JPS61223041A - Molded article of electrically-conductive resin and material thereof - Google Patents

Molded article of electrically-conductive resin and material thereof

Info

Publication number
JPS61223041A
JPS61223041A JP6327385A JP6327385A JPS61223041A JP S61223041 A JPS61223041 A JP S61223041A JP 6327385 A JP6327385 A JP 6327385A JP 6327385 A JP6327385 A JP 6327385A JP S61223041 A JPS61223041 A JP S61223041A
Authority
JP
Japan
Prior art keywords
parts
weight
conductive
flame retardant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6327385A
Other languages
Japanese (ja)
Inventor
Kazuto Wakita
脇田 和人
Kazuo Tsuchiya
和夫 土屋
Tatsufumi Akaho
達史 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6327385A priority Critical patent/JPS61223041A/en
Publication of JPS61223041A publication Critical patent/JPS61223041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled molded article useful as Venetian blinds, or containers, having electrical conductivity in all directions, randomly and uniformly dispersed electrically-conductive fibers, and improved surface state, obtained by blending specific amounts of resin with electrically-conductive fibers and an electrically- conductive scaly material. CONSTITUTION:100pts.wt. resin (preferably modified polyolefin which is partially or totally grafted with an unsaturated carboxylic acid compound and/or an organosilane compound) is blended with (A) 3-30pts.wt. preferably 5-20pts.wt. electrically-conductive fibers of stainless steel fibers having preferably 2-20mu diameters and 0.5-3mm average fiber length), (B) 5-50pts.wt., preferably 5-35pts.wt. metallic scaly material or scaly filler subjected to surface coating with a metal (nickel-coated mica having preferably 20-1,400mu average diameter and 20-90 average aspect ratio), (C) 0-120pts.wt., preferably 0-100pts.wt. flame-retardant, and (D) 0-40pts.wt. agent for providing synergistic effect with the flame retardant. The blend is kneaded, pelletized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性樹脂生成物およびその中間生成物である
導電性樹脂ペレッ)K関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to conductive resin products and conductive resin pellets, which are intermediate products thereof.

〔従来の技術〕[Conventional technology]

自動車や各家電製品においては1種々の電子機器が使用
され、各電子機器より高周波または低周波の電波が発信
されており、これが電波障害の源となり悪影響をおよぼ
している。この対策として金属板(箱)が発信源の電子
機器の被覆(収容)に使用されており、電磁波シールド
の面からも有効であった。
Various electronic devices are used in automobiles and various home appliances, and each electronic device emits high-frequency or low-frequency radio waves, which become a source of radio wave interference and have an adverse effect. As a countermeasure to this problem, a metal plate (box) was used to cover (contain) the electronic device that was the source of the emission, and it was also effective in terms of shielding electromagnetic waves.

ところが、金属板(箱)はしだいに熱可塑性樹脂の収容
物に移行しつつあり、従来は導電性物質を熱可塑性樹脂
収容物に塗布することによシ対応してきた。しかし、仁
のような導電性物質の塗布では持続耐久性が乏しく、そ
の上、多くの場合非常なコスト高となる。
However, metal plates (boxes) are gradually being replaced by thermoplastic resin containers, and conventionally this has been handled by applying a conductive substance to the thermoplastic resin containers. However, coatings of conductive materials such as nitrates have poor durability and are often very costly.

また、電気的、熱的な伝導性を改善するために樹脂に導
電性繊維または導電性フィラーを混入させることも良く
知られている。
It is also well known to mix conductive fibers or conductive fillers into resins in order to improve electrical and thermal conductivity.

〔発明が解決しようとする問題点〕 しかしながら、導電性繊維単独では比較的多量に充填し
なければ十分な導電性を得ることが出来ないものが多い
。さらに、コスト軽減のために成形品を細片化して再び
成形用材料とする場合、成形時に繊維が細断され、アス
ペクト比(長さ/径)が極端に低下するため導電性が極
端に低下するものが多い。
[Problems to be Solved by the Invention] However, in many cases, conductive fibers alone cannot provide sufficient conductivity unless they are filled in a relatively large amount. Furthermore, when the molded product is cut into pieces and reused as molding material in order to reduce costs, the fibers are shredded during molding and the aspect ratio (length/diameter) is extremely reduced, resulting in an extremely low conductivity. There are many things to do.

また、導電性フィラー単独では多量に充填しなければ良
好な導電性が得られず、多量に導電性フィラーを充填す
ると樹脂生成物(成形品)の機械的特性が大巾に低下す
る。
Further, if a conductive filler is used alone, good conductivity cannot be obtained unless it is filled in a large amount, and if a large amount is filled with a conductive filler, the mechanical properties of the resin product (molded article) will be significantly reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題点を解決すべく鋭意研究した結果
本発明を完成した。
The present inventors completed the present invention as a result of intensive research to solve the above problems.

すなわち9本発明は、樹脂100重量部と導電性繊維3
〜30重量部と金属鱗片状物または金属で表面を被覆し
た鱗片状フィラー5〜50重量部と、難燃剤0〜120
重量部好ましくは5〜100重量部と難燃相乗効果剤0
〜40重量部とからなり、あらゆる方向に導電性を有し
、導電性繊維の分散がランダムかつ略均一であシ、鱗片
状物の表面への浮き出しおよび剥離が抑制されてなる導
電性樹脂生成物に関するものである。
That is, 9 the present invention uses 100 parts by weight of resin and 3 parts by weight of conductive fibers.
~30 parts by weight, 5 to 50 parts by weight of a metal flake or a scaly filler whose surface is coated with metal, and 0 to 120 parts by weight of a flame retardant.
Parts by weight preferably 5 to 100 parts by weight and 0 parts by weight of flame retardant synergist
-40 parts by weight, conductive in all directions, conductive fibers are randomly and substantially uniformly distributed, and scaly matter is suppressed from extruding onto the surface and peeling off. It is about things.

また9本発明は、樹脂100重量部と導電性繊維5〜′
30重量部と金属鱗片状物または金属で表面を被覆した
鱗片状フィラー5〜50重量部と。
9 In addition, the present invention includes 100 parts by weight of resin and 5 to 5 parts by weight of conductive fiber.
30 parts by weight and 5 to 50 parts by weight of a scaly filler whose surface is coated with a metal scaly material or metal.

難燃剤0〜120重量部好ましくは5〜100重量部と
難燃相乗効果剤0〜40重量部とからなる導電性樹脂生
成物用の中間生成物である導電性樹脂ペレットに関する
ものである。
The present invention relates to conductive resin pellets which are intermediate products for conductive resin products comprising 0 to 120 parts by weight of a flame retardant, preferably 5 to 100 parts by weight, and 0 to 40 parts by weight of a flame retardant synergist.

本発明における樹脂としてはABS、HIP8(ハイイ
ンパクトポリスチレ/)、ポリアミド。
The resins used in the present invention include ABS, HIP8 (high impact polystyrene/), and polyamide.

例えばナイロン6、ナイロン66、ナイロン12など、
lニル(変性PP0)、PBT、PC(ポリカーボネー
ト樹脂)、ポリオレフィン樹脂等が挙げられる。前記ポ
リオレフィン樹脂はその一部または全部を不飽和カルボ
ン酸化合物および/または有機シラン化合物でグラフト
変性した変性ポリオレフィン樹脂が好ましい。変性ポリ
オレフィン樹脂を使用することによって、鱗片状物の成
形品表面への浮き出しおよび剥離が大巾に抑制される。
For example, nylon 6, nylon 66, nylon 12, etc.
Examples include lnyl (modified PP0), PBT, PC (polycarbonate resin), polyolefin resin, and the like. The polyolefin resin is preferably a modified polyolefin resin in which part or all of the polyolefin resin is graft-modified with an unsaturated carboxylic acid compound and/or an organic silane compound. By using a modified polyolefin resin, embossment and peeling of scale-like substances on the surface of the molded product can be greatly suppressed.

前記のポリオレフィン樹脂としてはプロピレンの結晶性
単独重合体や、プロピレンとエチレンまたは他のα−オ
レフィン(例えば、ブテン−1゜ペンテン、ヘキセン、
ヘプテン、オクテン−1など)との結晶性ランダムある
いはブロック共重体やプロピレンとエチ・し/と他のα
−オレフィンとの結晶性ターポリマーなどのポリプロピ
レン樹脂や、密度が0.939/aA以上であるエチレ
ンの単独重合体やエチレンとα−オレフィンなどとの共
重合体が挙げられ、プロピレンとエチレンのブロック共
重合体が好ましい。ポリオレフィン樹脂のメルトフロー
レイトインデックス(VFR)は0.1〜100f/1
0分[: ASTM D1238,23σ(:’、21
60f、以下同じ〕が好以下−。前記有機シラン化合物
としては、ビニルトリエトキシシラン、メタクリロイル
オキシトリメトキシシラン、r−メタクリロイルオキシ
プロピルトリメトキシシラン、メタクリロイルオキシシ
クロヘキシルトリメトキシシラン、r−メタクリロイル
オキシプロピルトリアセチルオキシシラン、メタクリロ
イルオキシトリエトキシシラン、r−メタクリロイルオ
キシプロピルトリエトキシシランなどが挙げられる。こ
れら有機シラン化合物は1種のみ使用してもよく2種以
上を混合して使用しても良い。
Examples of the polyolefin resin include crystalline homopolymers of propylene, propylene and ethylene, or other α-olefins (e.g., butene-1°pentene, hexene,
Heptene, octene-1, etc.) and crystalline random or block copolymers with propylene and ethyl/thi/and other α
- Polypropylene resins such as crystalline terpolymers with olefins, homopolymers of ethylene with a density of 0.939/aA or more, copolymers of ethylene with α-olefins, etc., and blocks of propylene and ethylene. Copolymers are preferred. The melt flow rate index (VFR) of polyolefin resin is 0.1 to 100f/1
0 minutes [: ASTM D1238, 23σ (:', 21
60f, the same applies hereafter] is better or less. The organic silane compounds include vinyltriethoxysilane, methacryloyloxytrimethoxysilane, r-methacryloyloxypropyltrimethoxysilane, methacryloyloxycyclohexyltrimethoxysilane, r-methacryloyloxypropyltriacetyloxysilane, methacryloyloxytriethoxysilane, Examples include r-methacryloyloxypropyltriethoxysilane. These organic silane compounds may be used alone or in combination of two or more.

変性ポリオレフィン樹脂は前述のポリオレフィン樹脂の
一部又は全部と前記有機シラン化合物とを、好ましくは
有機過酸化物の存在下にグラフト反応して得られる。前
記の有機過酸化物としては。
The modified polyolefin resin is obtained by grafting a part or all of the polyolefin resin described above and the organic silane compound, preferably in the presence of an organic peroxide. As the organic peroxide mentioned above.

1分半減期温度が約160〜260°Cの温度になるよ
うなものが好ましく、そのようなものとしては9例えば
第三ブチルパーオキシイソプロビルカーボネート、ジ第
三ブチルシバ−オキシフタレート、第三ブチルパーオキ
シアセテ−)、2.5−ジメチル−2,5−ジ(第三ブ
チルパーオキシ)ヘキサン、25−ジメチル−2,5−
ジ(第三ブチルパーオキシ)ヘキシン−6、第三ブチル
パーオキシラウレート、第三ブチルパーオキシマレイッ
クアシッド、第三ブチルパーオキシベンゾエート、メチ
ルエチルケトンパーオキサイド、ジクミルパーオキサイ
ド、シクロヘキサノンパーオキサイド。
Those having a 1-minute half-life temperature of about 160 to 260°C are preferred, such as tert-butyl peroxyisopropyl carbonate, di-tert-butyl civa-oxyphthalate, tert-butyl peroxyacetate), 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 25-dimethyl-2,5-
Di(tert-butylperoxy)hexyne-6, tert-butyl peroxylaurate, tert-butyl peroxymaleic acid, tert-butyl peroxybenzoate, methyl ethyl ketone peroxide, dicumyl peroxide, cyclohexanone peroxide.

第三ブチルクミルパーオキサイド、2,5−ジメチルヘ
キサン2.5−シバイドロバ−オキサイドなどが挙げら
れる。これらの有機過酸化物は、1種のみ使用してもよ
く2種以上を混合して使用してもよい。
Examples include tertiary-butylcumyl peroxide, 2,5-dimethylhexane, 2,5-cybide lobaroxide, and the like. These organic peroxides may be used alone or in combination of two or more.

変性ポリオレフィン樹脂は、好適にはポリオレフィン樹
脂、特にプロピレンとエチレンのブロック共重合体10
0重量部に対して、有機シラン化合物0.01〜5重量
部、特に0.05〜3重量部と有機過酸化物0.01〜
5重量部、特に0.05〜2重量部とを混合し、得られ
た混合物を160〜270°C特に180〜270°C
の温度に加熱してグラフトさせることによって得られる
。量も簡便な加熱処理操作は、前記混合物を前記温度で
1〜10分間程分間様押出溶融加熱することである。特
に変性ポリオレフィン樹脂として、MFRが5〜80f
/10分の変性プロピレン−エチレンブロック共重合体
が好ましい。
The modified polyolefin resin is preferably a polyolefin resin, particularly a block copolymer of propylene and ethylene 10.
0 parts by weight, 0.01 to 5 parts by weight of the organosilane compound, especially 0.05 to 3 parts by weight, and 0.01 to 3 parts by weight of the organic peroxide.
5 parts by weight, especially 0.05-2 parts by weight, and the resulting mixture is heated at 160-270°C, especially 180-270°C.
It can be obtained by grafting by heating to a temperature of . A simple heat treatment operation is to extrude and melt-heat the mixture at the temperature for about 1 to 10 minutes. Especially as a modified polyolefin resin, MFR is 5 to 80f.
/10 minutes modified propylene-ethylene block copolymer is preferred.

前記変性ポリオレフィン樹脂を単独であるいは変性ポリ
オレフィン樹脂と未変性ポリオレフィン樹脂とを混合し
て使用してもよい。
The modified polyolefin resin may be used alone or in combination with a modified polyolefin resin and an unmodified polyolefin resin.

また変性ポリオレフィン樹脂として不飽和カルボン酸類
でグラフト変性された変性ポリオレフィンを使用するこ
とも出来る。グラフトされるモノマーである不飽和カル
ボン酸類としては、無水マレイン酸、無水イタコン酸、
アクリル酸が好適に挙げられる。グラフト変性(反応)
による不飽和カルボン酸類の基の導入は、特に制限はな
く、有機過酸化物等を用いる溶液法または混線法の常法
によって行なうことができる。有機過酸化物の例として
は、前述の有機シラン化合物でのグラフト変性に用いら
れるものが挙げられる。不飽和カルボン酸類はポリオレ
フィン樹脂に対して0.05〜13.5重量%の範囲の
割合でグラフト変性させることが好ましい。ポリオレフ
ィン樹脂のグラフト変性(反応)に関する他の反応条件
、具体的な反応操作は、それ自体公知の方法に準じて容
易に設定することができる。グラフト変性(反応)終了
後。
Furthermore, a modified polyolefin graft-modified with unsaturated carboxylic acids can also be used as the modified polyolefin resin. Examples of unsaturated carboxylic acids as monomers to be grafted include maleic anhydride, itaconic anhydride,
Acrylic acid is preferably mentioned. Graft modification (reaction)
The introduction of the unsaturated carboxylic acid group is not particularly limited, and can be carried out by a conventional method such as a solution method using an organic peroxide or the like or a crosstalk method. Examples of organic peroxides include those used for graft modification with the aforementioned organic silane compounds. It is preferable to graft-modify the unsaturated carboxylic acids in a proportion ranging from 0.05 to 13.5% by weight based on the polyolefin resin. Other reaction conditions and specific reaction operations regarding the graft modification (reaction) of the polyolefin resin can be easily set according to methods known per se. After completion of graft modification (reaction).

それ自体公知の方法でグラフト変性ポリオレフィン樹脂
を得ることができる。変性ポリオレフィン樹脂は単独で
あるいは未変性のポリオレフィンと混合して使用しても
良い。
The graft-modified polyolefin resin can be obtained by a method known per se. The modified polyolefin resin may be used alone or in combination with an unmodified polyolefin.

本発明において導電性繊維としては、ステンレx繊維、
ニッケル被覆カーボンファイバー、ニッケル被覆ガラス
繊維、ビビリアルミ繊維、ビビリ黄銅繊維等が上げられ
、導電性の効果、繊維の分散性の点からステンレス繊維
が好ましい。ステンレス繊維は、特にカット長2.5〜
7.5簡にカットした集束ステンレス繊維を配合時に用
いるのが好ましく、ステンレス繊維の太さは2〜20μ
特に2〜15μが好ましい・集束ステンレス繊維は通常
1000〜5oooo本のステンレス繊維を集束ポリマ
ーで集束したものが好ましい。集束ポリマーとしては溶
剤可溶性のポリマーが好適に使用される。
In the present invention, the conductive fibers include stainless steel x fibers,
Examples include nickel-coated carbon fiber, nickel-coated glass fiber, chatty aluminum fiber, and chatty brass fiber, and stainless steel fiber is preferred from the viewpoint of conductivity and fiber dispersibility. Stainless fibers are especially suitable for cut lengths of 2.5~
7.5 It is preferable to use briefly cut bundled stainless steel fibers during compounding, and the thickness of the stainless steel fibers should be 2 to 20 μm.
In particular, 2 to 15 μm is preferable. The bundled stainless steel fibers are preferably those in which 1000 to 500 stainless steel fibers are bundled with a binding polymer. A solvent-soluble polymer is preferably used as the focusing polymer.

このようなポリマーとしては酢酸ビニル共重合体。An example of such a polymer is vinyl acetate copolymer.

エチレン−酢酸ビニル共重合体(EVA)、飽和ポリエ
ステル共重合体が好適に使用されるがこれらに限定され
るものではない。集束ステンレス繊維として、付着量1
〜20重量%で前記集束ポリマーで集束したステンレス
繊維が好適に使用される。
Ethylene-vinyl acetate copolymer (EVA) and saturated polyester copolymer are preferably used, but are not limited thereto. As a focused stainless fiber, the adhesion amount is 1
~20% by weight of stainless steel fibers bound with the above-mentioned binding polymer are preferably used.

また、導電性繊維は樹脂生成物中に0,5〜311aI
Iの平均繊維長で残存することが好ましい。
In addition, conductive fibers are included in the resin product with 0.5 to 311aI.
It is preferable that the fibers remain at an average fiber length of I.

本発明において使用される導電性鱗片状物としては、ア
ルミフレーク、ニッケルフレークなどの金属鱗片状物や
、ニッケル被覆マイカ、ニッケル被覆グラファイトなど
の金属で表面を被覆した鱗片フィラーが挙げられ、ニッ
ケル被覆マイカが好ましい。この発明においては特にニ
ッケル被覆マイカの平均径は20μから1400μであ
シ、80μから650μが好ましく、150μから44
0μが特に好ましい。ニッケル被覆マイカの平均アスペ
クト比(平均径/平均厚み)は20から90であシ、3
0から90が好ましく、40から70が特に好ましい。
Examples of the conductive scaly materials used in the present invention include metal scaly materials such as aluminum flakes and nickel flakes, and scaly fillers whose surfaces are coated with metals such as nickel-coated mica and nickel-coated graphite. Mica is preferred. In this invention, the average diameter of the nickel-coated mica is preferably from 20μ to 1400μ, preferably from 80μ to 650μ, and from 150μ to 44μ.
0μ is particularly preferred. The average aspect ratio (average diameter/average thickness) of nickel-coated mica is between 20 and 90, and 3
0 to 90 is preferred, and 40 to 70 is particularly preferred.

平均径が80μ以下であり、かつアスペクト比が30以
下ではプラスチック生成物の導電性が十分でなく、平均
径が650μ以上ではプラスチック生成物の表面状態が
良好ではない。導電性鱗片状物を前記有機、シラン化合
物で表面処理してもよい。
If the average diameter is 80μ or less and the aspect ratio is 30 or less, the plastic product will not have sufficient electrical conductivity, and if the average diameter is 650μ or more, the surface condition of the plastic product will not be good. The conductive scale-like material may be surface-treated with the organic or silane compound.

難燃性を目的とする場合には難燃剤9例えば臭素系難燃
剤、好適にはデカブロムジフェニル系難燃剤と難燃相乗
効果剤とを配合する。前記デカブロムジフェニル系難燃
剤としては、デカブロムジフェニルエーテル、デカブロ
ムジフェニルなトラ挙げることができる。また難燃相乗
効果剤としては、三酸化アンチモンを好適に使用するこ
とができる。
When flame retardance is the objective, a flame retardant 9, such as a brominated flame retardant, preferably a decabromidiphenyl flame retardant, and a flame retardant synergistic agent are blended. Examples of the decabromidiphenyl flame retardant include decabromidiphenyl ether and decabromidiphenyl. Moreover, antimony trioxide can be suitably used as a flame retardant synergistic agent.

本発明において前記各成分の配合割合は、樹脂好適には
前記一部または全部グラフト変性した変性ポリオレフィ
ン樹脂100重量部と前記難燃剤好適にはデカブロムジ
フェニル系難燃剤0〜120重量部(好ましくは5〜1
00重量部、特に好ましくは20〜60重量部)と難燃
相乗効果剤0〜40重量部(好ましくは0〜30重量部
)と導電性繊維3〜SO重量部、好ましくは5〜20重
量部、導電性鱗片状物5〜50重量部、好ましくは5〜
35重量部となる量である。
In the present invention, the blending ratio of each of the above components is preferably 100 parts by weight of the modified polyolefin resin partially or completely graft-modified with the flame retardant, preferably 0 to 120 parts by weight of the decabromodiphenyl flame retardant (preferably 5-1
00 parts by weight, particularly preferably 20 to 60 parts by weight), 0 to 40 parts by weight (preferably 0 to 30 parts by weight) of a flame retardant synergist, and 3 to 3 parts by weight of conductive fibers, preferably 5 to 20 parts by weight. , 5 to 50 parts by weight of conductive scales, preferably 5 to 50 parts by weight
The amount is 35 parts by weight.

本発明において、樹脂組成物は、前記導電性繊維、前記
導電性鱗片状物、前記難燃剤、難燃相乗効果剤の他、金
属粉、カーボンブラック等を併用することも可能である
。また本発明において樹脂組成物には樹脂に必要な滑剤
、可塑剤、酸化防止剤、紫外線吸収剤等の添加剤も添加
できる。
In the present invention, in addition to the conductive fibers, the conductive scales, the flame retardant, and the synergistic flame retardant, the resin composition may also contain metal powder, carbon black, and the like. Furthermore, in the present invention, additives necessary for the resin such as lubricants, plasticizers, antioxidants, and ultraviolet absorbers can also be added to the resin composition.

本発明において各成分の配合順序について特に制限はな
いが、前記デカブロムジフェニル系難燃剤を使用する場
合には、樹脂好適には前記一部または全部をグラフト変
性した変性ポリオレフィン樹脂と前記難燃剤と好適には
さらに難燃相乗効果剤とを所定割合で先ず混合し、好適
にはペレット化し、この混合物(好適にはこのペレット
)と前記の導電性繊維と前記導電性鱗片状物とを混線(
通常は樹脂好適には変性ポリオレフィン樹脂の溶融温度
以上で分解温度以下の温度で混線)することが好ましく
、混線後、ペレット化し、成形する。ペレットの形状に
は特に制限はなく1通常2〜4111111’6+3〜
7mm(L)の円柱状又は角状にペレット化される。
In the present invention, there is no particular restriction on the order of blending each component, but when the decabromodiphenyl flame retardant is used, the resin preferably is a modified polyolefin resin obtained by graft-modifying some or all of the above and the above flame retardant. Preferably, a flame retardant synergistic effect agent is first mixed in a predetermined ratio, preferably pelletized, and this mixture (preferably the pellets), the conductive fibers, and the conductive scales are mixed (
Usually, it is preferable to mix the resin at a temperature that is higher than the melting temperature and lower than the decomposition temperature of the modified polyolefin resin, and after the cross-crossing, it is pelletized and molded. There are no particular restrictions on the shape of the pellets, and usually 2~4111111'6+3~
It is pelletized into 7 mm (L) cylindrical or square shapes.

本発明の導電性樹脂生成物は9通常前記のペレット化さ
れた導電性樹脂組成物を射出成形、押出し成形、圧縮成
形2発泡成形等の成形方法、好適には射出成形によって
、あらゆる方向に導電性を有し、導電性繊維の分散がラ
ンダムかつ略均一であシ、鱗片状物の表面への浮き出し
および剥離が少なくなるように、プレート、シート、例
えばよろい板、各種形状の・側断部9箱、カバー、その
他収容物として成形される。
The electrically conductive resin product of the present invention is produced by molding the pelletized electrically conductive resin composition as described above, preferably by injection molding, extrusion molding, compression molding, foam molding, etc., preferably by injection molding. Plates, sheets, such as armor plates, side sections of various shapes, etc., have a random and almost uniform distribution of conductive fibers, and reduce the appearance and peeling of scale-like objects on the surface. 9 It is molded as a box, cover, and other contents.

以下に本発明の実施例を示す。以下で部、%はそれぞれ
重量部1重量%を示す。
Examples of the present invention are shown below. In the following, parts and % each represent parts by weight of 1% by weight.

□〔実施例〕 実施例I MFRがIP/10分、エチレン含有率7チの結晶性エ
チレン−プロピレンブロック共重合体100部に無水マ
レイン酸0.5部およびt−ブチルパーオキシベンゾエ
ート0.15部をタンブラ−にて混合し、−軸押出機中
にて200°Cで2分間溶融混練して、無水マレイン酸
でグラフト変性された変性ポリプロピレン(MPP−1
) ヲ得り・この変性ポリプロピレフ (MPP−1)
ヲ20部。
□ [Example] Example I 0.5 part of maleic anhydride and 0.15 part of t-butyl peroxybenzoate are added to 100 parts of a crystalline ethylene-propylene block copolymer with an MFR of IP/10 minutes and an ethylene content of 7. were mixed in a tumbler and melt-kneaded for 2 minutes at 200°C in a screw extruder to obtain modified polypropylene graft-modified with maleic anhydride (MPP-1).
) Obtained from this modified polypropylene (MPP-1)
20 copies.

MFR15f/10分、エチレン含有率7%の結晶性エ
チレン−プロピレンブロック共重合体を80部。
80 parts of a crystalline ethylene-propylene block copolymer with an MFR of 15 f/10 minutes and an ethylene content of 7%.

合計100部に対してデカブロモジフェニルエーテル〔
商品名:DP−10F丸菱油化工業■〕56部、三酸化
アンチモン24部を添加し、混線後ミレット化した難燃
変性ポリプロピレンに、酢ビ共重合体〔商品名: X−
Linkカネボー〕を10チ(重量%、以下同じ)付着
させた8μ(1本)X10000本の集束ステンレス繊
維〔商品名;ナスロンTOW316L日本精線■〕をカ
ット長5頓にカットしたものを5チ、ニッケル被覆マイ
カ〔商品名:導電化マイカEC−150クラレ■〕を1
5%の割合でニーダーで混線(180°C,6分、  
24 r、pm、 )Lペレット(4m121X4〜5
M)を得た。
Decabromodiphenyl ether per 100 parts total
Product name: DP-10F Marubishi Yuka Kogyo ■] 56 parts, antimony trioxide 24 parts were added to flame-retardant modified polypropylene, which was mixed and milleted, and vinyl acetate copolymer [Product name: X-
8 μ (1 piece) , 1 nickel-coated mica [Product name: Conductive mica EC-150 Kuraray ■]
Cross-wire in a kneader at a rate of 5% (180°C, 6 minutes,
24 r, pm, ) L pellets (4m121X4~5
M) was obtained.

このペレットを220でで射出成形1+機80Z ) 
L 15ctnX 153X 3順の成形平板を得た。
Injection mold this pellet with 220 1 + machine 80Z)
A molded flat plate in the order of L 15ctnX 153X was obtained.

この成形平板の外観はニッケル被覆マイカの浮き出し、
剥離が認められず外観良好で、導電性は体積固有抵抗(
MD、TDとも略同じ)が6.7×10″′″1cWL
、シールド効果は300 MHzで43 dBであった
。このことから、あらゆる方向に導電性を有し、繊維の
分散がランダムかつ均一であることが確認された。この
ときの成形平板中に分散しているステンレス繊維の平均
繊維長は1.2厘であり、難燃性は(UL−94)V−
0であった。
The appearance of this molded flat plate is an embossed nickel-coated mica,
The appearance is good with no peeling observed, and the conductivity is as low as the volume resistivity (
MD and TD are almost the same) is 6.7 x 10''''1cWL
, the shielding effectiveness was 43 dB at 300 MHz. This confirmed that it had conductivity in all directions and that the fibers were randomly and uniformly distributed. The average fiber length of the stainless steel fibers dispersed in the molded flat plate at this time was 1.2 lin, and the flame retardancy was (UL-94) V-
It was 0.

実施例2 集束ステンレス繊維として飽和ポリエステル〔商品名:
エリ−チルUIC−3210ユニデカ■〕を10チ付着
させた集束ステンレス繊維を使用し。
Example 2 Saturated polyester as focused stainless fiber [Product name:
Uses focused stainless steel fibers to which 10 pieces of Elythyl UIC-3210 Unideca ■ are attached.

180°(ll’、 5分、24rpmで混練した他は
実施例1と同様にして成形平板を得た。この成形平板の
外観はニッケル被覆マイカの浮き出し、剥離が認められ
ず良好で導電性は体積固有抵抗が8.9×10−’nc
mシールド効果は300 MHzで41 dBであった
。このときの成形平板中に分散しているステンレス繊維
の平均繊維長は11111 +難燃性(UL−94)は
V−Oであった。
A molded flat plate was obtained in the same manner as in Example 1 except that the mixture was kneaded at 180° (ll') for 5 minutes at 24 rpm.The appearance of this molded flat plate was good with no embossment or peeling of the nickel-coated mica, and the conductivity was good. Volume resistivity is 8.9×10-'nc
m shielding effectiveness was 41 dB at 300 MHz. The average fiber length of the stainless steel fibers dispersed in the molded flat plate at this time was 11111 + flame retardancy (UL-94) was VO.

実施例6 集束ステンレス繊維としてEVA(商品名:スミチー)
KA−10,住友化学工業■〕を5チ付着させた集束ス
テンレス繊維7チ、ニッケル被覆?(力(EC!−15
0)10%O割合テ二−ターで混練(180°C,3分
+24rpm)l、た他は実施例1と同様にして成形平
板を得た。この成形平板の外観はニッケル被覆マイカの
浮き出し、剥離が認められず良好で導電性は体積固有抵
抗が4.9X 10 Atxシールド効果は300 M
Hzで46 dBであった。このとき成形平板中に分散
しているステンレス繊維の平均繊維長は1.3ml難燃
性(UL−94)はV−Oであった。
Example 6 EVA as focused stainless fiber (product name: Sumichi)
KA-10, Sumitomo Chemical ■] 7 pieces of focused stainless fiber with 5 pieces attached, nickel coated? (Power (EC!-15
0) 10% O ratio A molded flat plate was obtained in the same manner as in Example 1 except that the mixture was kneaded in a teneter (180°C, 3 minutes + 24 rpm). The appearance of this molded flat plate is good with no embossment or peeling of the nickel-coated mica, and the conductivity is 4.9X with a volume resistivity of 4.9X 10 Atx shielding effect of 300M
It was 46 dB at Hz. At this time, the average fiber length of the stainless steel fibers dispersed in the molded flat plate was 1.3 ml, and the flame retardancy (UL-94) was V-O.

実施例4 集束ステンレス繊維として酢ビ共重合体〔商品名: X
−I、imkカネボー〕を10チ付着させた集束ステン
レス繊維7チ、ニッケル被覆マイカEO−15010%
の割合でニーダ−で混線(180°C96分、24rp
m)l、た他は実施例1と同様にして成形平板を得た。
Example 4 Vinyl acetate copolymer as focused stainless steel fiber [Product name: X
-I, imk Kanebo] 7 pieces of focused stainless fiber attached with 10 pieces, 10% of nickel-coated mica EO-150
Cross-wire in a kneader at a ratio of (180°C, 96 minutes, 24 rpm)
A molded flat plate was obtained in the same manner as in Example 1 except for m) and l.

この成形平板の外観はニッケル被覆マイカの浮き出し、
剥離が認められず良好で導電性は体積固有抵抗が6.O
X 10−’ρcmシールド効果は300 MHzで4
2dBであった。このとき成形平板中に分散しているス
テンレス繊維の平均繊維長は1.1.難燃性(Ul、−
94)はV−Oであった。
The appearance of this molded flat plate is an embossed nickel-coated mica,
Good conductivity with no peeling observed and volume resistivity of 6. O
X 10-'ρcm shielding effectiveness is 4 at 300 MHz
It was 2dB. At this time, the average fiber length of the stainless steel fibers dispersed in the molded flat plate was 1.1. Flame retardant (Ul, -
94) was V-O.

〔比較例〕[Comparative example]

比較例1 ニッケル被覆マイカE(!−150を15チ添加し、集
束ステンレス繊維を添加しなかった他は実施例1と同様
にして成形平板を得た。この成形平板の外観はニッケル
被覆マイカの浮き出し、剥離が認められず良好であった
が、導電性は体積固有抵抗が測定不可能(10’ A−
an以上)であった。
Comparative Example 1 A molded flat plate was obtained in the same manner as in Example 1 except that 15 g of nickel-coated mica E (!-150 was added and no focused stainless fibers were added.The appearance of this molded flat plate was similar to that of nickel-coated mica. The conductivity was good with no embossment or peeling observed, but the volume resistivity was unmeasurable (10' A-
an or more).

比較例2 ニッケル被覆マイカEC!−150を25チ添加し、集
束ステンレス繊維を添加しなかった他は実施例1と同様
にして成形平板を得た。この成形平板の外観はニッケル
被覆マイカの浮き出しが極めて少量認められ、導電性は
体積固有抵抗が測定不可能(104fLcrn以上)で
あった。
Comparative Example 2 Nickel coated mica EC! A molded flat plate was obtained in the same manner as in Example 1, except that 25 g of -150 was added and the bundled stainless steel fibers were not added. The external appearance of this molded flat plate showed a very small amount of embossment of the nickel-coated mica, and the volume resistivity of the conductivity was unmeasurable (104 fLcrn or more).

実施例5 MFRが9 g!/10分、エチレン含有率7チの結晶
性エチレン−プロピレンブロック共重合体100部(重
量部以下同じ)にr−メタクリロイルオキシプロピルト
リメトキシシラ10.5部、およびt−ブチルパーオキ
シベンゾエート0.25部をタンブラ−にて混合し、−
軸押出機中にて220°Cで2分間溶融混練して得られ
た変性直後の変性ポリプロピレン(MFFIO(1/1
0分)を空気中で(MPP−2)を得た。
Example 5 MFR is 9 g! /10 minutes, 10.5 parts of r-methacryloyloxypropyltrimethoxysila, and 0.5 parts of t-butyl peroxybenzoate were added to 100 parts of crystalline ethylene-propylene block copolymer with an ethylene content of 7. Mix 25 parts in a tumbler, -
Modified polypropylene (MFFIO (1/1
(MPP-2) was obtained (0 min) in air.

変性ポリプロピレンとして前記有機シラン化合物でグラ
フト変性された変性ポリプロピレン(MPP−2)を使
用した他は実施例1と同様にして成形平板を得た。この
成形平板の外観はニッケル被覆マイカの浮き出し、剥離
が認められず良好で導電性は体積固有抵抗が5.OX 
10−!12m+シールド効果はS 00 MH2で4
4 dBであった。このときの成形平板中に分散してい
るステンレス繊維の平均繊維長は1.21EIIであり
、難燃性は(Ul、−94)V−〇であった。
A molded flat plate was obtained in the same manner as in Example 1, except that modified polypropylene (MPP-2) graft-modified with the organosilane compound was used as the modified polypropylene. The appearance of this molded flat plate was good with no embossment or peeling of the nickel-coated mica, and the conductivity was 5.5% in volume resistivity. OX
10-! 12m + shield effect is 4 in S 00 MH2
It was 4 dB. The average fiber length of the stainless steel fibers dispersed in the molded flat plate at this time was 1.21EII, and the flame retardancy was (Ul, -94)V-0.

実施例6 変性ポリプロピレンとして前記有機シラン化合物でグラ
フト変性された変性ポリプロピレン(MPP−2)を使
用し、集束ステンレス繊維としてKVA[商品名:スミ
テートKA−10゜住人化学工業■〕を5チ付着させた
集束ステンレス繊維7チ、ニッケル被覆マイカ(PC−
150)10チの割合でニーダ−で混練(180°C3
分24 rpm) した他は実施例1と同様にして成形
平板を得た。この成形平板の外観はニッケル被覆マ効果
も300 MHzで47dBであった。このとき成形平
板中に分散しているステンレス繊維の平均繊維長は1.
35m、難燃性(Ul、−94)はV−〇であった。
Example 6 Modified polypropylene (MPP-2) graft-modified with the organosilane compound was used as the modified polypropylene, and 5 pieces of KVA [trade name: Sumitate KA-10゜Sumitate Kagaku Kogyo ■] were attached as the bundled stainless fibers. 7 pieces of focused stainless steel fibers, nickel-coated mica (PC-
150) Kneaded in a kneader at a ratio of 10 cm (180°C3
A molded flat plate was obtained in the same manner as in Example 1, except that the molding speed was 24 rpm). The external appearance of this molded flat plate showed that the nickel-coated magnetic effect was 47 dB at 300 MHz. At this time, the average fiber length of the stainless steel fibers dispersed in the molded flat plate is 1.
35 m, flame retardancy (Ul, -94) was V-○.

実施例2〜5の成形平板においてもあらゆる方向に導電
性を有し、繊維の分散がランダムかっ略均一であること
が確認された。
It was confirmed that the molded flat plates of Examples 2 to 5 also had conductivity in all directions, and that the fibers were randomly and substantially uniformly distributed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば少量の導電性繊維と導電性鱗片状物を配
合することによって、導電性が良く9表面状態の良好な
樹脂生成物を得ることができる。
According to the present invention, by blending a small amount of conductive fibers and conductive scales, a resin product with good conductivity and a good surface condition can be obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)樹脂100重量部と導電性繊維3〜30重量部と
金属鱗片状物または金属で表面を被覆した鱗片状フィラ
ー5〜50重量部と、難燃剤0〜120重量部好ましく
は5〜100重量部と難燃相乗効果剤0〜40重量部と
からなり、あらゆる方向に導電性を有し、導電性繊維の
分散がランダムかつ略均一であり、鱗片状物の表面への
浮き出しおよび剥離が抑制されてなる導電性樹脂生成物
(1) 100 parts by weight of resin, 3 to 30 parts by weight of conductive fiber, 5 to 50 parts by weight of a metal scale or a scaly filler whose surface is coated with metal, and 0 to 120 parts by weight of a flame retardant, preferably 5 to 100 parts by weight. parts by weight and 0 to 40 parts by weight of a flame retardant synergistic effect agent, has conductivity in all directions, has a random and substantially uniform distribution of conductive fibers, and does not cause scale-like objects to rise to the surface or peel off. A conductive resin product that is suppressed.
(2)樹脂が一部または全部を不飽和カルボン酸化合物
および/または有機シラン化合物でグラフト変性した変
性ポリオレフィン樹脂である特許請求の範囲第1項記載
の導電性樹脂生成物。
(2) The conductive resin product according to claim 1, wherein the resin is a modified polyolefin resin partially or entirely graft-modified with an unsaturated carboxylic acid compound and/or an organic silane compound.
(3)射出成形機で製造される特許請求の範囲第1項記
載の導電性樹脂生成物。
(3) The conductive resin product according to claim 1, which is manufactured using an injection molding machine.
(4)プレートまたはシートに成形してなる特許請求の
範囲第1項記載の導電性樹脂生成物。
(4) The conductive resin product according to claim 1, which is formed into a plate or sheet.
(5)金属で表面を被覆した鱗片状フィラーが、平均径
が20〜1400μ、平均アスペクト比(平均径/平均
厚)が20〜90のニッケル被覆マイカである特許請求
の範囲第1項乃至第4項記載の導電性樹脂生成物。
(5) The scale-like filler whose surface is coated with metal is nickel-coated mica having an average diameter of 20 to 1400μ and an average aspect ratio (average diameter/average thickness) of 20 to 90. 4. The conductive resin product according to item 4.
(6)導電性繊維が2〜20μの径を有し、平均繊維長
が0.5〜3mmのステンレス繊維である特許請求の範
囲第1項乃至第5項記載の導電性樹脂生成物。
(6) The conductive resin product according to any one of claims 1 to 5, wherein the conductive fibers are stainless steel fibers having a diameter of 2 to 20 μm and an average fiber length of 0.5 to 3 mm.
(7)樹脂100重量部と導電性繊維3〜30重量部と
金属鱗片状物または金属で表面を被覆した鱗片状フィラ
ー5〜50重量部と、難燃剤0〜120重量部好ましく
は5〜100重量部と難燃相乗効果剤0〜40重量部と
からなる導電性樹脂生成物用の中間生成物である導電性
樹脂ペレット。
(7) 100 parts by weight of resin, 3 to 30 parts by weight of conductive fiber, 5 to 50 parts by weight of a metal scale or a scaly filler whose surface is coated with metal, and 0 to 120 parts by weight of a flame retardant, preferably 5 to 100 parts by weight. A conductive resin pellet, which is an intermediate product for a conductive resin product, comprising parts by weight of a flame retardant synergist and 0 to 40 parts by weight of a flame retardant synergist.
JP6327385A 1985-03-29 1985-03-29 Molded article of electrically-conductive resin and material thereof Pending JPS61223041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6327385A JPS61223041A (en) 1985-03-29 1985-03-29 Molded article of electrically-conductive resin and material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6327385A JPS61223041A (en) 1985-03-29 1985-03-29 Molded article of electrically-conductive resin and material thereof

Publications (1)

Publication Number Publication Date
JPS61223041A true JPS61223041A (en) 1986-10-03

Family

ID=13224529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6327385A Pending JPS61223041A (en) 1985-03-29 1985-03-29 Molded article of electrically-conductive resin and material thereof

Country Status (1)

Country Link
JP (1) JPS61223041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286112A (en) * 1986-06-04 1987-12-12 Mitsubishi Electric Corp Inverter controller
JPS63298909A (en) * 1987-05-28 1988-12-06 Nippon Steel Chem Co Ltd Conductive heat-plastic type resin plate
KR20040009430A (en) * 2002-07-23 2004-01-31 노바템스 주식회사 Conductive polymer composite with used metal scrap and fabrication method thereof
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145781A (en) * 1979-04-28 1980-11-13 Shin Etsu Polymer Co Ltd Sealed gasket and production thereof
JPS56164842A (en) * 1980-05-23 1981-12-18 Toray Industries Carbon fiber reinforced thermoplastic resin molding
JPS5879050A (en) * 1981-10-14 1983-05-12 ゼネラル・エレクトリツク・カンパニイ Electromagnetic interference shielding polyphenylene ether resin composition
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145781A (en) * 1979-04-28 1980-11-13 Shin Etsu Polymer Co Ltd Sealed gasket and production thereof
JPS56164842A (en) * 1980-05-23 1981-12-18 Toray Industries Carbon fiber reinforced thermoplastic resin molding
JPS5879050A (en) * 1981-10-14 1983-05-12 ゼネラル・エレクトリツク・カンパニイ Electromagnetic interference shielding polyphenylene ether resin composition
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286112A (en) * 1986-06-04 1987-12-12 Mitsubishi Electric Corp Inverter controller
JPS63298909A (en) * 1987-05-28 1988-12-06 Nippon Steel Chem Co Ltd Conductive heat-plastic type resin plate
KR20040009430A (en) * 2002-07-23 2004-01-31 노바템스 주식회사 Conductive polymer composite with used metal scrap and fabrication method thereof
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part

Similar Documents

Publication Publication Date Title
EP0062252B1 (en) Polyolefin composition
JPS61155451A (en) Electrically conductive resin composition
WO2008062820A1 (en) Flame retardant, flame retardant composition, insulated wire, wiring harness, and method for producing flame retardant composition
WO2000040651A1 (en) Halogen-free flame-retardant resin composition
JP2007277530A (en) Flame-retardant resin composition and insulated wire coated with the resin composition
JPH0416500B2 (en)
JP2850225B2 (en) Flame retardant resin products with excellent surface scratching and whitening prevention properties
JPS60124654A (en) Electrically conductive resin composition
JPS61223041A (en) Molded article of electrically-conductive resin and material thereof
JP5151096B2 (en) Resin composition containing polylactic acid resin, insulating material, electric wire / cable using the same, and electronic or electric device
JPH0255751A (en) Flame-retardant olefin polymer resin composition with improved resistance to mar whitening
JPS6210151A (en) Flame-retardant olefin polymer composition
JPS6211745A (en) Flame-retardant olefin polymer composition having excellent heat-resistance
JPH02206632A (en) Flame-retardant polyolefin resin composition having improved surface haze properties
JPS58145745A (en) Production of polyolefin resin molding
EP0085438A1 (en) Styrene-based resin composition
JPH07116328B2 (en) Plastic magnet composition
JPS62167339A (en) Flame-retardant resin composition
JP5589414B2 (en) Flame retardant, flame retardant resin composition and insulated wire
JPH01172440A (en) Flame-retarding ethylene polymer resin composition
JP2000103910A (en) Flame-retardant polyolefin-based resin composition and molded product
JPS59219352A (en) Propylene polymer composition
JPH0450344B2 (en)
JPH07119321B2 (en) Plastic magnet composition
JP3574689B2 (en) How to prevent die squash