JPS61224469A - Avalanche photodiode - Google Patents

Avalanche photodiode

Info

Publication number
JPS61224469A
JPS61224469A JP60065637A JP6563785A JPS61224469A JP S61224469 A JPS61224469 A JP S61224469A JP 60065637 A JP60065637 A JP 60065637A JP 6563785 A JP6563785 A JP 6563785A JP S61224469 A JPS61224469 A JP S61224469A
Authority
JP
Japan
Prior art keywords
layer
thickness
light absorption
substrate
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065637A
Other languages
Japanese (ja)
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60065637A priority Critical patent/JPS61224469A/en
Publication of JPS61224469A publication Critical patent/JPS61224469A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Abstract

PURPOSE:To attempt to obtain low-noise output signals by fabricating a light absorptionlayer of superlattice, distorted layer structure and a silicon-made CONSTITUTION:The invented product comprises a light absorption layer 13 of superlattice, distorted layer structure made of III-IV group compound semicon ductor and a silicon-made carrier multiplier layer 12. It is embodied, by, for example, laminating alternatively a first kind semiconductor layer 13a made of nondoped InxCa1-xAs(x 0.45) having a thickness of about 300Angstrom and a second king semiconductor 13b made of non-doped InP having a thickness of about 300Angstrom each 13 times to make a total of 26 layers which form a light absorption layer 13 about 1.5mum thick of superlattice, distorted layer structure, through an n-type Si carrier multiplier layer(thickness 3mum) on a p<+> type Si substrate 11, and furthermore a n-type InP contact layer(thickness 0.5mum) 14. These layers 12-14 are deposited by successive epitaxial growth on the substrate 11, and metallic electrodes 15, 16 are fitted in ohmic contact to the layer 14 and he substrate 11 respectively.

Description

【発明の詳細な説明】 〔概要〕 光通信に適する波長1.3μm帯程度の光信号を受ける
アバランシ・ホトダイオードにおいて、光吸収層を歪層
超格子構造になし、キャリア増倍層をシリコンにするこ
とにより、 出力信号の低雑音化を図ったものである。
[Detailed Description of the Invention] [Summary] In an avalanche photodiode that receives optical signals in the 1.3 μm wavelength band suitable for optical communication, the light absorption layer has a strained layer superlattice structure and the carrier multiplication layer is made of silicon. This is intended to reduce the noise of the output signal.

〔産業上の利用分野〕[Industrial application field]

本発明は(光通信に適する波長1.3μm帯程度の光信
号を受けるアバランシ・ホトダイオード(APD)の構
成に関す。
The present invention relates to the structure of an avalanche photodiode (APD) that receives an optical signal with a wavelength of about 1.3 μm, which is suitable for optical communication.

APDは、高感度や高速応答の特性を有することから光
通信など・の光信号受信素子として多用されるようにな
ってきた。
Since APDs have characteristics of high sensitivity and fast response, they have come to be widely used as optical signal receiving elements in optical communications and the like.

一方、長距離光通信においては、光ファイバの特性から
例えば1.3μm帯と言った具合に光信号の波長に制約
があると共に使用されるAPDには出力信号の低雑音化
が望まれる。
On the other hand, in long-distance optical communications, there are restrictions on the wavelength of optical signals, such as the 1.3 μm band, due to the characteristics of optical fibers, and low noise output signals are desired for the APDs used.

〔従来の技術〕[Conventional technology]

第3図は波長1.3μm帯の光信号を受ける従来のAP
D例の側断面図である。
Figure 3 shows a conventional AP that receives optical signals in the 1.3 μm wavelength band.
It is a side sectional view of example D.

同図において、1はn+型インジウム燐(InP)の基
板、2はn型InPのバッファ層(厚さζ0.5μm)
、3はインジウムガリウム砒素(InGaAs)の光吸
収層(厚さ; 1.5μl11)、4はn型InPのキ
ャリア増倍層(厚さ#3μll1)、5はp+型InP
のコンタクト層(厚さq0.58m)で、2〜5は基板
1上に順次エピタキシャル成長されてなっている。
In the figure, 1 is an n+ type indium phosphide (InP) substrate, and 2 is an n type InP buffer layer (thickness ζ 0.5 μm).
, 3 is an indium gallium arsenide (InGaAs) light absorption layer (thickness: 1.5 μl11), 4 is an n-type InP carrier multiplication layer (thickness #3 μl1), and 5 is a p + type InP.
Contact layers 2 to 5 (thickness q0.58 m) are successively epitaxially grown on the substrate 1.

また、6と7はコンタクト層5と基板1のそれぞれにオ
ーミック接触する金属の電極である。
Moreover, 6 and 7 are metal electrodes that make ohmic contact with the contact layer 5 and the substrate 1, respectively.

このAPDは、電極6と7との間に電極6を負側にした
電圧が印加された状態で図上上方から光が入射すると、
光吸収層3で発生したキャリアが、コンタクト層5との
界面にP−N接合を形成しているキャリア増倍層4で増
倍されて、高感度の光−電気変換機能を示す。
In this APD, when light enters from above in the figure with a voltage applied between electrodes 6 and 7 with electrode 6 on the negative side,
Carriers generated in the light absorption layer 3 are multiplied by the carrier multiplication layer 4 forming a PN junction at the interface with the contact layer 5, thereby exhibiting a highly sensitive photo-electrical conversion function.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この際、電気的出力信号には必然的に雑音が含まれるが
、キャリア増倍層4の材料がこの雑音レベルを左右する
要因の一つになっている。
At this time, the electrical output signal inevitably contains noise, and the material of the carrier multiplication layer 4 is one of the factors that influences this noise level.

そして、上記APDにおいては、受ける光信号の波長が
1.3μm帯であることから光吸収層3の材料がI n
GaAsに定まり、それと格子整合させる必要性からキ
ャリア増倍層4の材料がrnPになっている。
In the above APD, since the wavelength of the received optical signal is in the 1.3 μm band, the material of the light absorption layer 3 is In
The carrier multiplication layer 4 is made of rnP because of the need for lattice matching with GaAs.

上記雑音レベルはイオン化率比の大きい材料である程小
さくなると言われ、InPよりイオン化率比の大きい材
料にはシリコン(Si)がある。
It is said that the noise level becomes smaller as the material has a higher ionization rate ratio, and silicon (Si) is a material with a higher ionization rate ratio than InP.

ちなみに、光信号の波長が1μmより短い場合に使用さ
れ光吸収層とキャリア増倍層の材料がSiであるAPD
の、増倍率10倍における過剰雑音指数(Excess
 No1se Factor) Fは2.5〜2.8で
ある。
By the way, APD is used when the wavelength of the optical signal is shorter than 1 μm and the material of the light absorption layer and carrier multiplication layer is Si.
Excess noise figure at a multiplication factor of 10
No.1se Factor) F is 2.5 to 2.8.

これと比較すると上記APDは、同様のFが約5となり
雑音レベルが高い問題がある。
Compared to this, the above-mentioned APD has a similar F value of about 5, which has a problem of high noise level.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明によるAPD実施例の側断面図である。 FIG. 1 is a side cross-sectional view of an APD embodiment according to the present invention.

上記問題点は、同図に示す如(、光吸収層13がm−v
族化合物半導体の歪層超格子構造(SLS、5trai
ned Layer 5uper−1attice)で
なり、キャリア増倍層12がSiでなる本発明のAPD
によって解決される。
The above problem is solved as shown in the figure (when the light absorption layer 13 is m-v
Strained layer superlattice structure (SLS, 5trai) of compound semiconductors
APD of the present invention, in which the carrier multiplication layer 12 is made of Si.
solved by.

【作用〕[Effect]

従来、光吸収層とキャリア増倍層の間で格子整合させる
必要があったのは、光吸収層で発生したキャリアがキャ
リア増倍層に移行するのに支障がないように、格子欠陥
の発生を抑えるためである。
Conventionally, it was necessary to achieve lattice matching between the light absorption layer and the carrier multiplication layer in order to avoid the occurrence of lattice defects so that carriers generated in the light absorption layer could migrate to the carrier multiplication layer. This is to suppress the

本発明においては、光吸収層13に波長1.3μm帯の
光を吸収するm−v族化合物半導体を使用しながらこれ
をSLSにして、格子定数がより小さなSiでなるキャ
リア増倍層12との接合に格子欠陥が生じないようにし
ている。
In the present invention, while an m-v group compound semiconductor that absorbs light in the wavelength band of 1.3 μm is used for the light absorption layer 13, this is made into SLS, and the carrier multiplication layer 12 is formed of Si having a smaller lattice constant. This prevents lattice defects from occurring in the bonding.

従つて本APDは、波長1.3μm帯の光信号を受ける
APDとして正常に作動し、然もキャリア増倍層12が
イオン化率比の大きなSiであることから、増倍率10
倍における過剰雑音指数Fが従来例の凡そ1/2と言っ
た具合に雑音レベルが低くなる。
Therefore, this APD operates normally as an APD that receives optical signals in the wavelength band of 1.3 μm, and since the carrier multiplication layer 12 is made of Si with a high ionization rate ratio, the multiplication factor is 10.
The noise level is reduced to such a degree that the excess noise figure F at double the number is approximately 1/2 that of the conventional example.

〔実施例〕〔Example〕

以下第1図と共に光吸収層13の詳細を示す第2図の部
分側断面図を用いて実施例を説明する。
An embodiment will be described below with reference to FIG. 1 as well as a partial side sectional view of FIG. 2 showing details of the light absorption layer 13.

第1図において、11はp+型Siの基板、12はn型
Siのキャリア増倍層(厚さ′43μn+)、13は詳
細を第2図に示す光吸収層(厚さ#1.5μm)、14
はn型1nPのコンタクト層(厚さ#0.5μm)で、
12〜14は基板11上に順次エピタキシャル成長され
てなっている。また、15と16はコンタクト層14と
基板11のそれぞれにオーミンク接触する金属の電極で
ある。
In FIG. 1, 11 is a p+ type Si substrate, 12 is an n-type Si carrier multiplication layer (thickness 43 μm+), and 13 is a light absorption layer (thickness #1.5 μm) whose details are shown in FIG. 2. , 14
is an n-type 1nP contact layer (thickness #0.5 μm),
12 to 14 are successively epitaxially grown on the substrate 11. Further, 15 and 16 are metal electrodes that are in ohmink contact with the contact layer 14 and the substrate 11, respectively.

光吸収層13はSLSをなし第2図に示す如く、ノンド
ープInxGa、、XAs (X #0.45)で厚さ
約300人の第一の半導体層13aとノンドープInP
で厚さ約300人の第二の半導体層13bとを交互に各
13層、合計26層をエピタキシャル成長により積層し
て厚さを約1.5μmにしたものである。この積層成長
は、例えば、有機金属エピタキシャル成長法(MO−C
VD法)、分子線エピタキシャル成長法(MBE法)、
気相エピタキシャル成長法(V P E法)などにより
行うことが可能である。また半導体層13a 、 13
bの積層数は上記26層に限定されず20〜30層程度
であれば良い。
The light absorption layer 13 is made of SLS, and as shown in FIG. 2, it is made of non-doped InxGa, XAs (X #0.45) and has a thickness of approximately 300 nm, and a first semiconductor layer 13a and non-doped InP.
The second semiconductor layer 13b having a thickness of approximately 300 layers is alternately laminated by 13 layers each, a total of 26 layers, to a thickness of approximately 1.5 μm. This layered growth is carried out by, for example, metal organic epitaxial growth (MO-C).
VD method), molecular beam epitaxial growth method (MBE method),
This can be performed by a vapor phase epitaxial growth method (VPE method) or the like. Moreover, the semiconductor layers 13a, 13
The number of laminated layers b is not limited to the above 26 layers, but may be about 20 to 30 layers.

そして、この光吸収層13は、波長1.3μm帯の光を
吸収して十分なキャリアを発生させる。
The light absorption layer 13 absorbs light in the wavelength band of 1.3 μm and generates sufficient carriers.

また、上記1nGaAsとSiとの間には格子定数に約
6%のずれがあるが、光吸収層13をかく構成すること
によりStのキャリア増倍層12との格子不整合は緩和
されて格子欠陥の発生が抑えられている。
Furthermore, although there is a difference of about 6% in lattice constant between the above-mentioned 1nGaAs and Si, by configuring the light absorption layer 13 in this way, the lattice mismatch with the carrier multiplication layer 12 of St is alleviated. The occurrence of defects is suppressed.

