JPH0238851B2 - - Google Patents

Info

Publication number
JPH0238851B2
JPH0238851B2 JP59143851A JP14385184A JPH0238851B2 JP H0238851 B2 JPH0238851 B2 JP H0238851B2 JP 59143851 A JP59143851 A JP 59143851A JP 14385184 A JP14385184 A JP 14385184A JP H0238851 B2 JPH0238851 B2 JP H0238851B2
Authority
JP
Japan
Prior art keywords
combustion
inner cylinder
combustion chamber
fuel injection
introduction hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143851A
Other languages
Japanese (ja)
Other versions
JPS6122106A (en
Inventor
Michio Kuroda
Takashi Oomori
Yoji Ishibashi
Isao Sato
Yoshihiro Uchama
Fumio Kato
Yorihide Segawa
Shigeyuki Akatsu
Katsuo Wada
Nobuyuki Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14385184A priority Critical patent/JPS6122106A/en
Priority to EP85108445A priority patent/EP0169431B1/en
Priority to CA000486578A priority patent/CA1258379A/en
Publication of JPS6122106A publication Critical patent/JPS6122106A/en
Priority to US07/144,646 priority patent/US4898001A/en
Publication of JPH0238851B2 publication Critical patent/JPH0238851B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器に係り、特に窒素
酸化物(以下NOxと称す)の低減を目的とした
天然ガス焚低NOx化燃焼器の構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas turbine combustor, and particularly relates to the structure of a natural gas-fired low NOx combustor for the purpose of reducing nitrogen oxides (hereinafter referred to as NOx). .

〔発明の背景〕[Background of the invention]

ガスタービン燃焼器におけるNOx低減化の方
法を大別すると、水、水蒸気等を使用する湿式法
と燃焼性能の改善に基づく乾式法がある。前者は
他の媒体(水、水蒸気等)を用いるためにタービ
ン効率を招く要因があり、後者の燃焼抑制法は、
他の方法に比べ優位であるが、均一低温度希薄燃
焼が目的となるために、その燃焼形態はNOx低
減化方向に対するCO発生の増大等極めて厳しい
条件下にある。
Methods for reducing NOx in gas turbine combustors can be roughly divided into wet methods that use water, steam, etc., and dry methods that are based on improving combustion performance. The former method uses other media (water, steam, etc.), which causes a decrease in turbine efficiency, while the latter combustion suppression method
Although it is superior to other methods, since the objective is uniform low-temperature lean combustion, its combustion form is subject to extremely severe conditions such as increasing CO generation in the direction of reducing NOx.

一般に燃焼時のNOx生成は、燃焼領域の局所
的な高温部(1800℃以上)の燃焼ガスに支配さ
れ、主に燃料の未燃焼排出物の窒素分と燃焼空気
中の窒素の酸化等によつて発生する。これ等は
ThermalNo.をFuelNo.と呼れ、特にThermalNo.は
窒素濃度、反応時間の依存度が大きく、これ等の
現象はガス温度にかなり影響される。したがつ
て、燃焼過程において局所的な高温度領域が形成
されない均一低温度化(約1500℃以下)を実現す
れば効果的な低NOx化燃焼が可能となる。
In general, NOx generation during combustion is dominated by the combustion gas in the local high-temperature area (above 1800℃) in the combustion area, and is mainly caused by the nitrogen content of unburned fuel exhaust and the oxidation of nitrogen in the combustion air. Occurs. These are
Thermal No. is called Fuel No., and Thermal No. in particular is highly dependent on nitrogen concentration and reaction time, and these phenomena are considerably influenced by gas temperature. Therefore, if a uniform low temperature (approximately 1500°C or less) is achieved in which no localized high temperature regions are formed during the combustion process, effective low NOx combustion will be possible.

従来のガスタービンの低NOx化を目的とした
燃焼技術は、燃料流量に対して空気流量が比較的
多く流れること、燃焼室内への空気量配分がある
程度自在に選定できること等から、その燃焼形態
は希薄拡散燃焼が最も有利である。特に燃焼の際
は、燃焼温度の低下と混合促進化及びNOx生成
時間の短縮を図つて、均一低温度燃焼が主な目的
となる。
Conventional combustion technology aimed at reducing NOx in gas turbines has a relatively large air flow rate compared to the fuel flow rate, and the air amount distribution within the combustion chamber can be selected with some degree of freedom. Lean diffusion combustion is the most advantageous. In particular, during combustion, the main objective is to achieve uniform low-temperature combustion by lowering the combustion temperature, promoting mixing, and shortening the NOx generation time.

