式会社 Current sensor and watt-hour meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148870A (en) * 1990-10-12 1992-05-21 Murata Mfg Co Ltd Detection coil
EP1408594A2 (en) * 2002-10-10 2004-04-14 Sanyo Electric Co. Ltd DC ground fault detector and system-interconnected generation device using the DC ground fault detector
EP1408594A3 (en) * 2002-10-10 2006-09-20 Sanyo Electric Co. Ltd DC ground fault detector and system-interconnected generation device using the DC ground fault detector
JP2005037323A (en) * 2003-07-18 2005-02-10 Denso Corp Electric current detector
JP2009042003A (en) * 2007-08-07 2009-02-26 Denso Corp Current sensor
JP2016217962A (en) * 2015-05-25 2016-12-22 株式会社デンソー Current detection device
JP2019211396A (en) * 2018-06-07 2019-12-12 日本セラミック株式会社 Current sensor
JP2020180797A (en) * 2019-04-23 2020-11-05 富士電機メーター株式会社 Current sensor and watt-hour meter

Similar Documents

Publication Publication Date Title
US6356068B1 (en) Current monitor system and a method for manufacturing it
JP3583368B2 (en) Surface temperature sensor
TWI408379B (en) Leadframe current sensor
TWI745735B (en) Current sensing module
JPH01113674A (en) Current detector
JPH0244211A (en) Flow sensor
JP2000028411A (en) Flow-rate sensor and flow-rate detecting device
CN109752604B (en) Packaging assembly and packaging method of electric field sensor and electric field sensor
RU2465609C1 (en) Contactless current metre
CN213366295U (en) Dual-redundancy platinum film thermistor
JPH0399230A (en) Mass flow rate sensor
US5148707A (en) Heat-sensitive flow sensor
JP2842973B2 (en) Air flow meter
JP4139149B2 (en) Gas sensor
JPS604084Y2 (en) displacement transducer
JP3008239B2 (en) Reference junction compensator for thermocouple thermometer
JP2014170772A (en) Temperature sensor
JPH06103204B2 (en) Semiconductor type electromagnetic flow meter
JPS625603Y2 (en)
JPH0232222A (en) Temperature sensor
JPS6225402A (en) Thermosensor and manufacture thereof
JPS60125534A (en) Surface temperature sensor
JP3740027B2 (en) Flow sensor
JPH02271258A (en) Position detector
KR20170100258A (en) Temperature sensor and method for manufacturing the temperature sensor