このAPDは、電極15と16との間に電極15を正側
にした電圧が印加されている状態で図上上方から光が入
射すると、光吸収層13で発生したキャリアが、基板1
1との界面にP−N接合を形成しているキャリア増倍層
12で増倍されて、従来例と同様に高感度の光−電気変
換機能を示す。然も光増倍層12がStであることから
、先に説明した如く雑音レベルが従来例より低くなって
いる。
In this APD, when light is incident from above in the figure with a voltage applied between electrodes 15 and 16 with electrode 15 on the positive side, carriers generated in the light absorption layer 13 are transferred to the substrate 1.
The carriers are multiplied by the carrier multiplication layer 12 which forms a PN junction at the interface with 1, and exhibits a highly sensitive photo-electrical conversion function as in the conventional example. However, since the optical multiplier layer 12 is made of St, the noise level is lower than that of the conventional example, as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、光通信に
適する波長1.3μm帯程度の光信号を受けるAPDに
おいて、出力信号の雑音低減化が可能になり、光信号受
信素子として従来より優れたAPDの提供を可能にさせ
る効果がある。
As explained above, according to the configuration of the present invention, it is possible to reduce the noise of the output signal in an APD that receives an optical signal with a wavelength of about 1.3 μm, which is suitable for optical communication, and it is possible to reduce the noise of the output signal. This has the effect of making it possible to provide excellent APD.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるAPD実施例の側断面図、第2図
はその光吸収層の詳細を示す部分側断面図、 第3図は従来のAPD例の側断面図、である。 図において、 1.11は基板、 2はバッファ層、 3.13は光吸収層、 4.12はキャリア増倍層、 5.14はコンタクト層、 6.7.15.16は電極、 13a 、 13bは13のSLSを構成する半導体層
、である。
FIG. 1 is a side sectional view of an APD embodiment according to the present invention, FIG. 2 is a partial side sectional view showing details of the light absorption layer, and FIG. 3 is a side sectional view of a conventional APD example. In the figure, 1.11 is a substrate, 2 is a buffer layer, 3.13 is a light absorption layer, 4.12 is a carrier multiplication layer, 5.14 is a contact layer, 6.7.15.16 is an electrode, 13a, 13b is a semiconductor layer constituting 13 SLSs.

Claims (1)

【特許請求の範囲】[Claims]  光吸収層(13)がIII−V族化合物半導体の歪層超
格子構造でなり、キャリア増倍層(12)がシリコンで
なることを特徴とするアバランシ・ホトダイオード。
An avalanche photodiode characterized in that the light absorption layer (13) has a strained layer superlattice structure of a III-V compound semiconductor, and the carrier multiplication layer (12) is made of silicon.
JP60065637A 1985-03-29 1985-03-29 Avalanche photodiode Pending JPS61224469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065637A JPS61224469A (en) 1985-03-29 1985-03-29 Avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065637A JPS61224469A (en) 1985-03-29 1985-03-29 Avalanche photodiode

Publications (1)

Publication Number Publication Date
JPS61224469A true JPS61224469A (en) 1986-10-06

Family

ID=13292736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065637A Pending JPS61224469A (en) 1985-03-29 1985-03-29 Avalanche photodiode

Country Status (1)

Country Link
JP (1) JPS61224469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308995A (en) * 1991-07-12 1994-05-03 Hitachi, Ltd. Semiconductor strained SL APD apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308995A (en) * 1991-07-12 1994-05-03 Hitachi, Ltd. Semiconductor strained SL APD apparatus

Similar Documents

Publication Publication Date Title
US20070057299A1 (en) Systems and methods having a metal-semiconductor-metal (msm) photodetector with buried oxide layer
GB2025693A (en) Avalanche photo diode with semiconductor hetero structure
JP2002231992A (en) Semiconductor light receiving element
US20030155625A1 (en) Semiconductor light receiving device and semiconductor part
JP2590817B2 (en) Photo Detector
JPS61224469A (en) Avalanche photodiode
JPH05206497A (en) Semiconductor light receiving device
JPH03291979A (en) Avalanche photodiode
JPH0493088A (en) Avalanche photodiode
JPH02199877A (en) Optical receiver and photoelectric integrated circuit
JPS63108782A (en) Semiconductor photodetector
JPH07202254A (en) Semiconductor photodetector
JPS61154085A (en) Semiconductor photoreceptor
JP2664960B2 (en) Avalanche photodiode
JPH051629B2 (en)
JPS639163A (en) Semiconductor photodetector
JPH01194352A (en) Photo detector and integrated receiver
JPS6398158A (en) Photodiode
JPS61224468A (en) Semiconductor photodetector
JPS61128578A (en) Inp group light-receiving element
JPH0265279A (en) Semiconductor photodetecting element
JPH03297173A (en) Semiconductor optical detector device
JPH0366179A (en) Avalanche photodiode
JPH01144687A (en) Semiconductor photodetector
JP2995751B2 (en) Semiconductor light receiving element