前記燃焼形態を実現させる手段として、従来技
術の一具体例を示すと、特公昭55−20122号公報
に見られる如く環状形燃焼室に燃料ノズルを環状
に配列して複数個設置し、燃焼室中央部に設ける
内筒コーンの先端部から空気及び蒸気等を導入す
るよう構成されている。この燃焼器の燃焼形態
は、燃焼室内の断面方向に燃料を分散供給するこ
とによつて燃焼温度の均一化と燃焼室の後流領域
でガス温度を低下させる燃焼方法を採用してい
る。また、燃料ノズルの周囲に空気旋回流を主体
とした保炎器が設置されており、その保炎機構
は、保炎器からの空気旋回流によつて形成される
循環流領域によつて保炎することは公知である
(特開昭57−202431号公報)。しかし、燃焼時にお
いては、前記循環流領域に比較的高温のガスを巻
込んで火炎を燃料ノズル近傍に保持し安定化を図
るために低NOx化燃焼ではかなり不利となる。
特に空気旋回羽根を有する保炎器は、その機能形
体(適用範囲:レイノルズ数Re>105)の面から
比較的高速流(V>30m/s)の空気噴流が必要
であること。火炎が短かくなる結果として、燃料
ノズル近傍で急激な燃焼が起り易いこと。更に保
炎器直径の1〜2倍の循環流領域内の局所高温部
の保炎機構の強さが逆にNOx生成機構の一因子
となつている。したがつて、従来の保炎器を有す
る燃料ノズルのマルチ化を図つても大巾な低
NOx化を達成することは望めない。特に低NOx
化をねらつた燃焼では、低NOx化に有利な保炎
機構が不可決であり保炎の特性によつて燃焼形態
は大きく左右される。本発明は、前記諸欠点を補
いより効果的な低NOx燃焼器に関するものであ
る。
As a means for realizing the above-mentioned combustion mode, a specific example of the prior art is as shown in Japanese Patent Publication No. 55-20122, in which a plurality of fuel nozzles are arranged in an annular shape in an annular combustion chamber, and the combustion chamber is It is constructed so that air, steam, etc. are introduced from the tip of an inner cylindrical cone provided at the center. The combustion mode of this combustor employs a combustion method in which fuel is distributed and supplied in the cross-sectional direction within the combustion chamber to equalize the combustion temperature and to lower the gas temperature in the downstream region of the combustion chamber. In addition, a flame stabilizer that mainly uses air swirling flow is installed around the fuel nozzle, and its flame stabilization mechanism is maintained by the circulating flow region formed by the air swirling flow from the flame stabilizer. It is known that it catches fire (Japanese Unexamined Patent Publication No. 57-202431). However, during combustion, relatively high temperature gas is involved in the circulating flow region to maintain the flame near the fuel nozzle and stabilize it, which is quite disadvantageous in low NOx combustion.
In particular, a flame stabilizer with air swirling vanes requires a relatively high-speed air jet (V>30 m/s) due to its functional form (applicable range: Reynolds number Re>10 5 ). Rapid combustion is likely to occur near the fuel nozzle as a result of the shortened flame. Furthermore, the strength of the flame holding mechanism in the locally high temperature area within the circulating flow region, which is 1 to 2 times the diameter of the flame holding device, is a factor in the NOx generation mechanism. Therefore, even if we attempt to use multiple fuel nozzles with conventional flame holders, the
It is not possible to achieve NOx reduction. Especially low NOx
In combustion aimed at reducing NOx, the flame holding mechanism that is advantageous for reducing NOx is not reliable, and the combustion form is greatly influenced by the flame holding characteristics. The present invention relates to a more effective low NOx combustor that compensates for the above-mentioned drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃焼器頭部燃焼室において、
効果的な保炎を行い、より低NOx化燃焼を行う
ことを可能にしたガスタービン燃焼器を提供する
ことにある。
The object of the present invention is to provide, in a combustor head combustion chamber,
An object of the present invention is to provide a gas turbine combustor that enables effective flame holding and combustion with lower NOx.

〔発明の概要〕[Summary of the invention]

一般に燃焼器内の燃焼状態を支配するのは、一
次燃焼領域であり、その基本となるのが保炎機構
である。即ち、低NOx化燃焼を目的とした拡散
燃焼の場合、燃料ノズル近傍の火炎構造は細く長
く形成することによつて、低NOx化に有効な緩
慢な燃焼を行うことが必要である。特に燃焼初期
時は燃料と空気との濃度場によつて燃焼形態が異
なる。したがつて、燃焼の過程における燃料の濃
度場条件を空気の流動に則した燃料の注入方法で
火炎の分離及び希薄側の燃焼等を可能にすれば低
NOx化に有利な燃焼形態を作ることができる。
本発明者等は、保炎を目的とした燃料ノズルと低
NOx化を主体とした燃料ノズルを分離して、比
較的狭い燃焼室の空間で安定した希薄燃焼を行い
得ることを確認した。先ず燃焼器頭部中央近傍か
ら空気を噴流させ、燃焼室頭部外周側に渦流を形
成させる。一方、燃焼室頭部近傍の内筒外壁から
燃焼室中央方向に燃焼用空気を噴流させ、前記渦
流を増強させる。この渦流領域に保炎を目的とし
た燃料を注入する。特に渦流領域に燃料を注入す
る場合、注入位置によつて渦流領域への燃料濃度
差が有り、この燃料濃度を抑制してやることによ
つて、比較的希薄側での保炎が可能となる。低
NOx化への燃料の注入方法は、燃焼室内筒外壁
からの空気噴流後の位置で燃料を注入するのが効
果的であり、比較的希薄側での燃焼形態であるの
で、大巾な低NOx化を図ることが可能である。
したがつて、前記した保炎用の燃料注入法と低
NOx化への燃料注入法を効果的に組合せること
で、安定且つ低NOx化燃焼を確立することが可
能となる。
Generally, the combustion state within a combustor is controlled by the primary combustion region, and the flame holding mechanism is the basis thereof. That is, in the case of diffusion combustion aimed at low NOx combustion, it is necessary to form the flame structure near the fuel nozzle long and thin to achieve slow combustion that is effective for low NOx combustion. Especially at the beginning of combustion, the combustion form differs depending on the concentration field of fuel and air. Therefore, it is possible to reduce the fuel concentration field conditions during the combustion process by making it possible to separate the flame and burn on the lean side by using a fuel injection method that matches the flow of air.
It is possible to create a combustion form that is advantageous for NOx production.
The inventors have developed a fuel nozzle for the purpose of flame holding and a low
By separating the fuel nozzle that primarily produces NOx, we confirmed that stable lean combustion can be performed in a relatively narrow combustion chamber. First, air is jetted from near the center of the combustor head to form a vortex around the outer periphery of the combustion chamber head. On the other hand, combustion air is jetted toward the center of the combustion chamber from the outer wall of the inner cylinder near the head of the combustion chamber, thereby reinforcing the vortex flow. Fuel is injected into this vortex region for the purpose of flame stabilization. In particular, when fuel is injected into the vortex region, there is a difference in fuel concentration into the vortex region depending on the injection position, and by suppressing this fuel concentration, flame holding on the relatively lean side becomes possible. low
The most effective way to inject fuel into NOx is to inject the fuel at a position after the air jet from the outer wall of the cylinder in the combustion chamber.Since the combustion mode is on the relatively lean side, it is possible to achieve a wide range of low NOx. It is possible to achieve this goal.
Therefore, the above-mentioned fuel injection method for flame holding and low
By effectively combining fuel injection methods for NOx production, it is possible to establish stable and low NOx combustion.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図に本発明の一具体的な実施例を
示す。燃焼器外筒1、エンドカバー2、燃料ノズ
ル本体3、燃料噴射管4、内筒5、内筒コーン
(小内筒)6及び点火栓7で構成されるガスター
ビン燃焼器において、内筒5の頭部に内筒キヤツ
プ8を設置し、頭部上流端より下流端に先細形状
の内筒コーン6を、前記内筒5に対応して内周側
に間隙を置いて同心状に突起させ、内筒5の頭部
近傍を環状燃焼室9を形成する。また、内筒5の
頭部壁面側には第一段目の燃焼空気導入孔群1
0、その下流側に第二段目の燃焼用空気導入孔群
11と内筒冷却孔群12を設け、前記内筒キヤツ
プ8の環状燃焼室9に対応する壁面に空気導入孔
13を環状に複数個設ける。更に内筒コーン6の
壁面にも冷却孔群14を設置する。燃料ノズル本
体3は、エンドカバー2に固定し、燃料ノズル本
体3から連なる燃料噴射管4は、前記内筒キヤツ
プ8に設けた空気導入孔13を貫通して環状燃焼
室9内に突出させる。この燃料噴射管4の先端近
傍には内筒5の方向と内筒コーン6方向へ燃料を
噴射させる噴孔15が設けられており、内筒キヤ
ツプ8に設けた空気導入孔13は燃料噴射管4の
外壁より大きくして間隙を設けて設置する。ま
た、第3図に示す如く、燃料噴射管4において、
長い燃料噴射管4a、短い燃料噴射管4bを交互
に組合せて、燃焼室内への燃料を噴射する位置を
変化させて構成する。例えば、燃料の噴射する位
置を第一段目の燃焼用空気導入孔群10を基準と
した場合、前記燃料噴射管4aは空気導入孔群1
0より下流側、燃料噴射管4bは同一又は上流側
に燃料を噴射可能にした状態で構成する。
A specific embodiment of the present invention is shown in FIGS. 1 and 2. FIG. In a gas turbine combustor that includes a combustor outer cylinder 1, an end cover 2, a fuel nozzle main body 3, a fuel injection pipe 4, an inner cylinder 5, an inner cylinder cone (small inner cylinder) 6, and a spark plug 7, the inner cylinder 5 An inner cylinder cap 8 is installed on the head of the head, and a tapered inner cylinder cone 6 is protruded concentrically from the upstream end of the head to the downstream end with a gap on the inner circumferential side corresponding to the inner cylinder 5. , an annular combustion chamber 9 is formed near the head of the inner cylinder 5. In addition, a first stage combustion air introduction hole group 1 is provided on the head wall surface side of the inner cylinder 5.
0, a second-stage combustion air introduction hole group 11 and an inner cylinder cooling hole group 12 are provided on the downstream side thereof, and an annular air introduction hole 13 is provided on the wall surface of the inner cylinder cap 8 corresponding to the annular combustion chamber 9. Provide multiple pieces. Furthermore, a group of cooling holes 14 are installed on the wall surface of the inner cylinder cone 6. The fuel nozzle body 3 is fixed to the end cover 2, and the fuel injection pipe 4 extending from the fuel nozzle body 3 passes through an air introduction hole 13 provided in the inner cylinder cap 8 and projects into the annular combustion chamber 9. Near the tip of this fuel injection pipe 4, a nozzle hole 15 for injecting fuel toward the inner cylinder 5 and the inner cylinder cone 6 is provided. Install it larger than the outer wall of item 4 and leave a gap. Moreover, as shown in FIG. 3, in the fuel injection pipe 4,
It is configured by alternately combining long fuel injection pipes 4a and short fuel injection pipes 4b, and changing the position at which fuel is injected into the combustion chamber. For example, when the fuel injection position is based on the first stage combustion air introduction hole group 10, the fuel injection pipe 4a is located in the air introduction hole group 1.
The fuel injection pipe 4b is configured to be able to inject fuel to the same or upstream side of the fuel injection pipe 4b.

次に本燃焼器の作動状況を述べる。先ず空気1
6を燃焼器外筒1と内筒5の間隙に導き入れ、内
筒5の壁面、内筒キヤツプ8及び内筒コーン6に
設けた各空気導入孔群から空気10a,11a,
12a,13a,14aを燃焼室内に導入させ
る。一方、燃料17を燃料ノズル本体3から燃料
噴射管4a,4b等に導き、各燃料噴射管に設け
た噴孔15より内筒頭部環状燃焼室9内に噴射
し、点火栓7を作動させて着火燃焼を継続させ
る。
Next, we will discuss the operating status of this combustor. First, air 1
6 is introduced into the gap between the combustor outer cylinder 1 and the inner cylinder 5, and air 10a, 11a,
12a, 13a, and 14a are introduced into the combustion chamber. On the other hand, the fuel 17 is guided from the fuel nozzle body 3 to the fuel injection pipes 4a, 4b, etc., and is injected into the inner cylinder head annular combustion chamber 9 from the injection holes 15 provided in each fuel injection pipe, and the ignition plug 7 is actuated. to continue ignition combustion.

