JPS61154085A - Semiconductor photoreceptor - Google Patents

Semiconductor photoreceptor

Info

Publication number
JPS61154085A
JPS61154085A JP59277517A JP27751784A JPS61154085A JP S61154085 A JPS61154085 A JP S61154085A JP 59277517 A JP59277517 A JP 59277517A JP 27751784 A JP27751784 A JP 27751784A JP S61154085 A JPS61154085 A JP S61154085A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
onto
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277517A
Other languages
Japanese (ja)
Inventor
Masanori Ito
正規 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59277517A priority Critical patent/JPS61154085A/en
Publication of JPS61154085A publication Critical patent/JPS61154085A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To increase the height of a Schottky barrier, and to reduce dark currents by forming a window layer (a second semiconductor layer) having large forbidden band width onto an optical absorption layer (a first semiconductor) and shaping a Schottky electrode onto the window layer. CONSTITUTION:A second semiconductor layer having forbidden band width larger than a semiconductor substrate or a first semiconductor layer applied onto the semiconductor substratre is applied onto the semiconductor substrate or the first semiconductor layer, and metallic electrodes are shaped directly onto the second semiconductor layer. For example, an n0GaAs layer 2 in 2-3mum thickness as an optical absorption layer and an AlxGa1-xAs layer 5 in 1,000Angstrom thickness as a window layer are applied onto an SI-GaAs substrate 1 in succession, and Al electrodes 3 and 4 are formed onto the layer 5 as Schottky electrodes. Accordingly, a photodetector having MSM structure, dark currents thereof are reduced and pulse reply thereof lies far, is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は0.8〜1.6μm帯の光通信用半導体受光装
置に係り、ショットキ(Schottky)電極を有す
るM S M −P D (Metal−Semico
nductor−MetalPhotodetecto
r)の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light receiving device for optical communication in the 0.8 to 1.6 μm band, and relates to a semiconductor light receiving device for optical communication in the 0.8 to 1.6 μm band, and includes an M S M -P D (Metal) having a Schottky electrode. -Semico
ndductor-MetalPhotodetecto
Regarding the structure of r).

従来のフォトディテクタではPIN(p型半導体−絶縁
体−n型半導体)ダイオードやAPD(Avalanc
he Photodiode)等のバルク構造の素子が
用いられていたが、MSM−PDは表面構造の素子で、
構造が簡単で集積が容易である。例えば電界効果トラン
ジスタ(FET)と集積する場合は、ゲート金属の蒸着
と同時にMSM−PDを形成できる等の利点がある。
Conventional photodetectors use PIN (p-type semiconductor-insulator-n-type semiconductor) diodes and APD (Avalanche) diodes.
Bulk structure elements such as the photodiode (he Photodiode) were used, but MSM-PD is a surface structure element,
It has a simple structure and is easy to integrate. For example, when integrated with a field effect transistor (FET), there are advantages such as the ability to form an MSM-PD at the same time as gate metal deposition.

しかしながら、MSM−PDは上記のバルク構造の素子
に比し、ショットキ障壁の形成が難しく暗電流が大きく
なりやすい欠点があり、何らかの対策が望まれる。
However, the MSM-PD has the drawback that it is difficult to form a Schottky barrier and the dark current tends to be large compared to the above-mentioned bulk structure element, and some countermeasure is desired.

〔従来の技術と問題点〕[Conventional technology and problems]

第5図(al、 (blはそれぞれ従来例による0、8
μm帯のMSM−PDの基板断面図、平面図である。
Fig. 5 (al, (bl are respectively 0 and 8 according to the conventional example)
FIG. 2 is a cross-sectional view and a plan view of a substrate of a μm band MSM-PD.

第5図(a)において、半絶縁性ガリウム砒素(SI−
GaAs)基板1上に被着された光吸収層のn型GaA
s(n−GaAs)層2とアルミニウム(AI)電極3
と4でショットキ障壁を形成して構成される。
In FIG. 5(a), semi-insulating gallium arsenide (SI-
n-type GaAs) as a light absorption layer deposited on the substrate 1
s(n-GaAs) layer 2 and aluminum (AI) electrode 3
and 4 form a Schottky barrier.

第5図(b)において、A1電極3と4はそれぞれ櫛型
に、その歯は交互に入り組んで形成されている。
In FIG. 5(b), the A1 electrodes 3 and 4 are each formed in a comb shape, and the teeth of the electrodes are alternately intertwined.

第5図(alはA−A断面を示す。FIG. 5 (al indicates the AA cross section.

このような櫛型構成により、大きな受光面積が得られる
Such a comb-shaped configuration provides a large light-receiving area.

第6図は従来例による1、3〜1.6μm帯のMSM−
PDの基板断面図である。
Figure 6 shows a conventional MSM in the 1, 3 to 1.6 μm band.
FIG. 3 is a cross-sectional view of a PD substrate.

図において、半絶縁性インジウム燐(Sl−1nP)基
板1)上に被着され、InPと格子整合する組成を有す
る光吸収層としてのインジウムガリウム砒素(In0.
5sGao、 4?AS)層12とAI電極13と14
でシ1ff7トキ障壁を形成して構成される。
In the figure, indium gallium arsenide (In0.
5sGao, 4? AS) layer 12 and AI electrodes 13 and 14
It is constructed by forming a 1ff7 barrier.

第7図は他の従来例による0、8μm帯のMSM−PD
の基板断面図である。
Figure 7 shows another conventional MSM-PD in the 0 and 8 μm band.
FIG.

この構造は米国のツユ二ズ・エアクラフト社より出願さ
れた特開昭58−12378号明細書に開示されている
This structure is disclosed in Japanese Patent Application Laid-Open No. 12378/1985 filed by Tsuyuniz Aircraft Company of the United States.

主要な構成は第5図と同じであるが、露出するn−Ga
As層2の表面にパッシベーションのためにアルミニウ
ムガリウム砒素(A1. Ga、−ウAs、  xは混
晶値)層6が被着されている。
The main structure is the same as in Figure 5, but the exposed n-Ga
An aluminum gallium arsenide (A1.Ga, -UAs, x is a mixed crystal value) layer 6 is deposited on the surface of the As layer 2 for passivation.

このAIX Gat−x As層6は禁制帯幅が、光吸
収層のn−GaAs層2より大きく光を透過するためウ
ィンド層と呼ばれ、受光に影響を与えない。
This AIX Gat-x As layer 6 has a larger forbidden band width than the n-GaAs layer 2, which is the light absorption layer, and transmits light, so it is called a window layer and does not affect light reception.

この場合は、n−GaAs層2はめウィンド層として寄
与するが暗電流の減少には役立たない。
In this case, the n-GaAs layer 2 serves as a window layer, but does not help reduce dark current.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基板、もしくは該半導体基
板上に被着された第1の半導体層上に、該半導体基板、
もしくは該第1の半導体層より禁制帯幅の大きい第2の
半導体層を被着し、該第2の半導体層上に直接金属電極
を形成してなる本発明による半導体受光装置により達成
される。
To solve the above problems, the semiconductor substrate, or the first semiconductor layer deposited on the semiconductor substrate,
Alternatively, this can be achieved by the semiconductor light receiving device according to the present invention, which is formed by depositing a second semiconductor layer having a larger forbidden band width than the first semiconductor layer, and forming a metal electrode directly on the second semiconductor layer.

また前記第2の半導体層が、その禁制帯幅が表面より内
部に向かって漸減するような組成を有するようにすれば
、高速応答性が得られる。
Further, if the second semiconductor layer has a composition such that its forbidden band width gradually decreases from the surface toward the inside, high-speed response can be obtained.

〔作用〕[Effect]

本発明により、光吸収層(第1の半導体層)の主に、禁
制帯幅の大きいウィンド層(第2の半導体層)を設け、
この上にショットキ電極を形成することにより、シッッ
トキ障壁の高さを大きくして暗電流を減少させることが
できる。
According to the present invention, a window layer (second semiconductor layer) with a large forbidden band width is provided mainly in the light absorption layer (first semiconductor layer),
By forming a Schottky electrode on this, the height of the Schottky barrier can be increased and dark current can be reduced.

第3図は禁制帯幅の大きいウィンド層にショットキ電極
を形成したMSM−PDのエネルギ準位図である。
FIG. 3 is an energy level diagram of an MSM-PD in which a Schottky electrode is formed in a window layer with a large forbidden band width.

図は左側の金属Mに負、右側の金属Mに正の電位を与え
た場合に、中央の半導体Sに生じたショットキ障壁の様
子を示す。図でPLはFermi準位、31はガソード
側のポテンシャルのくぼみに捕獲された正孔、32はア
ノード側のポテンシャルのくぼみに捕獲された電子を示
す。
The figure shows the Schottky barrier that occurs in the central semiconductor S when a negative potential is applied to the metal M on the left and a positive potential is applied to the metal M on the right. In the figure, PL indicates the Fermi level, 31 indicates holes captured in the potential depression on the gasode side, and 32 indicates electrons captured in the potential depression on the anode side.

シッットキ障壁の高さはGaAs層単独の場合より高く
なり、暗電流は減少する。しかしながら上記の捕獲正孔
、電子によりパルス応答が劣化する欠点がある。
The height of the Schittke barrier is higher than in the case of the GaAs layer alone, and the dark current is reduced. However, there is a drawback that the pulse response deteriorates due to the above-mentioned trapped holes and electrons.

第4図は禁制帯幅の大きいウィンド層にショットキ電極
を形成し、かつウィンド層の禁制帯幅に傾斜をもたせた
MSM−PDのエネルギ準位図である。
FIG. 4 is an energy level diagram of an MSM-PD in which a Schottky electrode is formed in a window layer having a large forbidden band width, and the forbidden band width of the window layer is made to have a slope.

この場合は、ウィンド層の禁制帯幅を表面(金属側)よ
り、内部(吸収層)に向かって漸減するような組成にし
て、上記のポテンシャルのくぼみをなくする。
In this case, the composition of the window layer is such that the forbidden band width gradually decreases from the surface (metal side) toward the interior (absorption layer) to eliminate the potential depression described above.

そのためウィンド層界面に正孔と電子は蓄積されること
なく、パルス応答の劣化を減少させると同時に、低暗電
流化が行える。
Therefore, holes and electrons are not accumulated at the window layer interface, reducing deterioration of pulse response and reducing dark current.

〔実施例〕〔Example〕

第1図(a)、 (b)、 (C)はそれぞれ本発明に
よる0、8μm帯のMSM−PDの基板断面図、ウィン
ド層の厚さ方向の組成が一様な場合の混晶値対厚さ方向
の距離の関係図、同様に厚さ方向の組成が傾斜する場合
の関係図である。
Figures 1 (a), (b), and (C) are cross-sectional views of the substrate of MSM-PD in the 0 and 8 μm bands according to the present invention, and the mixed crystal value vs. when the composition in the thickness direction of the window layer is uniform. It is a relationship diagram of the distance in the thickness direction, and a relationship diagram when the composition in the thickness direction is similarly inclined.

第1図(a)において、5l−GaAs基板1上に光吸
収層として厚さ2〜3μmのn−GaAs層2と、ウィ
ンド層として厚さ1000人のA1)l Get−xA
s層5を順次被着し、この上にショットキ電極としてA
I電極3と4を形成する。
In FIG. 1(a), an n-GaAs layer 2 with a thickness of 2 to 3 μm is formed as a light absorption layer on a 5l-GaAs substrate 1, and an A1)l Get-xA layer with a thickness of 1000 nm is formed as a window layer.
The s-layer 5 is deposited in sequence, and a Schottky electrode is formed on this
I electrodes 3 and 4 are formed.

第1図(b)において、ウィンド層のAIX Ga1−
、As層5の厚さ方向の組成が一様な場合の混晶値Xと
厚さ方向の距離の関係が示される。
In FIG. 1(b), AIX Ga1- of the wind layer
, shows the relationship between the mixed crystal value X and the distance in the thickness direction when the As layer 5 has a uniform composition in the thickness direction.

第1図(C)において、ウィンド層のA1)l Gat
−、As層5の厚さ方向の組成が傾斜する場合の混晶値
Xと厚さ方向の距離の関係が示される。
In FIG. 1(C), A1)l Gat of the wind layer
-, the relationship between the mixed crystal value X and the distance in the thickness direction is shown when the composition in the thickness direction of the As layer 5 is inclined.

第2図(a)、 (b)はそれぞれ本発明による1、3
〜1.6μm帯のMSM−PDの基板断面図、ウィンド
層の厚さ方向の組成が傾斜する場合の禁制帯幅対厚さ方
向の距離の関係図である。
FIGS. 2(a) and 2(b) are 1 and 3 according to the present invention, respectively.
FIG. 2 is a cross-sectional view of a substrate of MSM-PD in the ~1.6 μm band, and a relationship diagram of the forbidden band width versus the distance in the thickness direction when the composition of the window layer in the thickness direction is inclined.

第2図(a)において、5l−1nP基板ll上に、光
吸収層としてInPと格子整合する組成を有する厚さ2
〜3μmのIno、 5zGae、 4?A!1層12
と、ウィンド層として厚さ1000人のインジウムガリ
ウム砒素燐(InxGa+−Js+−、p、)層15を
順次被着し、この上にショットキ電極としてAI電極1
3と14を形成する。
In FIG. 2(a), a light absorption layer having a composition lattice-matched to InP is formed on a 5l-1nP substrate ll with a thickness of 2.
~3μm Ino, 5zGae, 4? A! 1 layer 12
Then, an indium gallium arsenide phosphorus (InxGa+-Js+-, p,) layer 15 with a thickness of 1000 layers is deposited as a window layer, and an AI electrode 1 is formed as a Schottky electrode on this layer.
3 and 14 are formed.

第2図伽)において、ウィンド層の厚さ方向の組成が傾
斜する場合の禁制帯幅E、と厚さ方向の距離の関係が示
される。
FIG. 2) shows the relationship between the forbidden band width E and the distance in the thickness direction when the composition of the wind layer in the thickness direction is gradient.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、暗電流が少なく、
パルス応答の速いMSM構造のフォトディテクタが得ら
れる。
As explained above, according to the present invention, dark current is small and
A photodetector having an MSM structure with a fast pulse response can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)、 (C)はそれぞれ本発明に
よる0、8μm帯のMSM−PDの基板断面図、ウィン
ド層の厚さ方向の組成が一様な場合の混晶値対厚さ方向
の距離の関係図、同様に厚さ方向の組成が傾斜する場合
の関係図、 第2図+8)、 (b)はそれぞれ本発明による1、3
〜1.6μm帯のMSM−PDの基板断面図、ウィンド
層の厚さ方向の組成が傾斜する場合の禁制帯幅対厚さ方
向の距離の関係図、 第3図は禁制帯幅の大きいウィンド層にショットキ電極
を形成したMSM−PDのエネルギ準位図、 第4図は禁制帯幅の大きいウィンド層にショットキ電極
を形成し、かつウィンド層の禁制帯幅に傾斜をもたせた
MSM−PDのエネルギ準位図、第5図(a)、 (b
)はそれぞれ従来例による0、8μm帯のMSM−PI
)の基板断面図、平面図、第6図は従来例による1、3
〜1.6μm帯のMSM−PDの基板断面図、 第7図は他の従来例による0、8μm帯のMSM−PD
の基板断面図である。 図において、 1は5l−GaAs基板、 2は光吸収層(第1の半導体層)で n −GaAslS 3.4はショットキ電極、 5はウィンド(第2の半導体層)で AI、 Ga、−xAs層、 6はパッシベーション層でAI、 Ga、−xAs層、
1)は5l−1nP基板、 12は光吸収層(第1の半導体層)で Inn、 5sGae、 4?A3層、13、14はシ
ョットキ電極、 15はウィンド(第2の半導体Ji)でInxGa+−
xAst−yPy層、 PLはFermi準位、 31はポテンシャルのくぼみに捕獲された正孔、32は
ポテンシャルのくぼみに捕獲された電子を示す。 ’tgtrii
Figures 1 (al, b), and (c) are cross-sectional views of the substrate of MSM-PD in the 0 and 8 μm bands according to the present invention, respectively, and the mixed crystal value versus thickness when the composition in the thickness direction of the window layer is uniform. A relationship diagram of the distance in the width direction, and a relationship diagram when the composition in the thickness direction is similarly inclined.
A cross-sectional view of the MSM-PD substrate in the ~1.6 μm band, a diagram of the relationship between the forbidden band width and the distance in the thickness direction when the composition in the thickness direction of the window layer is gradient, and Figure 3 shows a window with a large forbidden band width. Figure 4 shows the energy level diagram of an MSM-PD with a Schottky electrode formed in the layer. Energy level diagram, Figure 5 (a), (b
) are MSM-PIs in the 0 and 8 μm bands according to the conventional example, respectively.
) board cross-sectional view, top view, and FIG. 6 are conventional examples 1 and 3.
~1.6 μm band MSM-PD substrate cross-sectional view, Figure 7 is another conventional example of 0 and 8 μm band MSM-PD
FIG. In the figure, 1 is a 5l-GaAs substrate, 2 is a light absorption layer (first semiconductor layer) and n-GaAslS, 3.4 is a Schottky electrode, and 5 is a window (second semiconductor layer) made of AI, Ga, -xAs. layer, 6 is a passivation layer, AI, Ga, -xAs layer,
1) is a 5l-1nP substrate, 12 is a light absorption layer (first semiconductor layer) of Inn, 5sGae, 4? A3 layer, 13, 14 are Schottky electrodes, 15 is a window (second semiconductor Ji), InxGa+-
In the xAst-yPy layer, PL is the Fermi level, 31 is a hole captured in the potential depression, and 32 is an electron captured in the potential depression. 'tgtrii

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板、もしくは該半導体基板上に被着され
た第1の半導体層上に、該半導体基板、もしくは該第1
の半導体層より禁制帯幅の大きい第2の半導体層を被着
し、該第2の半導体層上に直接金属電極を形成してなる
ことを特徴とする半導体受光装置。
(1) The semiconductor substrate or the first semiconductor layer is coated on the semiconductor substrate or the first semiconductor layer deposited on the semiconductor substrate.
1. A semiconductor light-receiving device comprising: a second semiconductor layer having a larger forbidden band width than that of the semiconductor layer; and a metal electrode formed directly on the second semiconductor layer.
(2)前記第2の半導体層が、その禁制帯幅が表面より
内部に向かって漸減するような組成を有することを特徴
とする特許請求の範囲第1項記載の半導体受光装置。
(2) The semiconductor light-receiving device according to claim 1, wherein the second semiconductor layer has a composition such that its forbidden band width gradually decreases from the surface toward the inside.
JP59277517A 1984-12-26 1984-12-26 Semiconductor photoreceptor Pending JPS61154085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277517A JPS61154085A (en) 1984-12-26 1984-12-26 Semiconductor photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277517A JPS61154085A (en) 1984-12-26 1984-12-26 Semiconductor photoreceptor

Publications (1)

Publication Number Publication Date
JPS61154085A true JPS61154085A (en) 1986-07-12

Family

ID=17584696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277517A Pending JPS61154085A (en) 1984-12-26 1984-12-26 Semiconductor photoreceptor

Country Status (1)

Country Link
JP (1) JPS61154085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319881A (en) * 1986-07-08 1988-01-27 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Semiconductor photodetector
JPS6386481A (en) * 1986-09-30 1988-04-16 Agency Of Ind Science & Technol High-sensitivity lateral photodetector
US5115294A (en) * 1989-06-29 1992-05-19 At&T Bell Laboratories Optoelectronic integrated circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111273A (en) * 1980-02-07 1981-09-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetecting device
JPS59136981A (en) * 1983-01-27 1984-08-06 Fujitsu Ltd Semiconductor photo detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111273A (en) * 1980-02-07 1981-09-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetecting device
JPS59136981A (en) * 1983-01-27 1984-08-06 Fujitsu Ltd Semiconductor photo detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319881A (en) * 1986-07-08 1988-01-27 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Semiconductor photodetector
JPH0552070B2 (en) * 1986-07-08 1993-08-04 Ibm
JPS6386481A (en) * 1986-09-30 1988-04-16 Agency Of Ind Science & Technol High-sensitivity lateral photodetector
US5115294A (en) * 1989-06-29 1992-05-19 At&T Bell Laboratories Optoelectronic integrated circuit

Similar Documents

Publication Publication Date Title
US7829915B2 (en) Avalanche photodiode
EP2446483B1 (en) Low-level signal detection by semiconductor avalanche amplification
US5075750A (en) Avalanche photodiode with adjacent layers
EP0497279B1 (en) Avalanche photodiode
EP0452801B1 (en) Semiconductor device having light receiving element and method of producing the same
CN110311000B (en) Second-class superlattice avalanche photodetector and manufacturing method thereof
JPH04111478A (en) Light-receiving element
JP2002231992A (en) Semiconductor light receiving element
JPS62259481A (en) Semiconductor light receiving device
JPS61154085A (en) Semiconductor photoreceptor
JPH0493088A (en) Avalanche photodiode
JPS6285477A (en) Photosemiconductor device
JP2664960B2 (en) Avalanche photodiode
JPH03291979A (en) Avalanche photodiode
JP2700492B2 (en) Avalanche photodiode
JPH01144687A (en) Semiconductor photodetector
JPH01194352A (en) Photo detector and integrated receiver
JP2852361B2 (en) Super lattice photoelectric conversion element
JPS6156469A (en) Semiconducltor photodetector
JPS61224469A (en) Avalanche photodiode
JPH0265279A (en) Semiconductor photodetecting element
US4918508A (en) Vertical photoconductive detector
JPS61128578A (en) Inp group light-receiving element
JPS59232470A (en) Semiconductor light receiving element
JP2995751B2 (en) Semiconductor light receiving element