JPS6122106A - Gas turbine conbustor - Google Patents

Gas turbine conbustor

Info

Publication number
JPS6122106A
JPS6122106A JP14385184A JP14385184A JPS6122106A JP S6122106 A JPS6122106 A JP S6122106A JP 14385184 A JP14385184 A JP 14385184A JP 14385184 A JP14385184 A JP 14385184A JP S6122106 A JPS6122106 A JP S6122106A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
inner cylinder
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14385184A
Other languages
Japanese (ja)
Other versions
JPH0238851B2 (en
Inventor
Michio Kuroda
黒田 倫夫
Takashi Omori
隆司 大森
Yoji Ishibashi
石橋 洋二
Isao Sato
勲 佐藤
Yoshihiro Uchiyama
内山 好弘
Fumio Kato
文雄 加藤
Yorihide Segawa
瀬川 頼英
Shigeyuki Akatsu
赤津 茂行
Katsuo Wada
和田 克夫
Nobuyuki Iizuka
飯塚 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14385184A priority Critical patent/JPS6122106A/en
Priority to EP85108445A priority patent/EP0169431B1/en
Priority to CA000486578A priority patent/CA1258379A/en
Publication of JPS6122106A publication Critical patent/JPS6122106A/en
Priority to US07/144,646 priority patent/US4898001A/en
Publication of JPH0238851B2 publication Critical patent/JPH0238851B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To permit to keep a flame effectively and effect the lower NOx combustion in a combustion chamber at the head of a combustor by a method wherein fuel is injected at the position of an eddy flow area of head of the combustion chamber and after the air jetting portion from the outer wall of inner cylinder of the combustion chamber. CONSTITUTION:At first, the air 16 is introduced into the gap between an outer cylinder 1 and the inner cylinder 5 of a combustor, then, the air 10a, 11a, 12a, 13a, 14a, is introduced into a combustion chamber from the group of air leading holes which are provided at the wall surface of the inner cylinder 5, an inner cylinder cap 8 and inner cylinder cone 6. On the other hand, fuel 17 is fed to fuel injecting pipes 4a, 4b from the main body 3 of a fuel nozzle and injected into the annular combustion chamber 9 of an inner cylinder head from the nozzle 15 provided on each fuel injection pipe, then, igniting combustion is continued by the operation of a spark plug. According to this method, in the annular space forming the head combustion chamber, the fuel is injected effectively into the eddy flow and jet stream formed by the flowing air from the combustion head and annular inner cylinder side, therefore, the stable and low NOx combustion may be obtained by the combination of flame keeping under relatively lean condition and the fuel injection in the more leaned area.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器に係シ、特に窒素酸化物(
以下N Oxと称す)の低減を目的とした天然ガス焚低
NOx化燃焼器の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to gas turbine combustors, in particular nitrogen oxides (
The present invention relates to the structure of a natural gas-fired low NOx combustor for the purpose of reducing NOx (hereinafter referred to as NOx).

〔発明の背景〕[Background of the invention]

ガスタービン燃焼器におけるN Ox低減化の方法を大
別すると、水、水蒸気等を使用する湿式法と燃焼性能の
改善に基づく乾式法がある。前者は他の媒体(水、水蒸
気等)を用いるためにタービン効率を招く要因があシ、
後者の燃焼抑制法は、他の方法に比べ優位であるが、均
一低温度希薄燃焼が目的となるために、その燃焼形態は
N Ox低減化方向に対するCO発生の増大等極めて厳
しい条件下にある。
Methods for reducing NOx in gas turbine combustors can be roughly divided into wet methods that use water, steam, etc., and dry methods that are based on improving combustion performance. The former uses other media (water, steam, etc.), so there are factors that reduce turbine efficiency;
The latter combustion suppression method is superior to other methods, but because the objective is uniform low-temperature lean combustion, its combustion form is subject to extremely severe conditions such as an increase in CO generation in the direction of NOx reduction. .

一般に燃焼時のN Ox生成は、燃焼領域の局所的な高
温部(1800tZ’以上)の燃焼ガスに支配され、主
に燃料の未燃焼排出物の窒素分と燃焼空気中の窒素の酸
化等によって発生する。これ等はThermal Aと
Fuel Aと呼れ、特にThermal屋は酸素濃度
1反応時間の依存度が犬きく、これ等の現象はガス温度
にかなり影響される。したがって、燃焼過程において局
所的な高温度領域が形成されない均一低温度化(約15
00t:’以下)を実現すれば効果的な低N Ox化燃
焼が可能と彦る。
In general, NOx generation during combustion is dominated by the combustion gas in the local high temperature area (1800 tZ' or higher) of the combustion area, and is mainly caused by the nitrogen content of unburned fuel exhaust and the oxidation of nitrogen in the combustion air. Occur. These are called Thermal A and Fuel A. In particular, Thermal stores are highly dependent on oxygen concentration and reaction time, and these phenomena are considerably influenced by gas temperature. Therefore, during the combustion process, localized high temperature regions are not formed and the temperature is uniformly lowered (approximately 15
00t:' or less), effective low NOx combustion will be possible.

従来のガスタービンの低NOx化を目的とした燃焼技術
は、燃料流量に対して空気流量が比較的多く流れること
、燃焼室内への空気蓄配分がある程度自在に選定できる
こと等から、その燃焼形態は希薄拡散燃焼が最も有利で
ある。特に燃焼の際は、燃焼温度の低下と混合促進化及
びN Ox生成時間の短縮を図って、均一低温度燃焼が
主な目的となる。
Conventional combustion technology aimed at reducing NOx in gas turbines has a relatively large flow of air relative to the flow of fuel, and the air storage distribution within the combustion chamber can be selected with some degree of freedom. Lean diffusion combustion is the most advantageous. In particular, during combustion, the main objective is to achieve uniform low-temperature combustion by lowering the combustion temperature, promoting mixing, and shortening the NOx generation time.

前記燃焼形態を実現させる手段として、従来技術の一具
体例を示すと、特公昭55−20122号公報に見られ
る如く塊状形燃焼室に燃料ノズルを環状に配列して複数
個設置し、燃焼室中央部に設ける内筒コーンの先端部か
ら空気及び蒸気等を導入するよう構成されている。この
燃焼器の燃焼形態は、燃焼室内の断面方向に燃料を分散
供給することによって燃焼温度の均一化と燃焼室の後流
領域でガス温度を低下させる燃焼方法を採用している。
As a means for realizing the above-mentioned combustion mode, a specific example of the conventional technology is shown in Japanese Patent Publication No. 55-20122, in which a plurality of fuel nozzles are arranged in an annular manner in a block-shaped combustion chamber, and the combustion chamber is It is constructed so that air, steam, etc. are introduced from the tip of an inner cylindrical cone provided at the center. The combustion mode of this combustor employs a combustion method that uniformizes the combustion temperature and lowers the gas temperature in the wake region of the combustion chamber by dispersing and supplying fuel in the cross-sectional direction of the combustion chamber.

また、燃料ノズルの周囲に空気旋回流を主体とした保炎
器が設置されており、その保炎機構は、保炎器からの空
気旋回流によって形成される循環流領域によって保炎す
ることは公知である(特開昭57−202431 号公
報)。しかし、燃焼時においては、前記循環流領域に比
較的高温のガスを巻込んで火炎を燃料ノズル近傍に保持
し安定化を図るために低N Ox化燃焼ではかなシネ利
となる。
In addition, a flame stabilizer that mainly uses air swirling flow is installed around the fuel nozzle, and its flame stabilizing mechanism does not stabilize the flame by the circulating flow region formed by the air swirling flow from the flame stabilizer. It is publicly known (Japanese Unexamined Patent Publication No. 57-202431). However, during combustion, relatively high-temperature gas is involved in the circulating flow region to maintain the flame near the fuel nozzle and stabilize it, so low NOx combustion provides a significant advantage.

特に空気旋回羽根を有する保炎器は、その機能形体(適
用範囲:レイノルズ数几e>ios )の面から比較的
高速流(V>39m/s)の空気噴流が必要であること
。火炎が短かくなる結果として、燃料ノズル近傍で急激
な燃焼が起シ易いこと。更に保炎器直径の1〜2倍の循
環流領域内の局所高温部の保炎機構の強さが逆にN O
x生成機構の一因子となっている。したがって、従来の
保炎器を有する燃料ノズルのマルチ化を図っても大巾な
低N Ox化を達成することは望めない。特に鮨Ox化
を燃焼では、低N Ox化に有利な保炎機構が不可決で
あり保炎の特性によって燃焼形態を大きく左右する。本
発明は、前記諸欠点を補いより効果的な低N Ox燃焼
器に関するものである。
In particular, a flame stabilizer with air swirling vanes requires a relatively high-speed air jet (V>39 m/s) due to its functional form (applicable range: Reynolds number e>ios). As a result of the shortened flame, rapid combustion is likely to occur near the fuel nozzle. Furthermore, the strength of the flame stabilization mechanism in the locally high temperature area within the circulating flow region, which is 1 to 2 times the diameter of the flame stabilizer, is conversely
It is a factor in the x generation mechanism. Therefore, even if fuel nozzles with conventional flame stabilizers are multiplied, it is not possible to achieve a significant reduction in NOx. Particularly in the case of sushi oxygen combustion, the flame holding mechanism that is advantageous for reducing NOx is not reliable, and the combustion form is greatly influenced by the flame holding characteristics. The present invention relates to a more effective low NOx combustor that compensates for the above-mentioned drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃焼器頭部燃焼室にお^で、効果的な
保炎を行い、より低N Ox化燃焼を行うことを可能に
したガスタービン燃焼器を提供することにある。
An object of the present invention is to provide a gas turbine combustor that enables effective flame stabilization in the head combustion chamber of the combustor to achieve lower NOx combustion.

〔発明の概要〕[Summary of the invention]

一般に燃焼器内の燃焼状態を支配するのは、−次燃焼領
域であり、その基本となるのが保炎機構である。即ち、
低N Ox化燃焼を目的とした拡散燃焼の場せ、燃料ノ
ズル近傍の火炎構造は細く長く形成することによって、
低NOx化に有効な緩慢な燃焼を行うことが必要である
。特に燃焼初期時は燃料と空気との濃度場によって燃焼
形態が異なる。したがって、燃焼の過程における燃料の
濃度場条件を空気の流動に則した燃料の注入方法で火炎
の分離及び希薄側の燃焼等を可能にすれば低N Ox化
に有利な燃焼形態を作ることができる。
Generally, the combustion state within the combustor is controlled by the -order combustion region, and the basis thereof is the flame holding mechanism. That is,
In the case of diffusion combustion aimed at low NOx combustion, the flame structure near the fuel nozzle is formed long and thin.
It is necessary to perform slow combustion that is effective in reducing NOx. Especially at the beginning of combustion, the combustion form differs depending on the concentration field of fuel and air. Therefore, if the fuel injection method that matches the air flow conditions during the combustion process allows for flame separation and combustion on the lean side, it is possible to create a combustion form that is advantageous for reducing NOx. can.

本発明者等は、保炎を目的とした燃料ノズルと低N O
x化を主体とした燃料ノズルを分離して、比較的狭い燃
焼室の空間で安定した希薄燃焼を行い得ることを確認し
た。先ず燃焼器頭部中央近傍から空気を噴流させ、燃焼
室頭部外周側に渦流を形成させる。一本、燃焼室頭部近
傍の内筒外壁から燃焼室中央方向に燃焼用空気を噴流さ
せ、前記渦流を増強させる。この渦流領域に保炎を目的
とした燃料を注入する。特に渦流領域に燃料を注入する
場合、注入位置によって渦流領域への燃料濃度差が有シ
、この燃料濃度を抑制してやることによって、比較的希
薄側での保炎が可能となる。低N Ox化への燃料の注
入方法は、燃焼室内筒外壁からの空気噴流後の位置で燃
料を注入するのが効果的であり、比較的希薄側での燃焼
形態であるので、大巾な低N Ox化を図ることが可能
である。
The present inventors have developed a fuel nozzle for the purpose of flame holding and a low NO
It was confirmed that by separating the fuel nozzle that mainly uses x-fuel, it is possible to perform stable lean combustion in a relatively narrow combustion chamber space. First, air is jetted from near the center of the combustor head to form a vortex around the outer periphery of the combustion chamber head. Combustion air is jetted from the outer wall of the inner cylinder near the head of the combustion chamber toward the center of the combustion chamber to strengthen the vortex flow. Fuel is injected into this vortex region for the purpose of flame stabilization. In particular, when fuel is injected into the vortex region, there is a difference in fuel concentration in the vortex region depending on the injection position, and by suppressing this fuel concentration, flame holding on the relatively lean side becomes possible. The most effective way to inject fuel to reduce NOx is to inject the fuel at a position after the air jet from the outer wall of the cylinder in the combustion chamber, and since the combustion mode is relatively lean, it is not necessary to inject fuel over a wide range. It is possible to achieve low NOx.

したがって、前記した保炎用の燃料注入法と低N Ox
化への燃料注入法を効果的に組合せることで、安定且つ
低N Ox化燃焼を確立することが可能となる。
Therefore, the above-mentioned fuel injection method for flame holding and low NOx
By effectively combining the fuel injection method with combustion, it becomes possible to establish stable and low NOx combustion.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図に本発明の一具体的な実施例を示す。燃
焼器外筒1、エンドカバー2、燃料ノズル本体3、燃料
噴射管4、内筒5、内筒コーン6及び点火栓7で構成さ
れるガスタービン燃焼器において、内周5の頭部に内筒
キャップ8を設置し、頭部上流端より下流側に先細形状
の内筒コーン6を、前記内筒5に対応して内周側に間隙
を置いて同心状に突起させ、内筒5の頭部近傍を環状燃
焼室9を形成する。また、内筒5の頭部壁面側には第一
段目の燃焼用空気導入孔群10、その下流側に第二段目
の燃焼用空気導入孔群11と内筒冷却孔群12を設け、
前記内筒キャップ8の環状燃焼室9に対応する壁面に空
気導入孔13を環状に複数個設ける。更に内筒コーン6
の壁面にも冷却孔群14を設置する。燃料ノズル本体3
は、エンドカバー2に固定し、燃料ノズル本体3から連
なる燃料噴射管4は、前記内筒キャップ8に設けた空気
導入孔13を貫通して環状燃焼室9内に突出させる。こ
の燃料噴射管4の先端近傍には内筒5の方向と内筒コー
ン6方向へ燃料を噴射させる噴孔15が設けられておυ
、内筒キャップ8に設けた空気導入孔13は燃料噴射管
4の外壁より大きくして間隙を設けて設置する。また、
第3図に示す如く、燃料噴射管4において、長い燃料噴
射管4a、短い燃料噴射管4bを交互に組合せて、燃焼
室内への燃料を噴射する位置を変化させて構成する。例
えば、燃料の噴射する位置を第一段目の燃焼用空気導入
孔群10を基準とした場合、前記燃料噴射管4aは空気
導入孔群10より下流側、燃料噴射管4bは同−又は上
流側に燃料を噴射可能にした状態で構成する。
A specific embodiment of the present invention is shown in FIGS. 1 and 2. FIG. In a gas turbine combustor composed of a combustor outer cylinder 1, an end cover 2, a fuel nozzle main body 3, a fuel injection pipe 4, an inner cylinder 5, an inner cylinder cone 6, and a spark plug 7, an inner cylinder is installed at the head of the inner periphery 5. A cylinder cap 8 is installed, and a tapered inner cylinder cone 6 is protruded concentrically from the upstream end of the head to the downstream side with a gap on the inner circumferential side corresponding to the inner cylinder 5. An annular combustion chamber 9 is formed near the head. Further, a first stage combustion air introduction hole group 10 is provided on the head wall surface side of the inner cylinder 5, and a second stage combustion air introduction hole group 11 and an inner cylinder cooling hole group 12 are provided on the downstream side thereof. ,
A plurality of air introduction holes 13 are provided in a ring shape on the wall surface of the inner cylinder cap 8 corresponding to the annular combustion chamber 9. Furthermore, the inner cylinder cone 6
A group of cooling holes 14 is also installed on the wall surface of. Fuel nozzle body 3
is fixed to the end cover 2, and a fuel injection pipe 4 extending from the fuel nozzle body 3 passes through an air introduction hole 13 provided in the inner cylinder cap 8 and projects into the annular combustion chamber 9. A nozzle hole 15 is provided near the tip of the fuel injection pipe 4 to inject fuel toward the inner cylinder 5 and the inner cylinder cone 6.
The air introduction hole 13 provided in the inner cylinder cap 8 is larger than the outer wall of the fuel injection pipe 4 and installed with a gap provided therebetween. Also,
As shown in FIG. 3, the fuel injection pipe 4 is constructed by alternately combining long fuel injection pipes 4a and short fuel injection pipes 4b to change the position at which fuel is injected into the combustion chamber. For example, when the fuel injection position is based on the first stage combustion air introduction hole group 10, the fuel injection pipe 4a is downstream of the air introduction hole group 10, and the fuel injection pipe 4b is the same or upstream. It is configured so that fuel can be injected to the side.

次に本燃焼器の作動状況を述べる。先ず空気16を燃焼
器外筒1と内筒5の間隙に導き入れ、内筒5の壁面、内
筒キャップ8及び円筒コーン6に設けた各空気導入孔群
から空気10a、lla。
Next, we will discuss the operating status of this combustor. First, the air 16 is introduced into the gap between the combustor outer cylinder 1 and the inner cylinder 5, and the air 10a, lla is introduced from each air introduction hole group provided in the wall surface of the inner cylinder 5, the inner cylinder cap 8, and the cylindrical cone 6.

12a、13a、14aを燃焼室内に導入させる。12a, 13a, and 14a are introduced into the combustion chamber.

一方、燃料エフを燃料ノズル本体3がら燃料噴射管4a
、4b等に導き、各燃料噴射管に設けた噴孔15より内
筒頭部環状燃焼室9内に噴射し、点火栓7を作動させて
着火燃焼を継続させる。
Meanwhile, the fuel F is removed from the fuel nozzle body 3 through the fuel injection pipe 4a.
, 4b, etc., and injected into the inner cylinder head annular combustion chamber 9 from the nozzle holes 15 provided in each fuel injection pipe, and the ignition plug 7 is operated to continue ignition combustion.

この燃焼器の特徴は、頭部燃焼室を形成する環状空間部
において、燃焼頭部及び環状内筒側から流動する空気に
よって形成される渦流及び噴流中に燃料を効果的に注入
して、比較的希薄条件の基での保炎と、更に希薄化され
た領域での燃料注入の組合せで安定、且つ低N Ox化
を図るものである。
The feature of this combustor is that in the annular space forming the head combustion chamber, fuel is effectively injected into the vortex and jet stream formed by the air flowing from the combustion head and the annular inner cylinder side. The combination of flame holding under target lean conditions and fuel injection in a more diluted region achieves stability and low NOx.

第4図、第5図に本発明のポイントを示す燃焼室頭部近
傍の空気及び燃料の流動パターンの一例を示す。図中の
実線は空気流動を示し鎖線は燃料の流動状態である。
FIGS. 4 and 5 show an example of the flow pattern of air and fuel near the head of the combustion chamber, which illustrates the key points of the present invention. The solid line in the figure represents air flow, and the chain line represents fuel flow.

頭部燃焼室の円筒キャップ8に設けた空気導入孔13と
燃料噴射管4で形成される間隙を通って流入する空気は
、燃料噴射管に沿って流動し、噴流と空間部の圧力差に
よって内外方向にまき込が生じ逆流する効果、燃料噴射
管の上流側周りに比較的弱い渦流が形成する。この渦流
は燃焼室内筒5外壁からの空気噴流による逆流成分でさ
らに増強される。前記空気流動状態において、第一段目
の空気導入孔10の上流部(L□>LF)に燃料噴射管
4を介して注入した場合、渦流領域人に巻込む燃料は多
く、燃料濃度は高くなる。また、燃焼室内筒外壁に設け
た空気導入孔10を介して流動する空気噴流後(LA<
LF)に燃料噴射位置を設置した場合は、燃料噴射管上
流側に形成される渦流領域Aに流れ込む燃料は極めて少
なくなる。
Air flowing through the gap formed by the air introduction hole 13 provided in the cylindrical cap 8 of the head combustion chamber and the fuel injection pipe 4 flows along the fuel injection pipe, and is caused by the pressure difference between the jet and the space. The effect of backflow occurring in the internal and external directions, and a relatively weak vortex is formed around the upstream side of the fuel injection pipe. This vortex is further strengthened by a backflow component caused by an air jet from the outer wall of the cylinder 5 in the combustion chamber. In the air flow state, when the fuel is injected into the upstream part of the first stage air introduction hole 10 (L□>LF) through the fuel injection pipe 4, a large amount of fuel is drawn into the vortex region, and the fuel concentration is high. Become. In addition, after the air jet flowing through the air introduction hole 10 provided on the outer wall of the cylinder in the combustion chamber (LA<
When the fuel injection position is set at LF), the amount of fuel flowing into the vortex region A formed upstream of the fuel injection pipe becomes extremely small.

この渦流領域の燃料濃度差は、保炎性能及び燃焼特性に
著しく影響を及ぼすことが明らかとなった。
It has become clear that this difference in fuel concentration in the vortex region has a significant effect on flame holding performance and combustion characteristics.

第6図、第7図に燃料噴射管4の内筒キャップ8からの
突出長さLFによる保炎及び燃焼特性に関する実験結果
を示す。保炎安定性の方゛向では、燃料噴射管Lrが短
い程良好となるが、NOx発生量は増大する傾向がある
。また、燃料噴射管を長くすると低NOx化方向になる
がCo等の未燃排出量が増加し保炎安定性も低下する。
FIGS. 6 and 7 show experimental results regarding flame stabilization and combustion characteristics depending on the protrusion length LF of the fuel injection pipe 4 from the inner cylinder cap 8. In terms of flame holding stability, the shorter the fuel injection pipe Lr is, the better it is, but the amount of NOx generated tends to increase. Furthermore, if the fuel injection pipe is lengthened, NOx will be reduced, but the amount of unburned emissions such as Co will increase and flame holding stability will also decrease.

一方、本燃焼器の構造では、燃焼室を構成する内筒コー
ンの長さ、空気導入孔の位置等が燃焼特性に大きな影響
を与える他の要因となっている。
On the other hand, in the structure of this combustor, the length of the inner cone constituting the combustion chamber, the position of the air introduction hole, etc. are other factors that greatly affect the combustion characteristics.

まず、燃焼室頭部内筒キャップに設ける空気導入孔は、
燃料噴射管の周囲に複数個設けたり、燃焼室の内外方向
の位置から導入しても内部に形成される渦流領域を阻害
することなく、逆に増強する手段であれば充分に目的を
達し得る。特に本構成においては、第一段目の空気導入
孔の位置が渦流領域の大きさ強さを左右する因子となっ
ておシ、保炎性能に大きな影響を与える。第8図に燃焼
室頭部を形成する内筒キャップ部の幅LCに対する下流
側の第一段目の空気導入孔までの距離LAにおいて、燃
料噴射位置一定時の火炎の吹き消え特性を示した。適用
範囲LA/:[1c=0.6〜1.7で、L A / 
L c (0,6の場合は、保炎に寄与する渦流領域が
縮少され、特に周囲からの空気流動による混合気の希薄
化、燃焼温度の低下等によって、燃焼は不安定となり0
.5以下では着火立上げも不可能となる。また、LA/
 L c (1,7になると渦流領域が見掛上拡大され
るが、一部デットスペースが形成され、この領域が局部
高温部となるので低N Ox化の方向では不利となる。
First, the air introduction hole provided in the combustion chamber head inner cylinder cap is
Even if multiple fuel injection pipes are installed around the fuel injection pipe, or if they are introduced from the inside and outside positions of the combustion chamber, the vortex region that is formed inside the combustion chamber will not be obstructed, but on the contrary, it will be possible to achieve the purpose as long as it is a means to strengthen it. . Particularly in this configuration, the position of the first stage air introduction hole is a factor that determines the size and strength of the vortex region, and has a great influence on flame holding performance. Figure 8 shows the flame blowout characteristics when the fuel injection position is constant at the distance LA from the width LC of the inner cylinder cap forming the head of the combustion chamber to the air introduction hole of the first stage on the downstream side. . Applicable range LA/: [1c=0.6 to 1.7, LA/
L c (In the case of 0.6, the vortex region that contributes to flame stabilization is reduced, and combustion becomes unstable due to dilution of the mixture due to air flow from the surroundings, lowering of combustion temperature, etc.)
.. If it is less than 5, it will be impossible to start ignition. Also, LA/
When L c (1,7), the vortex region is apparently enlarged, but a dead space is formed in part, and this region becomes a local high temperature area, which is disadvantageous in the direction of reducing NOx.

特に本燃焼での保炎機構は、燃料噴射管の燃料噴孔近傍
に発生する火炎を周囲から流れ込む空気の流動によって
下流から上流へ巻込まれた燃焼生成物(高温ガス)によ
って燃焼を継続し、火炎の安定化に重要な役割を果して
いる。
In particular, the flame holding mechanism in main combustion continues combustion by combustion products (high temperature gas) drawn in from downstream to upstream by the flow of air flowing in from the surroundings of the flame generated near the fuel injection hole of the fuel injection pipe. It plays an important role in stabilizing the flame.

次に内筒の中央部に設置する内筒コーンと燃料噴射管の
突起部長さについて述べる。内筒コーンの役割は、内筒
コーンがない場合に比較して、燃焼室中央部に燃焼高温
部が発生し難い構造になり、環状燃焼室が形成されるた
めに必然的に燃料の分散注入が容易で、その結果内筒壁
面から流入する空気と燃料の混合が促進され、比較的希
薄側での燃焼を行うことによって極端な局部高温発生が
伴うことがない低N Ox化に有利な緩慢な燃焼を達成
することができる。第9図に最大燃料噴射管の突出長さ
Lyに対する内筒コーン長さLIIとNOx発有濃度の
関係を示した。内筒コーンの長さLmが大きくなるとN
oズ生成量は減少する傾向にあるが極端に長くすると頭
部燃焼室側にしたがって空気流入量が減少し、頭部近傍
の内筒及び内筒コーン部の壁面冷却が低下してメタル温
度の上昇があり信頼性の面で不利となる。他方、内筒コ
ーンL1を短くすると、燃料と空気が良く混合されず、
燃焼の過程の段階で環状燃焼室から円筒燃焼室に拡大変
化に伴う内筒の内外に生じる圧力差の増大による空気導
入量の多い領域となり、内筒コーン先端近傍で燃焼が急
激に進行するためN Ox生成量の増加となって表われ
る。従って、内筒コーン部の適用範囲は、Lll /L
F = 2.0〜5.0にオイて使用することが必要で
ある。
Next, we will discuss the length of the protrusion of the inner cylinder cone and fuel injection pipe installed in the center of the inner cylinder. The role of the inner cylinder cone is to create a structure that makes it difficult for a high-temperature combustion zone to occur in the center of the combustion chamber than when there is no inner cylinder cone, and to form an annular combustion chamber, which naturally facilitates the dispersed injection of fuel. As a result, the mixture of air and fuel flowing in from the inner cylinder wall is promoted, and combustion is performed on a relatively lean side, which is advantageous for reducing NOx without causing extreme local high temperatures. combustion can be achieved. FIG. 9 shows the relationship between the inner cylinder cone length LII and the NOx emission concentration with respect to the maximum fuel injection pipe protrusion length Ly. When the length Lm of the inner cylinder cone increases, N
The amount of oz generated tends to decrease, but if the length is too long, the amount of air flowing toward the head combustion chamber will decrease, and the wall surface cooling of the inner cylinder and inner cylinder cone near the head will decrease, causing a drop in metal temperature. This is a disadvantage in terms of reliability. On the other hand, if the inner cylinder cone L1 is shortened, fuel and air will not mix well,
During the combustion process, as the combustion chamber expands from an annular combustion chamber to a cylindrical combustion chamber, the pressure difference between the inside and outside of the inner cylinder increases, resulting in an area where a large amount of air is introduced, and combustion progresses rapidly near the tip of the inner cylinder cone. This appears as an increase in the amount of NOx produced. Therefore, the applicable range of the inner cylinder cone is Lll/L
It is necessary to use it with F=2.0 to 5.0.

第10図に本発明の各部機能を有する燃焼室頭部近傍の
空気流動状態の一具体例を示した。ガスタービン作動時
の低負荷及び高負荷燃焼において、常時可燃範囲内に入
るように各空気導入量を設定する。燃焼室内の一次燃焼
領域における全空気量に対して頭部内筒キャップに設け
る空気導入孔は8〜20%、第一段目の燃焼用空気導入
孔では10〜23チ、その下流側に設置する第二段目及
び第三段目の一次燃焼領域内の燃焼用空気量の割合を5
7〜82チで配分するのが最適である。特に本燃焼室頭
部は、内筒キャップに設置する空気導入孔からの空気と
第一段目の燃焼用空気導入孔からの空気量の相互関係が
頭部燃焼室に形成される渦流領域の強さ等を支配するの
で、前記した下限値外の場合は、主に渦流強度の低下に
よって保炎性能が低下すること。更に低負荷燃焼で理論
混合比(λ=1.0)から燃料過剰方向に移行し、高負
荷時は可燃範囲外に入り良好な燃焼が不可能となる。一
方、上限値以上になると高負荷時は理論混合比(λ=1
.0)に近づくので余シ問題はないが、低負荷時が比較
的希薄側の燃焼になるので保炎が不安定となる。従って
、燃焼時は、前記した空気量配分で作動することが必要
である。
FIG. 10 shows a specific example of the state of air flow in the vicinity of the head of a combustion chamber that has the functions of each part of the present invention. The amount of air introduced is set so that it always falls within the flammable range during low-load and high-load combustion during gas turbine operation. The air introduction holes provided in the head inner cylinder cap account for 8 to 20% of the total air amount in the primary combustion area of the combustion chamber, and the air introduction holes for combustion in the first stage account for 10 to 23 percent, and are installed downstream of the air introduction holes for the first stage. The ratio of the amount of combustion air in the primary combustion area of the second and third stages is 5.
It is best to distribute it between 7 and 82 inches. In particular, in the head of this combustion chamber, the correlation between the amount of air from the air introduction hole installed in the inner cylinder cap and the amount of air from the first stage combustion air introduction hole creates a vortex region formed in the head combustion chamber. Since it controls the strength, etc., if it is outside the lower limit mentioned above, the flame holding performance will deteriorate mainly due to a decrease in the vortex strength. Furthermore, at low load combustion, the stoichiometric mixture ratio (λ=1.0) shifts to a fuel surplus direction, and at high load, it goes outside the flammable range, making good combustion impossible. On the other hand, when the upper limit is exceeded, the theoretical mixing ratio (λ = 1
.. 0), so there is no problem with overflow, but since the combustion is relatively lean at low loads, flame holding becomes unstable. Therefore, during combustion, it is necessary to operate with the air amount distribution described above.

以上、本発明の各要素の特性について述べたが、本燃焼
器構成で最も重要となる燃料供給手段について次に説明
する。先ず、前記実施例について説明すると保炎用の短
い燃料噴射管は第一段目の燃焼用突気導入孔近傍まで突
起しておシ、燃焼を主体とした燃料噴射管は第一段目の
空気導入孔の位置より1.5倍の長さを有し、環状方向
へ保炎用の突起部長さとほぼ同じ位のピッチで保炎用と
燃焼用の燃料噴射管が交互に配列して、各噴射管の燃料
噴射方向は、燃焼室軸線に対してほぼ垂直に導入するよ
うに構成しである。この燃焼方式の燃焼形態は、保炎部
す火炎と燃焼用の火炎が燃焼室内において、軸方向及び
環状方向に離れて形成されるため、火炎分散効果により
低N Ox化燃焼の均一低温度方向に近い燃焼が可能と
なる。この燃焼形態を効果的にする手段として、燃料の
軸方向及び環状方向の間隔を密にして(燃料噴射管の多
段化)更に良好な性能を得ることも可能であるが、燃焼
器の大きさ等により形状から制約される。更に火炎の干
渉による局部高温化等が形成される。
The characteristics of each element of the present invention have been described above, but the fuel supply means, which is the most important in the present combustor configuration, will be explained next. First, to explain the above-mentioned embodiment, the short fuel injection pipe for flame stabilization protrudes to the vicinity of the first stage's combustion blast introduction hole, and the fuel injection pipe for mainly combustion is located at the first stage. It has a length 1.5 times longer than the position of the air introduction hole, and fuel injection pipes for flame stabilization and combustion are arranged alternately in the annular direction at a pitch that is approximately the same as the length of the protrusion for flame stabilization, The fuel injection direction of each injection pipe is configured to be introduced substantially perpendicularly to the axis of the combustion chamber. The combustion form of this combustion method is that the flame for the flame holding zone and the flame for combustion are formed apart in the axial and annular directions within the combustion chamber, so the flame dispersion effect results in a uniform low temperature direction for low NOx combustion. It is possible to achieve combustion close to that of As a means of making this combustion form more effective, it is possible to obtain even better performance by spacing the fuel in the axial and annular directions closer together (multi-staged fuel injection pipes), but the size of the combustor etc., are restricted from the shape. In addition, localized temperature increases occur due to flame interference.

他方、燃料噴射管の数を少なくする方向では、燃料の分
散効果が失われ、低N Ox化方向の燃焼が不可能とな
る。従って、本発明の実施例で示したように燃焼室頭部
から流入する空気と第一段目の燃焼用空気導入孔からの
空気量に対する領域内において軸方向に3〜4段の分割
導入機構を有し、且つ環状方向への配列は、極端に火炎
が干渉しない間隔で構成することが懸命である。
On the other hand, if the number of fuel injection pipes is reduced, the fuel dispersion effect will be lost, making it impossible to achieve low NOx combustion. Therefore, as shown in the embodiments of the present invention, the divided introduction mechanism has three to four stages in the axial direction within the area corresponding to the amount of air flowing from the head of the combustion chamber and the amount of air from the combustion air introduction hole of the first stage. It is important that the flames are arranged in an annular direction at such intervals that the flames do not interfere with each other.

第11図に単一燃料噴射管4Cで保炎用及び燃焼用の燃
料噴射孔4d及び4eを有する構造を示した。第12図
(a)及び第12図(b)は燃料噴射管4f、4g及び
4h、4iを内筒側あるいは内筒コーン側から突起した
場合の応用例を示す。
FIG. 11 shows a structure in which a single fuel injection pipe 4C has fuel injection holes 4d and 4e for flame stabilization and combustion. FIGS. 12(a) and 12(b) show an application example in which the fuel injection pipes 4f, 4g, 4h, and 4i protrude from the inner cylinder side or the inner cylinder cone side.

本発明は、上記した如く、個々の要素作用効果を明らか
にして確立されたもので、希薄低温度燃焼の基本となる
低N Ox燃焼器に関するものである。
As described above, the present invention was established by clarifying the functions and effects of individual elements, and relates to a low NOx combustor that is the basis of lean, low-temperature combustion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば燃焼室頭部の空気噴流と内筒外壁からの
空気噴流によって形成される渦流領域に保炎を目的とし
た燃料を燃料噴射管を突起して注入する機構と燃焼用空
気等を導入した後流側に燃料を注入する機能を備え、前
記保炎用と希薄側への燃料供給手段を環状に組合せ配列
することは、燃焼室の円周方向と軸方向への燃料分散が
可能となり、燃焼室内での極単よ高温領域が形成されな
い結果、NOx低減化燃焼に非常に効果的となる。
According to the present invention, a mechanism for injecting fuel for the purpose of flame stabilization into a vortex region formed by an air jet at the head of the combustion chamber and an air jet from the outer wall of the inner cylinder through a protruding fuel injection pipe, combustion air, etc. It has a function to inject fuel into the wake side where the combustion chamber is introduced, and by arranging the flame holding means and the fuel supply means to the lean side in an annular combination, it is possible to spread the fuel in the circumferential direction and the axial direction of the combustion chamber. As a result, an extremely high temperature region is not formed within the combustion chamber, and as a result, combustion for reducing NOx is extremely effective.

第13図に本発明の燃焼器構造を有する燃焼試験結果の
一例を示した。従来の環状燃焼室に空気旋回保炎器を用
いたマルチバーナの燃焼方式と比較して、ガスタービン
定格時にN Ox低減率30係改善できる見通しを得た
。更に保炎安定性もガスタービン負荷作動範囲で、安定
した燃焼を行うことを確認できた。
FIG. 13 shows an example of combustion test results with the combustor structure of the present invention. Compared to the conventional multi-burner combustion method that uses an air swirling flame stabilizer in an annular combustion chamber, it is expected that the NOx reduction rate can be improved by 30% at the gas turbine rating. Furthermore, we were able to confirm flame holding stability and stable combustion within the gas turbine load operating range.

したがって、本発明はガスタービン燃焼器として、安定
燃焼を得る信頼性の高い、低N Ox燃焼器の構造を提
供できる。
Therefore, the present invention can provide a highly reliable low NOx combustor structure that achieves stable combustion as a gas turbine combustor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃焼器頭部縦断面図、第2図は第1図
の正視平面図、第3図は本発明の燃料噴射管の配列を示
す燃焼器頭部の立体図、第4図。 第5図に燃焼室頭部の空気及び燃料のフローパターンを
示し、第6図に燃料噴射管の突起部長さによる保炎特性
、第7図に燃料噴射管の突起部長さによるNOx、00
%性で、第8.9.10図に各部の特性、第11,12
図は他の応用例、第13図にガスタービン作動範囲にお
けるN Ox濃度線囚を示す。 4・・・燃料噴射管、4a・・・燃料噴射管、4b・・
・燃料噴射管、6・・・内筒コーン、9・・・環状燃焼
室、lO・・・第一段目の燃焼用空気導入孔、13・・
・空気導入孔。 ′t11 図 12 図 13 図 ¥4121 茅に図 ′X 7 図 一1毛tint’s融桝会印(龍) 18図 3番−岐8のシミにgNLA#内ThキY〉フシ、中山
  (LA/L(:)白露−ン長1〃オ丼−1j寸管 
<te+/lp)¥/2 図− → 炉i窒頭仰からの刺彷向□J巨馳(m>η)γ11
  図 χ12図 (6L) )X /2 図  tがノ
FIG. 1 is a vertical sectional view of the combustor head of the present invention, FIG. 2 is a front view of FIG. 1, FIG. 3 is a three-dimensional view of the combustor head showing the arrangement of fuel injection pipes of the present invention, and FIG. Figure 4. Figure 5 shows the flow pattern of air and fuel at the head of the combustion chamber, Figure 6 shows the flame holding characteristics depending on the length of the protrusion of the fuel injection pipe, and Figure 7 shows the NOx, 00
Figure 8.9.10 shows the characteristics of each part, 11th and 12th
The figure shows another application example, and Fig. 13 shows the NOx concentration curve in the gas turbine operating range. 4...Fuel injection pipe, 4a...Fuel injection pipe, 4b...
・Fuel injection pipe, 6... Inner cylinder cone, 9... Annular combustion chamber, lO... First stage combustion air introduction hole, 13...
・Air introduction hole. 't11 Fig. 12 Fig. 13 Fig. ¥4121 Diagram on grass 'X' 7 Fig. 11 Hair tint's fusion seal (dragon) LA/L (:) white dew length 1〃odon-1j dimension tube
<te+/lp) ¥/2 Fig.- → Furnace i Nitrogen direction from the top □J giant (m>η) γ11
Figure χ12 Figure (6L) )X /2 Figure t is no

Claims (1)

【特許請求の範囲】 1、燃焼器外筒に内装する内筒頭部の燃焼室を二重円筒
壁を有しする円環状で形成するように内筒コーンを設置
し、その環状空間燃焼室頭部を側閉端部で構成する内筒
キャップ部に複数個の空気導入孔を設け、前記空気導入
孔に対応して後流側にほぼ垂直に導入する第一段目の燃
焼用空気導入孔を設置して、外筒側を閉端するエンドカ
バーの中央部に燃料ノズル本体部を固定し、その燃料ノ
ズル本体部より連なる燃料噴射管を、前記内筒キャップ
部の空気導入孔を貫通して燃焼室内に環状に複数個配列
して突起させ、燃料噴射管の先端近傍より燃料を噴射供
給して、その燃料噴射管の上流側で火炎を保持すること
を特徴とするガスタービン燃焼器。 2、特許請求の範囲第1項記載において、頭部環状燃焼
室を形成する内筒キャップ部から燃料噴射管の周りに導
入する空気導入孔と後流側にほぼ垂直方向から導入する
第一段目の燃焼用空気導入孔の位置を、前記頭部環状燃
焼室の内筒キャップ部の間隙長さL_Cと第一段目の燃
焼用空気導入孔位置L_Aの比、L_A/L_C=0.
6〜1.7の範囲に定め、燃料噴射管を介して導入する
燃料噴射位置の最大長さに対して内筒コーン長さL_B
/燃料噴射位置L_Fが2.0〜5.0の範囲になるよ
う構成したことを特徴とするガスタービン燃焼器。 3、特許請求の範囲第1項記載において、燃焼室の一次
燃焼領域内の空気量配分を、頭部内筒キャップに設ける
空気導入孔から8〜20%、第一段目の燃焼用空気導入
孔は10〜23%、その下流側に設置する第二段目以降
の燃焼用空気量を57〜82%の領域で燃焼を行うこと
を特徴とするガスタービン燃焼器。 4、特許請求の範囲第1項記載において、燃料噴射の突
起部長さを異にする組合せで配列し、燃焼室内への燃料
噴射位置を変えることを特徴とするガスタービン燃焼器
。 5、特許請求の範囲第1項記載において、環状燃焼室内
筒キャップ部より後流側に設置する第一段目の燃焼用空
気導入孔より上流側及び下流側へ燃料噴射管を突起させ
、その組合せ配列によつて燃料を燃焼室内に噴射供給す
るよう構成したことを特徴とするガスタービン燃焼器。 6、特許請求の範囲第1項記載において、環状燃焼室内
に突起する燃料噴射管の先端近傍に設ける噴孔部を燃焼
室軸線に対して略直角方向に設置して燃料を噴射供給す
ることを特徴とするガスタービン燃焼器。
[Scope of Claims] 1. An inner cylinder cone is installed so that the combustion chamber at the head of the inner cylinder inside the combustor outer cylinder is formed into an annular shape having a double cylindrical wall, and the annular space combustion chamber is The first stage combustion air is introduced almost perpendicularly to the downstream side by providing a plurality of air introduction holes in the inner cylinder cap portion, which has a head portion and a side closed end portion, corresponding to the air introduction holes. A hole is installed to fix the fuel nozzle main body to the center of the end cover that closes the outer cylinder side, and a fuel injection pipe connected from the fuel nozzle main body is passed through the air introduction hole of the inner cylinder cap. A gas turbine combustor characterized in that a plurality of fuel injection pipes are arranged in an annular manner and protrude in a combustion chamber, and fuel is injected and supplied from near the tip of a fuel injection pipe to maintain a flame on the upstream side of the fuel injection pipe. . 2. In claim 1, the air introduction hole is introduced around the fuel injection pipe from the inner cylinder cap part forming the head annular combustion chamber, and the first stage is introduced from a substantially perpendicular direction to the wake side. The position of the second combustion air introduction hole is determined by the ratio of the gap length L_C of the inner cylinder cap portion of the head annular combustion chamber to the first stage combustion air introduction hole position L_A, L_A/L_C=0.
The length of the inner cylinder cone L_B is set within the range of 6 to 1.7, and the length L_B of the inner cylinder cone is determined relative to the maximum length of the fuel injection position introduced via the fuel injection pipe.
/ A gas turbine combustor characterized in that the fuel injection position L_F is configured to be in a range of 2.0 to 5.0. 3. In claim 1, the air amount distribution in the primary combustion region of the combustion chamber is 8 to 20% from the air introduction hole provided in the head inner cylinder cap, and the first stage combustion air is introduced. A gas turbine combustor characterized in that the holes perform combustion in the range of 10 to 23%, and the combustion air amount in the second stage and subsequent stages installed downstream thereof is in the range of 57 to 82%. 4. A gas turbine combustor according to claim 1, characterized in that the fuel injection protrusions are arranged in combinations having different lengths to change the fuel injection position into the combustion chamber. 5. In claim 1, the fuel injection pipe is protruded upstream and downstream from the first-stage combustion air introduction hole which is installed on the downstream side of the cylinder cap part of the annular combustion chamber. A gas turbine combustor characterized in that it is configured to inject and supply fuel into a combustion chamber through a combination arrangement. 6. Claim 1 describes that the injection hole section provided near the tip of the fuel injection pipe protruding into the annular combustion chamber is installed in a direction substantially perpendicular to the axis of the combustion chamber to inject and supply fuel. Characteristic gas turbine combustor.
JP14385184A 1984-07-10 1984-07-10 Gas turbine conbustor Granted JPS6122106A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14385184A JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor
EP85108445A EP0169431B1 (en) 1984-07-10 1985-07-08 Gas turbine combustor
CA000486578A CA1258379A (en) 1984-07-10 1985-07-10 Gas turbine combustor
US07/144,646 US4898001A (en) 1984-07-10 1988-01-11 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14385184A JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor

Publications (2)

Publication Number Publication Date
JPS6122106A true JPS6122106A (en) 1986-01-30
JPH0238851B2 JPH0238851B2 (en) 1990-09-03

Family

ID=15348433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14385184A Granted JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor

Country Status (1)

Country Link
JP (1) JPS6122106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899074A (en) * 1994-04-08 1999-05-04 Hitachi, Ltd. Gas turbine combustor and operation method thereof for a diffussion burner and surrounding premixing burners separated by a partition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197103B2 (en) * 1993-03-08 2001-08-13 三菱重工業株式会社 Premixed air combustion method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520122A (en) * 1978-07-20 1980-02-13 Hitachi Shipbuilding Eng Co Method of building marine oil stockpiling tank utilizing existing oil tanker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520122A (en) * 1978-07-20 1980-02-13 Hitachi Shipbuilding Eng Co Method of building marine oil stockpiling tank utilizing existing oil tanker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899074A (en) * 1994-04-08 1999-05-04 Hitachi, Ltd. Gas turbine combustor and operation method thereof for a diffussion burner and surrounding premixing burners separated by a partition

Also Published As

Publication number Publication date
JPH0238851B2 (en) 1990-09-03

Similar Documents

Publication Publication Date Title
US4898001A (en) Gas turbine combustor
US4587809A (en) Premixing swirling burner
US5201181A (en) Combustor and method of operating same
US4671069A (en) Combustor for gas turbine
JPH02208417A (en) Gas-turbine burner and operating method therefor
JPS60132035A (en) Method and apparatus for reducing dischage of nitrogen oxidefrom gaseous fuel burner
JPH0140246B2 (en)
JP2004219066A (en) Combustion method, and burner for carrying out combustion method
JPS6131775B2 (en)
JPS59202324A (en) Low nox combustor of gas turbine
JPH09222228A (en) Gas turbine combustion device
JPH0343535B2 (en)
JPS6122106A (en) Gas turbine conbustor
JPS59183202A (en) Low nox burner
JPS5847610B2 (en) gas turbine combustor
JPH0252930A (en) Gas turbine burner
JPS5913829A (en) Combustor of gas turbine
JP3482718B2 (en) Gas turbine combustor
JPH0117061B2 (en)
JPH03144215A (en) Gas burner
JPH09101007A (en) Fuel two-stage supplying type low nox burner
JPS5847928A (en) Gas turbine combustor
JPH06281144A (en) Gas turbine burner
JPH0275820A (en) Gas-turbine burner
JPS60147033A (en) Gas turbine premixture combustor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees