JPS61222220A - Apparatus for manufacturing multilayer thin film structure - Google Patents

Apparatus for manufacturing multilayer thin film structure

Info

Publication number
JPS61222220A
JPS61222220A JP60062091A JP6209185A JPS61222220A JP S61222220 A JPS61222220 A JP S61222220A JP 60062091 A JP60062091 A JP 60062091A JP 6209185 A JP6209185 A JP 6209185A JP S61222220 A JPS61222220 A JP S61222220A
Authority
JP
Japan
Prior art keywords
thin film
substrate
flexible substrate
light sources
multilayer thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062091A
Other languages
Japanese (ja)
Inventor
Hisanori Tsuda
津田 尚徳
Masafumi Sano
政史 佐野
Katsuji Takasu
高須 克二
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60062091A priority Critical patent/JPS61222220A/en
Publication of JPS61222220A publication Critical patent/JPS61222220A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To manufacture a multilayer thin film structure such as superlattice rapidly in large quantities, by providing a substrate rotating means, and by arranging each means for forming two or more kinds of thin film layers in order not to be interfered with each other, along the substrate rotating locus. CONSTITUTION:An endless flexible substrate 2 is stretched around rollers 3, 3' and is set by regulating tension rollers 8, 8'. Next, The reaction chamber 1 is exhausted to 10<-7> Torr and the flexible substrate 2 is cleaned by cleaning light sources 5, 5'. After each reactive gas is introduced into the reaction chamber 1 from nozzles 6, 6' by given flow rates, each light emitted from light sources 4, 4' produces a photo chemical reaction to deposite different kinds of thin films on the flexible substrate 5. At this time, moving the flexible substrate 2 at a proper speed can attain desired film thickness. Thereafter, since the section having the thin film formed is moved by rotating the rollers, different kinds of thin films are deposited thereon in the same way after the cleaning light sources 5, 5' clean the substrate 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多層薄膜構造、たとえば超格子構造を製造する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for producing multilayer thin film structures, such as superlattice structures.

[従来技術] 最近、超S膜を積層した超格子構造を有するデバイスが
、高いキャリア易動度および発光効率等の優れた物性を
有しているために注目されている。
[Prior Art] Recently, devices having a superlattice structure in which super-S films are stacked have attracted attention because they have excellent physical properties such as high carrier mobility and luminous efficiency.

結晶半導体材料を用いた超格子構造を製造する方法とし
ては、液相エピタキシ(LPE) 、気相エピタキシ(
VPE)、分子線エビタキシ(MBE)、有機金属化学
気相成長(MOCVD)および最近では原子層エピタキ
シ(ALE)等の結晶成長技術を用いられている。
Methods for manufacturing superlattice structures using crystalline semiconductor materials include liquid phase epitaxy (LPE) and vapor phase epitaxy (
Crystal growth techniques such as VPE), molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), and recently atomic layer epitaxy (ALE) have been used.

一方、アモルファス材料を用いた超格子構造を製造する
方法には、グロー放電分解法およびスバタリン、グ法等
が用いられる。アモルファス超格子は、各層間の格子整
合条件が緩和されるために。
On the other hand, methods for manufacturing a superlattice structure using an amorphous material include a glow discharge decomposition method, a subverting method, and the like. The amorphous superlattice is because the lattice matching conditions between each layer are relaxed.

設計や製造の自由度が大きくなるという利点がある。This has the advantage of increasing the degree of freedom in design and manufacturing.

[発明が解決しようとする問題点] しかしながら、アモルファス超格子をグロー放電分解法
又はスパタリング法等を用いて製造する場合、いずれの
方法も反応性ガスを切り換えることによって薄膜層を交
互に積層している。そのために、各層の界面の汚染の問
題が生じるとともに、基板の温度が高い場合には、異種
層間の不純物の拡散の問題を生じる。このために、十分
な特性を有するデバイスを製造することができなかった
[Problems to be Solved by the Invention] However, when producing an amorphous superlattice using a glow discharge decomposition method or a sputtering method, both methods require alternately stacking thin film layers by switching reactive gases. There is. This causes the problem of contamination at the interface between each layer, and when the temperature of the substrate is high, the problem of diffusion of impurities between different layers. For this reason, it has not been possible to manufacture devices with sufficient characteristics.

さらに、従来の製造装置では、超格子デバイス等の多層
薄膜構造を効率良く多量に製造することができなかった
Furthermore, conventional manufacturing equipment has not been able to efficiently manufacture large quantities of multilayer thin film structures such as superlattice devices.

[問題点を解決するための手段] 本発明による多層薄膜構造の製造装置は、2種類以上の
薄膜層が交互に積層された多層薄膜構造を基体上に製造
する装置において。
[Means for Solving the Problems] A multilayer thin film structure manufacturing apparatus according to the present invention is an apparatus for manufacturing a multilayer thin film structure in which two or more types of thin film layers are alternately laminated on a substrate.

前記基体を回動させる回動手段を設け、該基体の回動軌
道に沿って、前記2種類以上の薄膜層を各々形成する成
膜手段を相互に干渉しないように配置したことを特徴と
する。
A rotating means for rotating the base is provided, and film forming means for forming each of the two or more types of thin film layers are arranged along the rotation trajectory of the base so as not to interfere with each other. .

[作用、] このように基体を回動させて順に薄膜を堆積させること
で、多層薄膜構造を容易に大量製造することができる。
[Function] By rotating the base body and depositing thin films in sequence in this manner, a multilayer thin film structure can be easily mass-produced.

また一つの成膜手段には一種類の原料源が供給されるだ
けであるために、汚染の少ない良好な界面を得ることが
できる。また、光化学反応を用いれば、低温で薄膜を形
成でき、膜質が向上する。
Furthermore, since only one type of raw material source is supplied to one film forming means, a good interface with less contamination can be obtained. Furthermore, if a photochemical reaction is used, a thin film can be formed at a low temperature and the film quality will be improved.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(^)は、本発明による多層薄膜構造の製造装置
の一実施例の概略的断面図であり、第1図(B)は、そ
のX−Y線断面図である。
FIG. 1(^) is a schematic cross-sectional view of an embodiment of a multilayer thin film structure manufacturing apparatus according to the present invention, and FIG. 1(B) is a cross-sectional view taken along the line X-Y.

同図において1反応容器l内には、エンドレスのフレキ
シブル基板2が配置されローラ3および3 ′によって
一定方向に一定速度の回動が与えられる。フレキシブル
基板2には、金属箔、マイラ、樹脂フィルム等が用いら
れるが、本実施例では厚さ20G#Lmのポリイミドフ
ィルムを用いた。
In the figure, an endless flexible substrate 2 is arranged in one reaction vessel 1, and is rotated at a constant speed in a constant direction by rollers 3 and 3'. Metal foil, Mylar, resin film, etc. are used for the flexible substrate 2, but in this example, a polyimide film with a thickness of 20 G#Lm was used.

また、反応容器l内には光化学反応用の光源4および4
′が二箇所に設けられている。
In addition, light sources 4 and 4 for photochemical reactions are provided in the reaction vessel l.
' are provided in two places.

ローラ3および3′が設置されている室には光クリーニ
ング用光源5および5′が設けられ、一種類の薄膜が形
成されたフレキシブル基板2のクリーニングを行う、ク
リーニング用光源としては、加熱を兼ねてハロゲンラン
プを用いてもよいし、光クリーニングを行う場合は低圧
水銀灯等の紫外光源でもよい、また、テンション用のロ
ーラ8によってフレキシブル基板2に張力が与えられ、
光化学反応が生起する部分で平に維持される。
Light sources 5 and 5' for optical cleaning are provided in the chamber in which the rollers 3 and 3' are installed, and the light sources for cleaning the flexible substrate 2 on which one type of thin film is formed also serve as a heating source. A halogen lamp may be used for optical cleaning, or an ultraviolet light source such as a low-pressure mercury lamp may be used for optical cleaning.Furthermore, tension is applied to the flexible substrate 2 by a tension roller 8,
It remains flat in the area where photochemical reactions occur.

また、反応容器lには、各種薄膜を形成するための反応
性ガスを導入するノズルBおよび6′が設けられ、各反
応性ガスはフレキシブル基板2上に供給され排気ロアお
よび7′から排気される。
Further, the reaction vessel L is provided with nozzles B and 6' for introducing reactive gases for forming various thin films, and each reactive gas is supplied onto the flexible substrate 2 and exhausted from the exhaust lower and 7'. Ru.

七の際、各反応性ガスは仕切板8によって混合すること
なく、個別に光化学反応が生起する。
At the time of step 7, each reactive gas is not mixed by the partition plate 8, and photochemical reactions occur individually.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

tf、エンドレスのフレキシブル基板2をローラ3およ
び3′にかけ、テンション用ローラ8および8′を調節
して図示するようにセットする。
tf, the endless flexible substrate 2 is placed on the rollers 3 and 3', and the tension rollers 8 and 8' are adjusted and set as shown.

次に、反応容器l内を排気して10−7丁orrとし、
クリーニング用光源5および5′によってフレキシブル
基板2をクリーニングする。
Next, the inside of the reaction vessel l was evacuated to 10-7 orr,
The flexible substrate 2 is cleaned by the cleaning light sources 5 and 5'.

次に、ノズル8および6′から各反応性ガスが反応室r
Al内に所望の流量で導入され、光源4又は4′からの
光によって光化学反応が生起してフレキシブル基板2上
に各々別種の薄膜が堆績する。この時、フレキシブル基
板2を適当な速度で回動させることで、所望の膜厚を得
ることができる。続いて、薄膜が形成された部分は回動
に伴なって移動し、クリーニング用光源5又は5′によ
ってクリーニングされた後、その上にそれぞれ別種の薄
膜が同様に堆積する。このようにして、フレキシブル基
板2が回動することで、順次2種類の薄膜が積層され、
超格子構造が大面積で容易に形成される。その際、異な
る種類の反応性ガスを入れ代える必要がないために、積
層される薄膜間の界面の汚染は大幅に軽減される。
Next, each reactive gas is injected into the reaction chamber r from nozzles 8 and 6'.
It is introduced into Al at a desired flow rate, and a photochemical reaction occurs due to the light from the light source 4 or 4', thereby depositing different types of thin films on the flexible substrate 2. At this time, a desired film thickness can be obtained by rotating the flexible substrate 2 at an appropriate speed. Subsequently, the portion on which the thin film has been formed moves as it rotates, and after being cleaned by the cleaning light source 5 or 5', a different type of thin film is similarly deposited thereon. In this way, by rotating the flexible substrate 2, two types of thin films are sequentially laminated.
Superlattice structures are easily formed over large areas. At this time, since there is no need to replace different types of reactive gases, contamination of the interface between the laminated thin films is significantly reduced.

第2図は、本実施例によって製造された超格子構造の模
式的断面図である。
FIG. 2 is a schematic cross-sectional view of the superlattice structure manufactured according to this example.

ここでは、フレキシブル基板2の回動速度を0.2cm
 /winとして動作させ、 a−8iC:Hの薄膜層
Slを70人、a−Si:Hの薄膜fis2を100人
堆積し、100層はど積層した。
Here, the rotation speed of the flexible substrate 2 is set to 0.2 cm.
/win, 70 people deposited a-8iC:H thin film layer Sl and 100 a-Si:H thin film fis2, and 100 layers were laminated.

また、1丁0を蒸着したポリイミドフィルム上に上記超
格子構造を形成してEL素子を製造すると、発光強度の
強い優れた発光特性を示した。
In addition, when an EL device was manufactured by forming the above superlattice structure on a polyimide film on which 1-cho-0 was deposited, excellent light-emitting characteristics with high emission intensity were exhibited.

また1本実施例では、2種類の薄膜を形成する場合を示
したが、3種類以上の薄膜を形成する場合であっても、
同じ種類数の反応性ガスを用い、上記成膜手段を互いに
干渉しないように配置することで、本実施例と同様のプ
ロセスにて超格子構造等の多層薄膜構造を形成できる。
In addition, although this embodiment shows the case where two types of thin films are formed, even when three or more types of thin films are formed,
By using the same number of reactive gases and arranging the film forming means so as not to interfere with each other, a multilayer thin film structure such as a superlattice structure can be formed by the same process as in this embodiment.

なお、本実施例ではフレキシブル基板上に超格子を形成
したが、第3図に示すようにベル)1Gをローラ3およ
び3′にかけ、その上に固い基板11を接着してもよい
In this embodiment, a superlattice is formed on a flexible substrate, but as shown in FIG. 3, a bell) 1G may be applied to rollers 3 and 3', and a hard substrate 11 may be adhered thereon.

[発明の効果] 以上詳細に説明したように、本発明による多層薄膜構造
の製造装置は、超格子構造等の多層薄膜構造を迅速に、
且つ大量に製造することができる。
[Effects of the Invention] As explained in detail above, the multilayer thin film structure manufacturing apparatus according to the present invention can quickly produce a multilayer thin film structure such as a superlattice structure.
Moreover, it can be manufactured in large quantities.

また、薄膜を形成するための原料源が種類ごとに別個で
あるために、界面の汚染が少ない良好な多層薄膜を製造
することができる。
Moreover, since the raw material sources for forming the thin film are different for each type, it is possible to produce a good multilayer thin film with less contamination at the interface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は1本発明による多層薄膜構造の製造?t
Mの一実施例の概略的断面図、第1図(B)は、そのX
−Y線断面図、 第2図は1本実施例によって製造された超格子構造の模
式的断面図。 第3図は1本発明の他の実施例の部分拡大図である。 l@e・反応容器  2・・・フレキシブル基板4およ
び4′・・・光化学反応用光源 6および6′・・拳ノズル 11・・・固い基板S1.
52−−・薄膜層 代理人  弁理士 山 下 積 平 部2図 第3図
FIG. 1(A) shows the production of a multilayer thin film structure according to the present invention. t
A schematic cross-sectional view of one embodiment of M, FIG.
FIG. 2 is a schematic cross-sectional view of a superlattice structure manufactured according to this example. FIG. 3 is a partially enlarged view of another embodiment of the present invention. l@e・Reaction container 2...Flexible substrate 4 and 4'...Light source for photochemical reaction 6 and 6'...Fist nozzle 11...Hard substrate S1.
52--Thin layer agent Patent attorney Tsumi Yamashita Figure 2, Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)2種類以上の薄膜層が交互に積層された多層薄膜
構造を基体上に製造する装置において、前記基体を回動
させる回動手段を設け、 該基体の回動軌道に沿って、前記2種類以上の薄膜層を
各々形成する成膜手段を相互に干渉しないように配置し
たことを特徴とする多層薄膜構造の製造装置。
(1) In an apparatus for manufacturing a multilayer thin film structure in which two or more types of thin film layers are alternately laminated on a substrate, a rotation means for rotating the substrate is provided, and the rotation means for rotating the substrate is provided, and the A manufacturing apparatus for a multilayer thin film structure, characterized in that film forming means for forming two or more types of thin film layers are arranged so as not to interfere with each other.
(2)上記成膜手段は、原料ガスの光化学反応により上
記基体上に薄膜を堆積することを特徴とする特許請求の
範囲第1項記載の多層薄膜構造の製造装置。
(2) The apparatus for producing a multilayer thin film structure according to claim 1, wherein the film forming means deposits the thin film on the substrate by a photochemical reaction of a raw material gas.
JP60062091A 1985-03-28 1985-03-28 Apparatus for manufacturing multilayer thin film structure Pending JPS61222220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062091A JPS61222220A (en) 1985-03-28 1985-03-28 Apparatus for manufacturing multilayer thin film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062091A JPS61222220A (en) 1985-03-28 1985-03-28 Apparatus for manufacturing multilayer thin film structure

Publications (1)

Publication Number Publication Date
JPS61222220A true JPS61222220A (en) 1986-10-02

Family

ID=13190034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062091A Pending JPS61222220A (en) 1985-03-28 1985-03-28 Apparatus for manufacturing multilayer thin film structure

Country Status (1)

Country Link
JP (1) JPS61222220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933300A (en) * 1987-02-12 1990-06-12 Hideomi Koinuma Process for forming multilayer thin film
JP2020191781A (en) * 2014-07-23 2020-11-26 デイヴィッド ハイランド System and method for collection and distribution of space-based solar energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933300A (en) * 1987-02-12 1990-06-12 Hideomi Koinuma Process for forming multilayer thin film
JP2020191781A (en) * 2014-07-23 2020-11-26 デイヴィッド ハイランド System and method for collection and distribution of space-based solar energy

Similar Documents

Publication Publication Date Title
US7887884B2 (en) Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
WO2000044033A1 (en) Method and apparatus for film deposition
JP2001328900A (en) Method for forming thin film
JPS62152171A (en) Thin-film transistor
JPS61222220A (en) Apparatus for manufacturing multilayer thin film structure
JP3592055B2 (en) Organic light emitting device
JP2882605B2 (en) Continuous growth method of strained layer superlattice structure
JP3467988B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JPH02431B2 (en)
JP2006134825A (en) Device for manufacturing organic el element
JPH0472608A (en) Manufacturing process and device compound semiconductor wafer
JP5733507B2 (en) Deposition method
JPS61222219A (en) Manufacture of multilayer thin film structure
JP2639616B2 (en) Semiconductor film formation method
JP2614096B2 (en) EL device
JP2629773B2 (en) Method of forming multilayer thin film
JPS6150149B2 (en)
JPH0452994Y2 (en)
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPH01730A (en) Method of forming multilayer thin film
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JPH05247655A (en) Deposited film forming device
JP3010066B2 (en) Optical excitation process equipment
JPH079829B2 (en) Method and apparatus for manufacturing thin film EL element
JPH0424432B2 (en)