JPS61221722A - Lighting system using rectangular luminous flux - Google Patents

Lighting system using rectangular luminous flux

Info

Publication number
JPS61221722A
JPS61221722A JP6278085A JP6278085A JPS61221722A JP S61221722 A JPS61221722 A JP S61221722A JP 6278085 A JP6278085 A JP 6278085A JP 6278085 A JP6278085 A JP 6278085A JP S61221722 A JPS61221722 A JP S61221722A
Authority
JP
Japan
Prior art keywords
luminous flux
section
rectangular
light beam
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6278085A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6278085A priority Critical patent/JPS61221722A/en
Publication of JPS61221722A publication Critical patent/JPS61221722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To utilize luminous flux effectively by guiding rectangular luminous flux emitted by a light source to a lighting system through an optical conversion system which is different in the conversion ratio of luminous flux shape size on a section containing the optical axis and a section perpendicular to it, and irradiating an object surface. CONSTITUTION:When the focal lengths of the 1st and the 2nd lenses are denoted as f1 and f2 and the interval between their principal points if denoted as l, an arrangement is so made that f1+f2 is nearly equal to l. The luminous flux from an excimer laser 1 is in such a shape that its size is (b) in the direction of a section H and (a) (>b) in the direction of a section V perpendicular to the section H. At this time, when the luminous flux is diverged by the 1st lens 21 in the direction of the section H and travels by the distance l, the refracting power and distance l of the 1st lens 21 are so set that the luminous flux size in the section H is the luminous flux size (a) of the section V. Then, the luminous flux is shaped to the luminous flux size (a) in the section H and then converged by the 2nd lens L and the luminous flux sizes in the sections H and V are both (a), so that parallel luminous flux is projected. At this time, the refracting power values of the 1st and the 2nd lenses are so set that af1+bf2=0 holds.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は矩形状光束を用いた照明系に関し、特に光源と
して矩形状光束を発振するエキシマレーザ−を用い電子
回路等のパターンが形成されているマスクパターンをウ
ェハ面上へ転写露光する際に好適な光束の□有効利用を
図った矩形状光束を用いた照明系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an illumination system using a rectangular light beam, and in particular, the present invention relates to an illumination system that uses a rectangular light beam, and in particular an excimer laser that oscillates a rectangular light beam as a light source to form a pattern of an electronic circuit or the like. The present invention relates to an illumination system using a rectangular light beam, which is designed to make effective use of a suitable light beam when transferring and exposing a mask pattern onto a wafer surface.

(従来の技術) 最近の半導体製造技術には電子回路の高集積化に伴い、
高密度の回路パターンが形成可能のりソグラフイ技術が
要求されている。
(Conventional technology) Recent semiconductor manufacturing technology includes high integration of electronic circuits.
There is a need for a lithographic technique that can form high-density circuit patterns.

一般に、マスク又はレチクル面上の回路パターンを投影
光学系を介してウェハ面上に転写する場合、ウェハ面上
に転写される回路パターンの解像線幅は光源の波長に比
例してくる。又、コンタクト/プロキシシティ方式の場
合は波長の平方根に比例する。この為、波長200〜3
00 nInの遠紫外(ディープUV領域)の短い波長
を発振する例えば高圧水銀灯やキセノン水銀ランプ等が
用いられている。
Generally, when a circuit pattern on a mask or reticle surface is transferred onto a wafer surface via a projection optical system, the resolved line width of the circuit pattern transferred onto the wafer surface is proportional to the wavelength of the light source. Further, in the case of the contact/proxycity method, it is proportional to the square root of the wavelength. For this reason, the wavelength is 200~3
For example, a high-pressure mercury lamp, a xenon mercury lamp, or the like, which oscillates a short wavelength of 00 nIn in the far ultraviolet (deep UV region), is used.

しかしながら、これらの光源は低輝度で指向性もなくし
かもウェハ面上に塗布するフォトレジストの感光性も低
い為、露光時間が長くなりスループットを低下させる原
因となっていた。
However, these light sources have low brightness and no directivity, and the photoresist coated on the wafer surface has low photosensitivity, resulting in long exposure times and reduced throughput.

一方、最近エキシマ(excimer )レーザーとい
うディープUV領域に発振波長を有する光源が開発され
、その高輝度性、単色性、指向性等の良さからりソグラ
フィ技術として有効である旨が種々報告されている。
On the other hand, recently, a light source called an excimer laser, which has an oscillation wavelength in the deep UV region, has been developed, and various reports have shown that it is effective as a lithography technology due to its high brightness, monochromaticity, and directivity. .

このエキシマレーザ−の多くは、その励起方式が横放電
励起方式でありレーザー発振管内の両側面に放電電極が
配置されている為、発振するレーザー光束の断面形状は
長方形若しくはそれに近い矩形状となっている。一般に
、弧形状光束を発振する光源を用いて照明系を構成する
場合、多くの照明光学系が回転対称に構成されている為
、光束形状を円形若しくは正方形等に整形した状態で使
用しないと全ての光束を有効利用することができない。
Most of these excimer lasers use a transverse discharge excitation method, and discharge electrodes are arranged on both sides of the laser oscillation tube, so the cross-sectional shape of the oscillated laser beam is rectangular or nearly rectangular. ing. Generally, when constructing an illumination system using a light source that oscillates an arc-shaped luminous flux, many illumination optical systems are configured rotationally symmetrically, so unless the luminous flux is used with a circular or square shape, it will not work. cannot make effective use of the luminous flux.

半導体製造用のステップアントリビード方式やコンタク
ト/プロキシシティ方式等を採用する露光装置の照明系
においては、回路パターンの1チツプの形状やマスクパ
ターンの均一照明の必要性から使用する光束形状は円形
若しくは正方形であることが望ましい。
In the illumination system of exposure equipment that uses the step-and-rebead method or contact/proxy method for semiconductor manufacturing, the shape of the light flux used is circular due to the shape of one chip of the circuit pattern and the need for uniform illumination of the mask pattern. Alternatively, it is desirable that the shape be square.

特に、矩形状光束を発振するエキシマレーザ−を露光装
置の照明系の光源として用いた場合、光束形状の整形を
行なわないとエキシマレーザ−の有する高輝度性、指向
性等の特徴が十分発揮されなくなってしまう。
In particular, when an excimer laser that emits a rectangular beam is used as a light source in the illumination system of an exposure device, the characteristics of the excimer laser, such as high brightness and directivity, cannot be fully utilized unless the beam shape is shaped. It's gone.

(本発明の目的) 本発明は、矩形状光束を発振する光源からの光束を有効
利用することのできる矩形状光束を用いた照明系の提供
を目的とする。
(Objective of the Present Invention) An object of the present invention is to provide an illumination system using a rectangular light beam that can effectively utilize a light beam from a light source that oscillates a rectangular light beam.

本発明の更なる目的は、矩形状光束を発振する例えばエ
キシマレーザ−等の光源を半導体製造用の露光装置に用
い、マスクパターンを均一照明すると共にマスクとウェ
ハとの整合を高整度に行うことのできる裸形状光束を用
いた照明系の提供にある。
A further object of the present invention is to use a light source such as an excimer laser that oscillates a rectangular light beam in an exposure apparatus for semiconductor manufacturing to uniformly illuminate a mask pattern and align the mask and wafer with high accuracy. An object of the present invention is to provide an illumination system using a bare-shaped luminous flux that can be used.

(本発明の主たる特徴) 光源から放射された像形状光束を光軸を含む断面りと前
記断面りと垂直な断面Hとで光束形状寸法の変換比を異
にする変換光学系を介した後照明系に導光し、被照射面
の照明を行ったことである。
(Main feature of the present invention) After the image-shaped light beam emitted from the light source is passed through a conversion optical system that changes the conversion ratio of the shape and dimension of the light beam between a cross section including the optical axis and a cross section H perpendicular to the cross section. The light was guided to the illumination system and the illuminated surface was illuminated.

この他の本発明の特徴は、実施例において記載されてい
る。
Other features of the invention are described in the Examples.

(実施例) 第1図は、本発明を半導体製造用の露光装置に適用した
ときの一実施例の光学系の概略図である。
(Embodiment) FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to an exposure apparatus for semiconductor manufacturing.

同図において、1はエキシマレーザ−であり、エキシマ
レーザ−1からの矩形状光束の一部を光束分割手段2に
より2光束に分割する。このうち、光束分割手段2で反
射した像形状光束は変換光学系17により光束形状寸法
が例えば縦横同じ寸法となるように変換された後照明糸
6によりマスクパターン4を照明する。これにより、マ
スクパターン4の均一照明を行っている。マスクパター
ン4は投影系5によりウェハ6面上へ投影されている。
In the figure, reference numeral 1 denotes an excimer laser, and a part of a rectangular beam from the excimer laser 1 is divided into two beams by a beam splitting means 2. Among these, the image-shaped light beam reflected by the light beam splitting means 2 is converted by the conversion optical system 17 so that the shape and dimensions of the light beam are, for example, the same in length and width, and then illuminates the mask pattern 4 by the illumination thread 6. Thereby, uniform illumination of the mask pattern 4 is performed. Mask pattern 4 is projected onto wafer 6 by projection system 5 .

照明系3は必要に応じて、ライトインテグレータ等の空
間的に光量の均一性を図る為の手段や可干渉性の低下を
図るインコヒーレント化手段等を有している。
The illumination system 3 includes a light integrator or other means for spatially uniformizing the amount of light, an incoherent means for reducing coherence, etc., as necessary.

一方、光束分割手段2を通過した像形状光束は反射鏡8
で反射し、半透過鏡92反射鏡1oを介しアライメント
光学系11によりマスクパターン4面上に設けられてい
るマスク用アライメントマークを照射する。マスク用ア
ライメントマークは、投影系5によりウェハ6面上に設
けられているウェハ用アライメントマーク近傍に投影さ
れている。
On the other hand, the image-shaped light beam that has passed through the light beam splitting means 2 is reflected by a reflecting mirror 8.
The light is reflected by the alignment optical system 11 through the semi-transmissive mirror 92 and the reflecting mirror 1o, and irradiates the mask alignment mark provided on the mask pattern 4 surface. The mask alignment mark is projected by the projection system 5 near the wafer alignment mark provided on the surface of the wafer 6 .

そして、ウェハ面に投影されたマスク用アライメントマ
ークとウェハ用アライメントマークの双方のアライメン
トマークの相対的位置関係を検出手段14により検出す
ることにより、マスクパターン4とウェハ6との整合を
行っている。このときのマスク用アライメントマークと
ウェハ用アライメントマークとの整合は、原理的に既に
本出願人が特開昭53−135654号公報で提案して
いる方法が使用可能である。
The mask pattern 4 and the wafer 6 are aligned by detecting the relative positional relationship between the mask alignment mark and the wafer alignment mark projected onto the wafer surface by the detection means 14. . To align the mask alignment mark and the wafer alignment mark at this time, in principle, it is possible to use the method already proposed by the present applicant in Japanese Unexamined Patent Publication No. 135654/1983.

即チ、ウェハ6面上のマスク用アライメントマークとウ
ェハ用アライメントマークの双方を不図示の走査手段に
より党形状光束で光学的に走査し、正反射光を投影系5
.アライメント光学系11゜半透過鏡9を介した後スト
ッパー12で遮光し、双方のアライメントマークのエツ
ジから生ずる散乱光及び回折光のみを集光レンズ16で
集光し検出手段14により検出する。そして、検出手段
14からの出力信号に基づいて双方のアライメントマー
クの相対的位置関係を演算手段15により求め、駆動手
段16によりウェハ6を載置しているXYステージ7を
駆動させてマスクパターン4とウェハ6との整合を行っ
ている。
That is, both the mask alignment mark and the wafer alignment mark on the wafer 6 surface are optically scanned with a party-shaped light beam by a scanning means (not shown), and the specularly reflected light is sent to the projection system 5.
.. The alignment optical system 11 is blocked by a stopper 12 after passing through the semi-transmissive mirror 9, and only the scattered light and diffracted light generated from the edges of both alignment marks are collected by the condensing lens 16 and detected by the detection means 14. Then, based on the output signal from the detection means 14, the relative positional relationship between both alignment marks is determined by the calculation means 15, and the drive means 16 drives the XY stage 7 on which the wafer 6 is placed to form the mask pattern 4. The wafer 6 is aligned with the wafer 6.

このように、本実施例ではエキシマレーザ−1からの矩
形状光束でアライメントマークを照射し、アライメント
マークのエツジからの散乱光及び回折光を検出している
のでS/N比が向上し高精度の整合が可能となる。
In this way, in this embodiment, the alignment mark is irradiated with a rectangular light beam from the excimer laser 1, and the scattered light and diffracted light from the edges of the alignment mark are detected, so the S/N ratio is improved and high precision is achieved. It becomes possible to harmonize the following.

第2図(4)、 (B) 、 (C)は、各々第1図の
変換光学系17の一実施例の説明図である。同図(4)
は斜視図、同図の)は側面図、同図((i)は平面図で
ある。第2図(4)。
FIGS. 2(4), 2(B), and 2(C) are explanatory views of one embodiment of the conversion optical system 17 shown in FIG. 1, respectively. Same figure (4)
is a perspective view, ) is a side view, and ((i) is a plan view. FIG. 2(4)).

CB)、(0)において、21はシリンドリカル状の発
散性の第ルンズ、22は同じくシリンドリカル状の収斂
性の第2レンズで双方共に光軸を含む断面H即ちメリデ
イオナル断面内(第2図CB)の側面図における断面内
)にのみ屈折力を有するように配置されている。そして
、第1.第2レンズの焦点距離を各々八、f2、第ルン
ズと第2レンズとの主点間隔をlとすると略11+h−
1となるように配置されている。いま、エキシマレーザ
−1の光束形状が第2図(6)t (B) 、 (C)
に示す如く、断面H方向でb1断面Hと直交する断面V
″pa (但しa ) b )の寸法の矩形状であった
とする。このとき、第2図(J3)に示す如く、第ルン
ズ21により光束を断面H方向に発散させ距離!進んだ
とき、断面H内の光束寸法が断面Vでの光束寸法と同様
のaとなるように第ルンズ21の屈折力と距離lを設定
している。そして、断面Hの光束寸法をaとしだ後第2
レンズ22によって収斂させ、断面Hと断面Vとの光束
寸法を共にaとし、平行光束として射出させている。こ
のとき、af1+bf2−0なる関係を略満足するよう
に第1.第2レンズの屈折力が設定されている。尚、本
実施例において、前述の2式を完全に満足していなくて
も、本発明の目的を達成することができる。
CB), (0), 21 is a cylindrical divergent lens, 22 is a cylindrical convergent second lens, and both are within the cross section H that includes the optical axis, that is, the meridional cross section (Figure 2 CB) (in a cross section in a side view). And the first. If the focal length of the second lens is 8, f2, and the distance between the principal points of the second lens and the second lens is l, approximately 11+h-
1. Now, the shape of the light flux of excimer laser 1 is shown in Figure 2 (6) t (B), (C)
As shown in , a cross section V perpendicular to b1 cross section H in the cross section H direction
Assume that it has a rectangular shape with the dimensions of ``pa (a) b).At this time, as shown in FIG. The refractive power and distance l of the second lunches 21 are set so that the luminous flux dimension in section H is a, which is the same as the luminous flux dimension in section V.Then, after setting the luminous flux dimension in section H to a,
The light is converged by the lens 22, the light beam dimensions of both the cross sections H and V are set to a, and the light beams are emitted as parallel light beams. At this time, the first . The refractive power of the second lens is set. In this embodiment, the object of the present invention can be achieved even if the above two equations are not completely satisfied.

本実施例においては、第2図(C)に示す如く、第1゜
第2レンズはいずれも断面■方向に屈折力を有していな
い為、光束寸法aは不変である。
In this embodiment, as shown in FIG. 2(C), since none of the 1° and 2nd lenses has refractive power in the cross-sectional direction 2, the luminous flux dimension a remains unchanged.

このように、本実施例においては変換光学系を構成する
各レンズのパラメーターを適当に選ぶことにより、矩形
状光束を任意の光束形状にして照明系へ導光させること
ができる。
As described above, in this embodiment, by appropriately selecting the parameters of each lens constituting the conversion optical system, a rectangular light beam can be shaped into an arbitrary light beam shape and guided to the illumination system.

本実施例における変換光学系としては、シリンドリカル
レンズの他にトーリックレンズを用いても良く、これに
よれば1つのレンズで縦横比の光束寸法変換ができる。
As the conversion optical system in this embodiment, a toric lens may be used in addition to a cylindrical lens, and with this, a single lens can convert the beam size of the aspect ratio.

又、矩形状光束を光学次を介l、v−齢に対17て傾い
た状態で使用し光束形状を変えても良く、更には光学系
を偏心させ水平方向と垂直方向で光束の使用状態を異な
らしめて光束形状を変えても良い。
Furthermore, the shape of the rectangular beam may be changed by using the rectangular beam at an angle of 17 relative to the optical axis, or the optical system may be decentered to change the state of use of the beam in the horizontal and vertical directions. The shape of the luminous flux may be changed by making the values different.

尚、本発明は、マスクとウェハを密着させ転写露光する
所謂フンタクト方式や、マスクとウェハを僅かの間隔を
隔てて配置し転写露光する所謂プロキシミテイ方式の露
光装置にも適用することができる。又、光源としてエキ
シマレーザ−に限らず矩形状光束を放射する光源であれ
ば、どのような光源であっても使用することができる。
The present invention can also be applied to exposure apparatuses of the so-called hand-touch method, in which a mask and a wafer are placed in close contact with each other for transfer exposure, and to the so-called proximity method, in which a mask and a wafer are arranged with a slight distance from each other for transfer exposure. Further, the light source is not limited to an excimer laser, but any light source that emits a rectangular light beam can be used.

(本発明の効果) 本発明によれば、矩形状光束を放射する光源からの光束
を任意の光束形状に変換することができ光束の有効利用
を図った照明系を達成することができる。特に、半導体
製造用の露光装置に光源としてグE形状光束を発振する
エキシマレーザ−を用いマスクとウェハの整合用に棹形
状光束を用い、照明系には光束形状を略正方形に変換さ
せた光束を用いるようにすれば、マスクの均一照明が可
能でしかも高精度の整合が可能となりエキシマレ−ザー
の高輝度性、高指向性等の特徴を発揮させた照明系を達
成することができる。
(Effects of the Present Invention) According to the present invention, it is possible to convert a light beam from a light source that emits a rectangular light beam into an arbitrary light beam shape, and to achieve an illumination system that effectively utilizes the light beam. In particular, exposure equipment for semiconductor manufacturing uses an excimer laser that oscillates a G-E-shaped beam as a light source, uses a rod-shaped beam for aligning the mask and wafer, and uses a beam whose beam shape is converted into an approximately square beam for the illumination system. By using this, it is possible to uniformly illuminate the mask, and also to achieve highly accurate alignment, making it possible to achieve an illumination system that takes advantage of the features of excimer lasers, such as high brightness and high directivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を半導体製造用の露光装置に適用したと
きの一実施例の概略図、第2図(4)、(B)。 (0)は各々本発明に係る変換光学系の説明図である。 図中、1はエキシマレーザ−12は光束分割手段、6は
照明系、4はマスク、5は投影系、6はウェハ、17は
変換光学系、21.22は各々シリンドリカルレンズで
ある。
FIG. 1 is a schematic diagram of an embodiment in which the present invention is applied to an exposure apparatus for semiconductor manufacturing, and FIG. 2 (4) and (B). (0) is an explanatory diagram of a conversion optical system according to the present invention. In the figure, 1 is an excimer laser, 12 is a beam splitting means, 6 is an illumination system, 4 is a mask, 5 is a projection system, 6 is a wafer, 17 is a conversion optical system, and 21 and 22 are cylindrical lenses.

Claims (4)

【特許請求の範囲】[Claims] (1)光源から放射された矩形状光束を光軸を含む断面
Lと前記断面Lに垂直な断面Hとで光束形状寸法の変換
比を異にする変換光学系を介した後照明系に導光し、被
照射面の照明を行つたことを特徴とする矩形状光束を用
いた照明系。
(1) A rectangular light beam emitted from a light source is guided to the illumination system through a conversion optical system that changes the conversion ratio of the shape and dimension of the light beam between a cross section L including the optical axis and a cross section H perpendicular to the cross section L. An illumination system using a rectangular light beam, characterized in that it emits light and illuminates an irradiated surface.
(2)前記変換光学系は入射する矩形状光束を前記断面
Lと前記断面Hとで射出光束において略同じ寸法の光束
形状となるように変換させていることを特徴とする特許
請求の範囲第1項記載の矩形状光束を用いた照明系。
(2) The conversion optical system converts the incident rectangular light beam so that the outgoing light beam has substantially the same dimensions at the cross section L and the cross section H. An illumination system using the rectangular light beam according to item 1.
(3)前記光源はエキシマレーザーであることを特徴と
する特許請求の範囲第1項記載の矩形状光束を用いた照
明系。
(3) An illumination system using a rectangular light beam according to claim 1, wherein the light source is an excimer laser.
(4)前記光源に矩形状光束を発振するエキシマレーザ
ーを用い、前記エキシマレーザーからの矩形状光束を光
分割手段により少なくとも2つの光束に分割し、そのう
ち一方の矩形状光束を前記変換光学系に導光し、他方の
矩形状光束を矩形状の状態で前記被照射面に導光したこ
とを特徴とする特許請求の範囲第3項記載の矩形状光束
を用いた照明系。
(4) An excimer laser that emits a rectangular beam is used as the light source, the rectangular beam from the excimer laser is split into at least two beams by a light splitting means, and one of the rectangular beams is sent to the conversion optical system. 4. An illumination system using a rectangular light beam according to claim 3, wherein the other rectangular light beam is guided to the illuminated surface in a rectangular state.
JP6278085A 1985-03-27 1985-03-27 Lighting system using rectangular luminous flux Pending JPS61221722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6278085A JPS61221722A (en) 1985-03-27 1985-03-27 Lighting system using rectangular luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6278085A JPS61221722A (en) 1985-03-27 1985-03-27 Lighting system using rectangular luminous flux

Publications (1)

Publication Number Publication Date
JPS61221722A true JPS61221722A (en) 1986-10-02

Family

ID=13210217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6278085A Pending JPS61221722A (en) 1985-03-27 1985-03-27 Lighting system using rectangular luminous flux

Country Status (1)

Country Link
JP (1) JPS61221722A (en)

Similar Documents

Publication Publication Date Title
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
KR930002513B1 (en) Lighting method and apparatus the before and projection type exposure method and there apparatus
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
JP2704001B2 (en) Position detection device
US7148973B2 (en) Position detecting method and apparatus, exposure apparatus and device manufacturing method
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3102076B2 (en) Illumination device and projection exposure apparatus using the same
TW200305928A (en) Exposure apparatus and method
JP3428055B2 (en) Illumination optical device, exposure apparatus, semiconductor manufacturing method and exposure method
US5359388A (en) Microlithographic projection system
JP3517573B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPH01114035A (en) Aligner
JP2007142084A (en) Exposure method and manufacturing method of device
JP3392034B2 (en) Illumination device and projection exposure apparatus using the same
JPS60158449A (en) Exposing device
JPS61221722A (en) Lighting system using rectangular luminous flux
US20050270509A1 (en) Measuring apparatus, exposure apparatus having the same, and device manufacturing method
JP3415571B2 (en) Scanning exposure apparatus, exposure method, and semiconductor manufacturing method
JPS6380243A (en) Illuminating optical device for exposing device
JPS61177422A (en) Optical device reducing coherence of rays of light
JPH07135145A (en) Aligner
JPH0715875B2 (en) Exposure apparatus and method
JPH11251233A (en) Projection aligner and method and device for alignment
JPH0620925A (en) Exposure apparatus
JPS6216526A (en) Projection exposure apparatus