この燃焼器の特徴は、頭部燃焼室を形成する環
状空間部において、燃焼頭部及び環状内筒側から
流動する空気によつて形成される渦流及び噴流中
に燃料を効果的に注入して、比較的希薄条件の基
での保炎と、更に希薄化された領域での燃料注入
の組合せで安定、且つ低NOx化を図るものであ
る。
The feature of this combustor is that fuel is effectively injected into the vortex and jet stream formed by the air flowing from the combustion head and the annular inner cylinder side in the annular space forming the head combustion chamber. , a combination of flame holding under relatively lean conditions and fuel injection in an even more lean region achieves stability and low NOx.

第4図、第5図に本発明のポイントを示す燃焼
室頭部近傍の空気及び燃料の流動パターンの一例
を示す。図中の実線は空気流動を示し鎖線は燃料
の流動状態である。
FIGS. 4 and 5 show an example of the flow pattern of air and fuel near the head of the combustion chamber, which illustrates the key points of the present invention. The solid line in the figure represents air flow, and the chain line represents fuel flow.

頭部燃焼室の内筒キヤツプ8に設けた空気導入
孔13と燃料噴射管4で形成される間隙を通つて
流入する空気は、燃料噴射管に沿つて流動し、噴
流と空間部の圧力差によつて内外方向にまき込が
生じ逆流する効果、燃料噴射管の上流側周りに比
較的弱い渦流が形成する。この渦流は燃焼室内筒
5外壁からの空気噴流による逆流成分でさらに増
強される。前記空気作動状態において、第一段目
の空気導入孔10の上流部(LA>LF)に燃料噴
射管4を介して注入した場合、渦流領域Aに巻込
む燃料は多く、燃料濃度は高くなる。また、燃焼
室内筒外壁に設けた空気導入孔10を介して流動
する空気噴流後(LA<LF)に燃料噴射位置を設
置した場合は、燃料噴射管上流側に形成される渦
流領域Aに流れ込む燃料は極めて少なくなる。こ
の渦流領域の燃料濃度差は、保炎性能及び燃焼特
性に著しく影響を及ぼすことが明らかとなつた。
Air flowing through the gap formed by the air introduction hole 13 provided in the inner cylinder cap 8 of the head combustion chamber and the fuel injection pipe 4 flows along the fuel injection pipe, and the pressure difference between the jet flow and the space is reduced. This causes a backflow effect in the internal and external directions, and a relatively weak vortex is formed around the upstream side of the fuel injection pipe. This vortex is further strengthened by a backflow component caused by an air jet from the outer wall of the cylinder 5 in the combustion chamber. In the air operating state, when the fuel is injected into the upstream part of the first stage air introduction hole 10 (L A >L F ) through the fuel injection pipe 4, a large amount of fuel is drawn into the vortex region A, and the fuel concentration is It gets expensive. In addition, when the fuel injection position is installed after the air jet flowing through the air introduction hole 10 provided on the cylinder outer wall of the combustion chamber (L A <L F ), the vortex region A formed on the upstream side of the fuel injection pipe The amount of fuel flowing into the tank becomes extremely small. It has become clear that the difference in fuel concentration in this vortex region has a significant effect on flame holding performance and combustion characteristics.

第6図、第7図に燃料噴射管4の内筒キヤツプ
8からの突出長さLFによる保炎及び燃焼特性に
関する実験結果を示す。保炎安定性の方向では、
燃料噴射管LFが短い程良好となるが、NOx発生
量は増大する傾向がある。また、燃料噴射管を長
くすると低NOx化方向になるがCO等の未燃排出
量が増加し保炎安定性も低下する。
FIGS. 6 and 7 show experimental results regarding flame holding and combustion characteristics depending on the protruding length L F of the fuel injection pipe 4 from the inner cylinder cap 8. In terms of flame holding stability,
The shorter the fuel injection pipe L F is, the better the condition is, but the amount of NOx generated tends to increase. Furthermore, if the fuel injection pipe is lengthened, NOx will be reduced, but unburned emissions such as CO will increase and flame holding stability will also decrease.

一方、本燃焼器の構造では、燃焼室を構成する
内筒コーンの長さ、空気導入孔の位置等が燃焼特
性に大きな影響を与える他の要因となつている。
まず、燃焼室頭部内筒キヤツプに設ける空気導入
孔は、燃料噴射管の周囲に複数個設けたり、燃焼
室の内外方向の位置から導入しても内部に形成さ
れる渦流領域を阻害することなく、逆に増強する
手段であれば充分に目的に達し得る。特に本構成
においては、第一段目の空気導入孔の位置が渦流
領域の大きさ強さを左右する因子となつており、
保炎性能に大きな影響を与える。第8図に燃焼室
頭部を形成する内筒キヤツプ部の幅LCに対する
下流側の第一段目の空気導入孔までの距離LA
おいて、燃料噴射位置一定時の火炎の吹き消え特
性を示した。適用範囲LA/LC=0.6〜1.7で、LA
LC<0.6の場合は、保炎に寄与する渦流領域が縮
少され、特に周囲から空気流動による混合気の希
薄化、燃焼温度の低下等によつて、燃焼は不安定
となり0.5以下では着火立上げも不可能となる。
また、LA/LC<1.7になると渦流領域が見掛上拡
大されるが、一部デツトスペースが形成され、こ
の領域が局部高温部となるので低NOx化の方向
では不利となる。特に本燃焼での保炎機構は、燃
料噴射管の燃料噴孔近傍に発生する火炎を周囲か
ら流れ込む空気の流動によつて下流から上流へ巻
込まれた燃焼生成物(高温ガス)によつて燃焼を
継続し、火炎の安定化に重要な役割を果してい
る。
On the other hand, in the structure of this combustor, the length of the inner cone constituting the combustion chamber, the position of the air introduction hole, etc. are other factors that greatly affect the combustion characteristics.
First of all, even if multiple air introduction holes are provided in the combustion chamber head inner cylinder cap around the fuel injection pipe, or if they are introduced from positions in the internal and external directions of the combustion chamber, the vortex region that is formed inside the combustion chamber cannot be obstructed. On the contrary, if it is a means of strengthening, it is sufficient to achieve the purpose. In particular, in this configuration, the position of the first stage air introduction hole is a factor that influences the size and strength of the vortex region.
It has a large effect on flame holding performance. Figure 8 shows the flame blowout characteristics when the fuel injection position is constant at the distance L A from the width L C of the inner cylinder cap forming the head of the combustion chamber to the air introduction hole of the first stage on the downstream side. Indicated. Applicable range L A / L C = 0.6 to 1.7, L A /
When L C <0.6, the vortex region that contributes to flame holding is reduced, and combustion becomes unstable due to the dilution of the air-fuel mixture due to air flow from the surroundings and a decrease in combustion temperature, etc. Below 0.5, ignition occurs. It will also be impossible to start up.
Furthermore, when L A /L C <1.7, the vortex region is apparently enlarged, but a dead space is formed in part, and this region becomes a local high temperature area, which is disadvantageous in the direction of reducing NOx. In particular, the flame-holding mechanism in main combustion is such that the flame generated near the fuel injection hole of the fuel injection pipe is combusted by combustion products (high-temperature gas) drawn in from downstream to upstream by the flow of air from the surrounding area. continues, and plays an important role in stabilizing the flame.

次に内筒の中央部に設置する内筒コーンと燃料
噴射管の突起部長さについて述べる。内筒コーン
の役割は、内筒コーンがない場合に比較して、燃
焼室中央部に燃焼高温部が発生し難い構造にな
り、環状燃焼室が形成されるために必然的に燃料
の分散注入が容易で、その結果内筒壁面から流入
する空気と燃料の混合が促進され、比較的希薄側
での燃焼を行うことによつて極端な局部高温発生
が伴うことがない低NOx化に有利な緩慢な燃焼
を達成することができる。第9図に最大燃料噴射
管の突出長さLFに対する内筒コーン長さLB
NOx発生濃度の関係を示した。内筒コーンの長
さLBが大きくなるとNOx生成量は減少する傾向
にあるが極端に長くすると頭部燃焼室側にしたが
つて空気流入量が減少し、頭部近傍の内筒及び内
筒コーン部の壁面冷却が低下してメタル温度の上
昇があり信頼性の面で不利となる。他方、内筒コ
ーンLBを短くすると、燃料と空気が良く混合さ
れず、燃焼の過程の段階で環状燃焼室から円筒燃
焼室に拡大変化に伴う内部の内外に生じる圧力差
の増大による空気導入量の多い領域となり、内筒
コーン先端近傍で燃焼が急激に進行するため
NOx生成量の増加となつて表われる。従つて、
内筒コーン部の適用範囲は、LB/LF=2.0〜5.0に
おいて使用することが必要である。
Next, we will discuss the length of the protrusion of the inner cylinder cone and fuel injection pipe installed in the center of the inner cylinder. The role of the inner cylinder cone is to create a structure that makes it difficult for a high-temperature combustion zone to occur in the center of the combustion chamber than when there is no inner cylinder cone, and to form an annular combustion chamber, which naturally facilitates the dispersed injection of fuel. As a result, the mixture of air and fuel flowing in from the inner cylinder wall is promoted, and by performing combustion on the relatively lean side, it is advantageous for reducing NOx without causing extreme local high temperatures. Slow combustion can be achieved. Figure 9 shows the inner cylinder cone length L B and the maximum fuel injection pipe protrusion length L F.
The relationship between NOx generation concentration is shown. As the length L B of the inner cylinder cone increases, the amount of NOx generated tends to decrease, but if it becomes extremely long, the amount of air inflow toward the head combustion chamber side decreases, and the inner cylinder near the head and the inner cylinder The cooling of the wall surface of the cone portion decreases and the metal temperature increases, which is disadvantageous in terms of reliability. On the other hand, if the inner cylindrical cone L B is shortened, the fuel and air will not be mixed well, and air will be introduced due to the increase in pressure difference between the inside and outside as the annular combustion chamber expands into the cylindrical combustion chamber during the combustion process. This is because the area has a large amount of fuel, and combustion progresses rapidly near the tip of the inner cylinder cone.
This appears as an increase in NOx production. Therefore,
It is necessary to use the inner cylinder cone part within the applicable range of L B /L F =2.0 to 5.0.

第10図に本発明の各部機能を有する燃焼室頭
部近傍の空気流動状態の一具体例を示した。ガス
タービン作動時の低負荷及び高負荷燃焼におい
て、常時可燃範囲内に入るように各空気導入量を
設定する。燃焼室内の一次燃焼領域における全空
気量に対して頭部内筒キヤツプに設ける空気導入
孔は8〜20%、第一段目の燃焼用空気導入孔では
10〜23%、その下流側に設置する第二段目及び第
三段目の一次燃焼領域内の燃焼用空気量の割合を
57〜82%で配分するのが最適である。特に本燃焼
室頭部は、内筒キヤツプに設置する空気導入孔か
らの空気と第一段目の燃焼用空気導入孔からの空
気量の相互関係が頭部燃焼室に形成される渦流領
域の強さ等を支配するので、前記した下限値外の
場合は、主に渦流強度の低下によつて保炎性能が
低下すること。更に低負荷燃焼で理論混合比(λ
=1.0)から燃料過剰方向に移行し、高負荷時は
可燃範囲外に入り良好な燃焼が不可能となる。一
方、上限値以上になると高負荷時は理論混合比
(λ=1.0)に近づくので余り問題はないが、低負
荷時が比較的希薄側の燃焼になるので保炎が不安
定となる。従つて、燃焼時は、前記した空気量配
分で作動することが必要である。
FIG. 10 shows a specific example of the state of air flow in the vicinity of the head of a combustion chamber that has the functions of each part of the present invention. The amount of air introduced is set so that it always falls within the flammable range during low-load and high-load combustion during gas turbine operation. The air intake holes provided in the head inner cylinder cap account for 8 to 20% of the total air amount in the primary combustion area of the combustion chamber, and the air intake holes in the first stage combustion air intake account.
10 to 23%, the proportion of combustion air in the primary combustion area of the second and third stages installed downstream.
The optimal allocation is between 57 and 82%. In particular, the head of the main combustion chamber is characterized by the interrelationship between the amount of air from the air introduction hole installed in the inner cylinder cap and the amount of air from the first stage combustion air introduction hole. Since it controls the strength, etc., if it is outside the above lower limit, the flame holding performance will decrease mainly due to a decrease in the vortex strength. Furthermore, the stoichiometric mixing ratio (λ
= 1.0), the fuel shifts toward excess fuel, and at high loads it falls outside the flammable range, making good combustion impossible. On the other hand, when the upper limit is exceeded, there is no problem because the mixture ratio approaches the stoichiometric ratio (λ = 1.0) at high loads, but flame holding becomes unstable at low loads because the combustion is relatively lean. Therefore, during combustion, it is necessary to operate with the air amount distribution described above.

以上、本発明の各要素の特性について述べた
が、本燃焼器構成で最も重要となる燃料供給手段
について次に説明する。先ず、前記実施例につい
て説明すると保炎用の短い燃料噴射管は第一段目
の燃焼用空気導入孔近傍まで突起しており、燃焼
を主体とした燃料噴射管は第一段目の空気導入孔
の位置より1.5倍の長さを有し、環状方向へ保炎
用の突起部長さとほぼ同じ位のピツチで保炎用と
燃焼用の燃料噴射管が交互に配列して、各噴射管
の燃料噴射方向は、燃焼室軸線に対してほど垂直
に導入するように構成してある。この燃焼方式の
燃焼形態は、保炎部の火炎と燃焼用の火炎が燃焼
室内において、軸方向及び環状方向に離れて形成
されるため、火炎分散効果により低NOx化燃焼
の均一低温度方向に近い燃焼が可能となる。この
燃焼形態を効果的にする手段として、燃料の軸方
向及び環状方向の間隔を密にして(燃料噴射管の
多段化)更に良好な性能を得ることも可能である
が、燃焼器の大きさ等により形状から制約され
る。更に火炎の干渉による局部高温化等が形成さ
れる。他方、燃料噴射管の数を少なくする方向で
は、燃料の分散散効果が失われ、低NOx化方向
の燃焼が不可能となる。従つて、本発明の実施例
で示したように燃焼室頭部から流入する空気と第
一段目の燃焼用空気導入孔からの空気量に対する
領域内において軸方向に3〜4段の分割導入機構
を有し、且つ環状方向への配列は、極端に火炎が
干渉しない間隔で構成することが懸命である。
The characteristics of each element of the present invention have been described above, but the fuel supply means, which is the most important in the present combustor configuration, will be explained next. First, to explain the above-mentioned embodiment, the short fuel injection pipe for flame stabilization protrudes to the vicinity of the first stage combustion air introduction hole, and the fuel injection pipe mainly for combustion is connected to the first stage air introduction hole. The length is 1.5 times longer than the position of the hole, and the fuel injection pipes for flame stabilization and combustion are arranged alternately in the annular direction at approximately the same pitch as the length of the protrusion for flame stabilization. The fuel injection direction is configured to be introduced perpendicularly to the axis of the combustion chamber. The combustion form of this combustion method is that the flame in the flame holding section and the combustion flame are formed apart in the axial and annular directions within the combustion chamber, so the flame dispersion effect leads to a uniform low temperature direction for low NOx combustion. Close combustion is possible. As a means of making this combustion form more effective, it is possible to obtain even better performance by spacing the fuel in the axial and annular directions closer together (multi-staged fuel injection pipes), but the size of the combustor etc., are restricted from the shape. In addition, localized temperature increases occur due to flame interference. On the other hand, if the number of fuel injection pipes is reduced, the fuel dispersion effect will be lost, making it impossible to achieve low NOx combustion. Therefore, as shown in the embodiments of the present invention, the introduction is divided into three to four stages in the axial direction within the area corresponding to the amount of air flowing from the head of the combustion chamber and the amount of air from the combustion air introduction hole of the first stage. It is important to have a mechanism and to arrange the flames in an annular direction so that the flames do not interfere with each other.

第11図に単一燃料噴射管4cで保炎用及び燃
焼用の燃料噴射孔4d及び4eを有する構造を示
した。第12図a及び第12図bは燃料噴射管4
f,4g及び4h,4iを内筒側あるいは内筒コ
ーン側から突起した場合の応用例を示す。
FIG. 11 shows a structure in which a single fuel injection pipe 4c has fuel injection holes 4d and 4e for flame stabilization and combustion. Figures 12a and 12b show the fuel injection pipe 4.
An application example will be shown in which f, 4g and 4h, 4i protrude from the inner cylinder side or the inner cylinder cone side.

本発明は、上記した如く、個々の要素作用効果
を明らかにして確立されたもので、希薄低温度燃
焼の基本となる低NOx燃焼器に関するものであ
る。
As described above, the present invention was established by clarifying the functions and effects of individual elements, and relates to a low NOx combustor that is the basis of lean, low-temperature combustion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば燃焼室頭部の空気噴流と内筒外
壁からの空気噴流によつて形成される渦流領域に
保炎を目的とした燃料を燃料噴射管を突起して注
入する機構と燃焼用空気等を導入した後流側に燃
料を注入する機能を備え、前記保炎用と希薄側へ
の燃料供給手段を環状に組合せ配列することは、
燃焼室の円周方向と軸方向への燃料分散が可能と
なり、燃焼室内での極単な高温領域が形成されな
い結果、NOx低減化燃焼に非常に効果的となる。
According to the present invention, a mechanism for injecting fuel for the purpose of flame stabilization into a vortex region formed by an air jet at the head of the combustion chamber and an air jet from the outer wall of the inner cylinder through a protruding fuel injection pipe, and a combustion Having a function of injecting fuel to the downstream side after introducing air, etc., and arranging the flame holding means and the fuel supply means to the lean side in a ring shape,
This makes it possible to disperse fuel in the circumferential and axial directions of the combustion chamber, preventing the formation of a single high-temperature region within the combustion chamber, making combustion extremely effective for reducing NOx.

第13図に本発明の燃焼器構造を有する燃焼試
験結果の一例を示した。従来の環状燃焼室に空気
旋回保炎器を用いたマルチバーナの燃焼方式と比
較して、ガスタービン定格時にNOx低減率30%
改善できる見通しを得た。更に保炎安定性もガス
タービン負荷作動範囲で、安定した燃焼を行うこ
とを確認できた。
FIG. 13 shows an example of combustion test results with the combustor structure of the present invention. Compared to the conventional multi-burner combustion method that uses an air swirl flame stabilizer in an annular combustion chamber, NOx reduction rate is 30% at gas turbine rating.
I got a prospect of improvement. Furthermore, we were able to confirm flame holding stability and stable combustion within the gas turbine load operating range.

したがつて、本発明はガスタービン燃焼器とし
て、安定燃焼を得る信頼性の高い、低NOx燃焼
器の構造を提供できる。
Therefore, the present invention can provide a highly reliable low NOx combustor structure that achieves stable combustion as a gas turbine combustor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃焼器頭部縦断面図、第2図
は第1図の正視平面図、第3図は本発明の燃料噴
射管の配列を示す燃焼器頭部の立体図、第4図、
第5図に燃焼室頭部の空気及び燃料のフローパタ
ーンを示し、第6図に燃料噴射管の突起部長さに
よる保炎特性、第7図に燃料噴射管の突起部長さ
によるNOx、CO特性で、第8,9,10図に各
部の特性、第11,12図は他の応用例、第13
図にガスタービン作動範囲におけるNOx濃度線
図を示す。 4……燃料噴射管、4a……燃料噴射管、4b
……燃料噴射管、6……内筒コーン、9……環状
燃焼室、10……第一段目の燃焼用空気導入孔、
13……空気導入孔。
FIG. 1 is a vertical sectional view of the combustor head of the present invention, FIG. 2 is a front view of FIG. 1, FIG. 3 is a three-dimensional view of the combustor head showing the arrangement of fuel injection pipes of the present invention, and FIG. Figure 4,
Figure 5 shows the flow pattern of air and fuel at the head of the combustion chamber, Figure 6 shows the flame holding characteristics depending on the length of the protrusion of the fuel injection pipe, and Figure 7 shows the NOx and CO characteristics depending on the length of the protrusion of the fuel injection pipe. Figures 8, 9, and 10 show the characteristics of each part, Figures 11 and 12 show other application examples, and Figure 13 shows the characteristics of each part.
The figure shows a NOx concentration diagram in the gas turbine operating range. 4... Fuel injection pipe, 4a... Fuel injection pipe, 4b
... Fuel injection pipe, 6 ... Inner cylinder cone, 9 ... Annular combustion chamber, 10 ... First stage combustion air introduction hole,
13...Air introduction hole.

Claims (1)

【特許請求の範囲】 1 一方側端が閉じられた燃焼器外筒と、 該燃焼器外筒の内部に、該燃焼器外筒とほぼ同
心円状に配置され、かつその筒壁に燃焼用空気導
入孔を有する内筒と、 該内筒の内部に配置され、該内筒との間に環状
の燃焼室を形成する小内筒と、 前記環状をなした燃焼室の一方側端を閉じ、か
つ燃焼室内へ空気を導入するための空気導入孔を
有する内筒キヤツプと、 前記燃焼室の壁を貫通して燃焼室内へ突出配置
され、かつその噴射口が前記燃焼用空気導入孔よ
り上流側に位置する第一の燃料噴射管と、 前記燃焼室の壁を貫通して燃焼室内へ突出配置
され、かつその噴射口が前記燃焼用空気導入孔よ
り下流側に位置する第二の燃料噴射管と、 を備え、前記第一の燃料噴射管よりの燃料噴射に
より火炎保持を行うようにしたことを特徴とする
ガスタービン燃焼器。 2 特許請求の範囲第1項記載において、前記第
一の燃料噴射管は、内筒キヤツプ部に空気導入孔
を貫通することを特徴とするガスタービン燃焼
器。 3 特許請求の範囲第1項もしくは第2項記載に
おいて、前記内筒キヤツプから前記第一段目の燃
焼用空気導入孔までの距離(LA)を、前記内筒
と小内筒との間隙長さ(Lc)の0.6〜1.7倍の範囲
にしたことを特徴とするガスタービン燃焼器。 4 特許請求の範囲第3項記載において、前記キ
ヤツプから前記第一の燃料噴射管の噴射口までの
距離(LF)に対して前記小内筒の長さ(LB)
を、2.0〜5.0倍の範囲となるようにしたことを特
徴とするガスタービン燃焼器。 5 特許請求の範囲第1項もしくは第2項記載に
おいて、燃焼室の一次燃焼領域内の空気量配分
を、内筒キヤツプに設けられた空気導入孔から8
〜20%、第一段目の燃焼用空気導入孔から10〜23
%、その下流側に設置されている第二段目以降の
燃焼用空気量は57〜82%の領域で燃焼を行うこと
を特徴とするガスタービン燃焼器。 6 特許請求の範囲第1項もしくは第2項記載に
おいて、前記第一の燃料噴射管の先端近傍に設け
られている噴射口を、燃焼室軸線に対して略直角
方向に設置して燃料を噴射供給することを特徴と
するガスタービン燃焼器。 7 特許請求の範囲第1項もしくは第2項記載に
おいて、前記第一の燃料噴射管と第二の燃料噴射
管を周方向に交互に配置するようにしたことを特
徴とするガスタービン燃焼器。
[Scope of Claims] 1. A combustor outer cylinder with one end closed, and a combustor cylinder arranged approximately concentrically with the combustor outer cylinder inside the combustor outer cylinder, and with combustion air provided in the cylinder wall. an inner cylinder having an introduction hole; a small inner cylinder disposed inside the inner cylinder and forming an annular combustion chamber between the inner cylinder; and closing one end of the annular combustion chamber; and an inner cylinder cap having an air introduction hole for introducing air into the combustion chamber, and an inner cylinder cap that penetrates the wall of the combustion chamber and protrudes into the combustion chamber, and has an injection port upstream of the combustion air introduction hole. a second fuel injection pipe that penetrates the wall of the combustion chamber and protrudes into the combustion chamber, and whose injection port is located downstream of the combustion air introduction hole. A gas turbine combustor, characterized in that the flame is maintained by fuel injection from the first fuel injection pipe. 2. The gas turbine combustor according to claim 1, wherein the first fuel injection pipe passes through an air introduction hole in the inner cylinder cap. 3. In claim 1 or 2, the distance (LA) from the inner cylinder cap to the first stage combustion air introduction hole is defined as the gap length between the inner cylinder and the small inner cylinder. A gas turbine combustor characterized in that the temperature (Lc) is in the range of 0.6 to 1.7 times. 4. In claim 3, the length (LB) of the small inner cylinder with respect to the distance (LF) from the cap to the injection port of the first fuel injection pipe.
A gas turbine combustor characterized in that the range is 2.0 to 5.0 times. 5. In claim 1 or 2, the air amount distribution in the primary combustion region of the combustion chamber is controlled from the air introduction hole provided in the inner cylinder cap to the
~20%, 10~23 from the first stage combustion air introduction hole
%, and the gas turbine combustor is characterized in that combustion is performed in the range of 57 to 82% of the amount of combustion air from the second stage installed on the downstream side. 6. In claim 1 or 2, the injection port provided near the tip of the first fuel injection pipe is installed in a direction substantially perpendicular to the axis of the combustion chamber to inject fuel. A gas turbine combustor characterized in that: 7. The gas turbine combustor according to claim 1 or 2, wherein the first fuel injection pipe and the second fuel injection pipe are arranged alternately in the circumferential direction.
JP14385184A 1984-07-10 1984-07-10 Gas turbine conbustor Granted JPS6122106A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14385184A JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor
EP85108445A EP0169431B1 (en) 1984-07-10 1985-07-08 Gas turbine combustor
CA000486578A CA1258379A (en) 1984-07-10 1985-07-10 Gas turbine combustor
US07/144,646 US4898001A (en) 1984-07-10 1988-01-11 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14385184A JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor

Publications (2)

Publication Number Publication Date
JPS6122106A JPS6122106A (en) 1986-01-30
JPH0238851B2 true JPH0238851B2 (en) 1990-09-03

Family

ID=15348433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14385184A Granted JPS6122106A (en) 1984-07-10 1984-07-10 Gas turbine conbustor

Country Status (1)

Country Link
JP (1) JPS6122106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020793A1 (en) * 1993-03-08 1994-09-15 Mitsubishi Jukogyo Kabushiki Kaisha Premixed gas burning method and combustor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954480B2 (en) * 1994-04-08 1999-09-27 株式会社日立製作所 Gas turbine combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520122A (en) * 1978-07-20 1980-02-13 Hitachi Shipbuilding Eng Co Method of building marine oil stockpiling tank utilizing existing oil tanker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520122A (en) * 1978-07-20 1980-02-13 Hitachi Shipbuilding Eng Co Method of building marine oil stockpiling tank utilizing existing oil tanker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020793A1 (en) * 1993-03-08 1994-09-15 Mitsubishi Jukogyo Kabushiki Kaisha Premixed gas burning method and combustor

Also Published As

Publication number Publication date
JPS6122106A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US4898001A (en) Gas turbine combustor
JPS637283B2 (en)
US5201181A (en) Combustor and method of operating same
JPH0370128B2 (en)
JPH0140246B2 (en)
JPS60132035A (en) Method and apparatus for reducing dischage of nitrogen oxidefrom gaseous fuel burner
JPS6131775B2 (en)
CA2599113C (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JP3901629B2 (en) Annular swirl diffusion flame combustor
JPS59202324A (en) Low nox combustor of gas turbine
JPH0343535B2 (en)
JPH09222228A (en) Gas turbine combustion device
JP3959632B2 (en) Diffusion combustion type low NOx combustor
JPH0238851B2 (en)
JPS59183202A (en) Low nox burner
JP2767403B2 (en) Low NOx burner for gas turbine
JPH0252930A (en) Gas turbine burner
JPS5913829A (en) Combustor of gas turbine
JP3901673B2 (en) Low NOx injection valve for liquid fuel and fuel injection method thereof
JP2003279043A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP3482718B2 (en) Gas turbine combustor
JP5057363B2 (en) Gas turbine combustor
JPH03144215A (en) Gas burner
JPS581322B2 (en) How can I help you?
JPH0117061B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees