JPS59183202A - Low nox burner - Google Patents

Low nox burner

Info

Publication number
JPS59183202A
JPS59183202A JP5788283A JP5788283A JPS59183202A JP S59183202 A JPS59183202 A JP S59183202A JP 5788283 A JP5788283 A JP 5788283A JP 5788283 A JP5788283 A JP 5788283A JP S59183202 A JPS59183202 A JP S59183202A
Authority
JP
Japan
Prior art keywords
nozzle
backfire
chamber
fuel
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5788283A
Other languages
Japanese (ja)
Inventor
Katsuaki Watanabe
渡辺 勝精
Katsuo Wada
和田 克夫
Yoji Ishibashi
石橋 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5788283A priority Critical patent/JPS59183202A/en
Publication of JPS59183202A publication Critical patent/JPS59183202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)

Abstract

PURPOSE:To provide a low NOX burner which prevents the occurrence of backfire and is excellent in reliability, by constituting such that the speed of fluid flowing through a gap between a burner liner and a fuel nozzle is increased on the upstream side and decreased on the downstream side. CONSTITUTION:A one-stage nozzle 13, of which a burner consists, is formed in the shape of a cone such that it is of a large size on the upstream side and of a small size on the downstream side to provide an internal nozzle inner chamber 14, and a number of nozzle holes 26 are provided in its chamber wall. A relation size between a burner liner and the cone-shaped part of a fuel nozzle is set so that a velocity of flow in a premixture chamber is increased on the upstream side, and the velocity of flow in the premixture chamber is set to a maximum value higher than a backfire limit. Namely, the maximum velocity of flow in the premixture chamber is set to a value which is increased over the rate of flame propagation, for example, 40m/s, of backfire under the most adverse condition. This causes to prevent the occurrence of backfire as a result of backfire flame being carried away by a premixture stream, resulting in the possibility to perform stable low NOX combination.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン用の低NO,形燃焼器に係シ、特
に、予混合を行わせる方式の低NO,燃焼器に於いて、
充分な予混合を行わせるめに問題となるバツクファイヤ
を防止する低NO,燃焼器に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a low NO combustor for a gas turbine, and in particular, to a low NO combustor using premixing.
This invention relates to a low NO combustor that prevents problematic backfire in order to achieve sufficient premixing.

各種の燃焼設備から発生するNO,は、大気汚染公害の
問題となっているが、とくにガスタービン用の燃焼器に
ついては燃焼性の改善に基づく乾式法と、水、水蒸気を
用いる湿式法とによってNOx低減技術が進められてい
る。しかし、燃焼に於けるNO,生成機構が極めて複雑
なために技術的にかなシ難かしく、決定的な低減技術の
確立までには至っていない。特に乾式法は、他の媒体を
必要としない利点がある反面、その燃焼形態は希薄低温
度−焼の厳しい条件下に01低NO。
NO, which is generated from various combustion equipment, has become a problem of air pollution, but especially for gas turbine combustors, it can be reduced by a dry method based on improving combustibility and a wet method using water or steam. NOx reduction technology is being advanced. However, the NO generation mechanism during combustion is extremely complex, making it technically difficult, and no definitive reduction technology has yet been established. In particular, the dry method has the advantage of not requiring any other medium, but its combustion mode is lean, low temperature, and under severe conditions of 01 low NO.

化はある程門は可能であるがCOの排出量が増大する傾
向を示す。一般に燃焼時のNO,生成は、燃焼領域の局
所的な高温部の燃焼ガスに支配され、主に燃料の未燃焼
排出物の窒素分と燃焼空気中の窒素の酸化等によって発
生する。これらはツユエルN08とサーマルNOxと呼
ばれ、特にサーマルNO,a酸素濃度、反応時間の依存
度が大きく、ガス温度にかなシ影響される。したがって
燃焼過程において、局所的な高温領域が形成されない低
温燃焼を実現すればかなシ効果的な低NO,化の燃焼が
可能となる。
Although it is possible to some extent, CO emissions tend to increase. In general, the production of NO during combustion is dominated by the combustion gas in a localized high-temperature part of the combustion region, and is mainly generated by the nitrogen content of unburned fuel exhaust and the oxidation of nitrogen in the combustion air. These are called TSUEL N08 and thermal NOx, and are particularly highly dependent on thermal NO, a oxygen concentration, and reaction time, and are strongly influenced by gas temperature. Therefore, if low-temperature combustion is achieved in which no localized high-temperature regions are formed during the combustion process, effective low-NO combustion becomes possible.

従来、ガスタービン用燃焼器の低NO,化の燃焼方式と
しては、前述のように水や水蒸気を射出して火炎の温度
を下げる方法(いわゆる湿式法)があるがこの方式では
、ガスタービンの効率が下がる欠点があるため昨今では
、希薄低温度燃焼を実現せしめようとして開発研究が進
められている。
Conventionally, as a combustion method for reducing NO in a gas turbine combustor, there is a method to lower the flame temperature by injecting water or steam (the so-called wet method), as described above. Since it has the drawback of decreasing efficiency, research and development efforts are currently underway to realize lean, low-temperature combustion.

上記の目的を達成するには、単に燃料の噴霧の近傍に空
気を多量に流通させても、燃焼速度が高いため燃料と空
気とが充分混合しないうちに燃焼してしまい、燃料濃度
が均一でないため局部的な高温を生じ、このため大幅な
NOx低減はできない。また過剰空気の導入は、火炎面
を過冷却してCO等の未燃焼排出物の増加、不安定燃焼
の原因となるが、これは主に拡散燃焼で発生しやすい。
To achieve the above objective, even if a large amount of air is simply circulated near the fuel spray, the combustion rate is high and the fuel burns before the air and fuel are sufficiently mixed, resulting in uneven fuel concentration. As a result, localized high temperatures occur, making it impossible to significantly reduce NOx. In addition, the introduction of excess air supercools the flame surface, causing an increase in unburned emissions such as CO and unstable combustion, which tends to occur mainly in diffusive combustion.

したがって燃焼形態のみによって理想的にNO工及びC
Oの低減を行うには、燃焼の前に燃料と空気とを完全に
混合して火炎温度を均一化し、局部的な高温の発生を抑
制しなければならない。
Therefore, depending only on the combustion form, it is possible to ideally
In order to reduce O, it is necessary to thoroughly mix fuel and air before combustion to equalize the flame temperature and suppress the occurrence of localized high temperatures.

上記のように燃料と空気とを完全に混合させて火炎温度
を均一化させる燃焼方式は一般に予混合わせることに)
よ?)、No!及びCO低減に有効なものである。この
燃焼方式の公知例として、第1図及び第2図に示したが
、第1図に示す燃焼器の場合の運転方法は、起動時はノ
ズルF2よシ噴射した燃料に点火し、負荷瀘大きくなっ
た時点でノズルFt よシ噴射する燃料に火を移した後
F2の火を消し、燃料をノズルF1からのみ噴射するこ
とによシ、予混合室41で空気と混合した後主室43で
燃焼させるものである。一方第2図に示す例では、ノズ
ルFlを用いて起動し、負荷が大きくなった時点で、ノ
ズルF2よシ燃焼噴射し、予混合室51で空気と混合後
主室53で燃焼させる。
As mentioned above, combustion methods that completely mix fuel and air to equalize the flame temperature are generally premixed.)
Yo? ), No! and is effective for CO reduction. A known example of this combustion system is shown in Figs. 1 and 2. In the case of the combustor shown in Fig. 1, the operating method is to ignite the fuel injected through nozzle F2 at startup, and to reduce the load. When the fuel becomes large, the flame is transferred to the fuel to be injected from the nozzle Ft, and then the flame of F2 is extinguished, and the fuel is injected only from the nozzle F1. It is used to burn it. On the other hand, in the example shown in FIG. 2, the nozzle Fl is started, and when the load becomes large, combustion is injected through the nozzle F2, and after being mixed with air in the premixing chamber 51, it is combusted in the main chamber 53.

以上二つの公知例とも、それぞれ絞シ部42゜52を設
けてバツクファイヤの防止を図っているが、バック7ア
イヤ条件は変動するものであり、上記双方の公知例のよ
うな固定絞シでは安定性。
In both of the above-mentioned known examples, the diaphragm portions 42° and 52 are provided to prevent backfire, but the back 7-year conditions vary, and the fixed diaphragm portions as in both of the above-mentioned known examples cannot be used. Stability.

信頼性が充分でない。Not reliable enough.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、NO!低減に障害となるバツクファイ
ヤを防止し、且つ安定した燃焼特性を有すると共に信頼
性に優れた低NO!燃焼器を提供することである。バツ
クファイヤの防止によシ予混合方式のN08低減がその
効果を発揮し得るようになる。
The purpose of the present invention is to answer NO! A low NO that prevents backfire, which is an obstacle to reduction, has stable combustion characteristics, and has excellent reliability! The purpose is to provide a combustor. By preventing backfire, the N08 reduction of the premixing method can be effective.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明は、ガスタービン用
の燃焼器において、燃焼器ライナの上流側の端をオープ
ンにし、燃焼器ライナの中央付近にコーン状の燃料ノズ
ルを設け、上記のコーン形状は上流側を太く下流側を細
く形成して前記の燃焼器ライナと燃料ノズルとの間隙を
、ノズル上流側で小さく下流側で大きくして、この間隙
を通過する流体の速度が上流側で速く下流側で遅くなる
ように構成したことを特徴とする。
To achieve the above object, the present invention provides a combustor for a gas turbine in which the upstream end of the combustor liner is open, a cone-shaped fuel nozzle is provided near the center of the combustor liner, and the cone-shaped fuel nozzle is provided near the center of the combustor liner. The shape is thick on the upstream side and narrow on the downstream side, so that the gap between the combustor liner and the fuel nozzle is small on the upstream side of the nozzle and wide on the downstream side, so that the velocity of the fluid passing through this gap is on the upstream side. It is characterized by being configured so that it is fast and slow on the downstream side.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の低NO工燃焼器の1実施例の断面図に
、ガスタービン用の空気圧縮機1.タービン3.負荷4
を付記した図である。その概要は、圧縮機1から吐出さ
れた圧縮空気5が燃焼器ライナ6内に導入され、1段ノ
ズル13からシされる燃料を燃焼させて高温高圧の作動
流体を生成し、タービン3を回転させる。2は燃焼器外
筒である。
FIG. 3 is a sectional view of one embodiment of the low NO combustor of the present invention, showing an air compressor 1 for a gas turbine. Turbine 3. load 4
FIG. The outline is that compressed air 5 discharged from the compressor 1 is introduced into the combustor liner 6, and the fuel injected from the first stage nozzle 13 is combusted to generate high temperature and high pressure working fluid, which rotates the turbine 3. let 2 is a combustor outer cylinder.

詳しくは、上記の圧縮空気5は燃焼器ライナ6に設けら
れた希釈空気孔7.後部燃焼室に設けられたスワラ8.
及び、燃焼器ライナ6の上流端から燃焼器内に導入され
るように構成しである。また、前記圧縮空気5の1部は
冷却空気9としても燃焼器ライナ6内に導入するように
構成しである。
Specifically, the compressed air 5 is supplied to the dilution air hole 7 provided in the combustor liner 6. Swirler installed in the rear combustion chamber 8.
And, it is configured to be introduced into the combustor from the upstream end of the combustor liner 6. Further, a portion of the compressed air 5 is configured to be introduced into the combustor liner 6 as cooling air 9.

また、燃料10は、燃料の所要量を制御する制御弁11
を通じて燃料導入管12から1段ノズル13に入シさら
にノズル内室工4に入シ、1段ノズル13のコーン部に
添って、予混合室15にて予混合燃料19となって起動
着火部16に集シ予混合燃焼を行う。一方燃料を制御弁
17を介して燃焼器ライナ6の後部燃焼室18に設けら
れた2段目スワラ8に供給し、空気流と共に噴出して後
部燃焼室18で希薄低温度燃焼を行う。更に燃焼作動時
は燃焼器ライナ6に設けられた冷却空気孔を通じて冷却
空気9を流入させて燃焼器ライチ6の壁面冷却および燃
焼ガス温度の均一性を向上させる。また、希釈空気孔(
図示なし)から空気流を導入して燃焼ガスの設定温度を
定めている。
Further, the fuel 10 is controlled by a control valve 11 that controls the required amount of fuel.
The fuel enters the first-stage nozzle 13 from the fuel inlet pipe 12 through the nozzle, and then enters the nozzle inner chamber 4. Along the cone of the first-stage nozzle 13, it becomes premixed fuel 19 in the premixing chamber 15 and is used for starting the ignition section. At step 16, premix combustion is performed. On the other hand, fuel is supplied to the second stage swirler 8 provided in the rear combustion chamber 18 of the combustor liner 6 via the control valve 17, and is ejected together with the air flow to perform lean low-temperature combustion in the rear combustion chamber 18. Furthermore, during combustion operation, cooling air 9 is introduced through cooling air holes provided in the combustor liner 6 to improve wall cooling of the combustor litchi 6 and uniformity of combustion gas temperature. In addition, the dilution air hole (
The set temperature of the combustion gas is determined by introducing an air flow from the engine (not shown).

第4図は、上記のように構成した燃焼器に送入する燃料
の流量を示す図表である。図の横軸はガスタービン負荷
率を示し、図示しだカーブはガスタービンの負荷率がO
から100%まで変化する場合の燃料流量の増加状態を
描いである。本図に示す如くガスタービンの部分負荷(
タービン負荷50%近傍)まで1段ノズル13(即ち予
混合用ノズル)を主体とした低温度燃焼を行い、その後
、第2段ノズル(第5図について後述)からも燃料噴霧
を行ない、後部燃焼室18に設けたスワラ8からも空気
を噴流して定格負荷(100%)で安定した希薄低温燃
焼をさせる。即ち、1段ノズル13で、着火から部分負
荷1/2の作動範囲で常時安定且つ良好な予混合燃焼を
行えることが重要な課題となる。
FIG. 4 is a chart showing the flow rate of fuel fed into the combustor configured as described above. The horizontal axis of the figure shows the gas turbine load factor, and the curve shown in the figure shows the gas turbine load factor of O.
This figure shows an increase in the fuel flow rate when the fuel flow rate changes from 100% to 100%. As shown in this figure, the partial load of the gas turbine (
Low-temperature combustion is performed mainly through the first-stage nozzle 13 (i.e., premixing nozzle) until the turbine load approaches 50%, and then fuel is sprayed from the second-stage nozzle (described later with reference to FIG. 5), resulting in rear combustion. Air is also jetted from the swirler 8 provided in the chamber 18 to achieve stable lean and low temperature combustion at the rated load (100%). That is, it is an important issue that the first-stage nozzle 13 can always perform stable and good premix combustion in the operating range from ignition to 1/2 partial load.

更に、第5図、第6図によシ本発明の構成1機能につい
て詳細に説明する。
Furthermore, with reference to FIGS. 5 and 6, the configuration 1 function of the present invention will be explained in detail.

第5図に示す如く、外筒21に内設した70スリーブ2
3に対してストツノく−25で連結された燃焼器内筒6
、燃焼器中央に設けた1段ノズル13.1段ノズル13
を取付けるカッ(−22、スワラ8に燃料を射出する2
段ノズル27.1段ノズル内室14に流入する空気に旋
回流を加えるスワラ−20、及び起動時に着火する点火
プラグ28によって燃焼器を構成する。
70 sleeve 2 installed inside the outer cylinder 21 as shown in FIG.
The combustor inner cylinder 6 is connected to the combustor cylinder 3 by a straight line 25.
, 1st stage nozzle 13 provided in the center of the combustor. 1st stage nozzle 13
Cup to install (-22, 2 to inject fuel into swirler 8)
Stage nozzle 27. A combustor is constituted by a swirler 20 that adds a swirling flow to the air flowing into the first stage nozzle inner chamber 14, and a spark plug 28 that ignites at startup.

上記の1段ノズル13は、当該燃焼器の上流側(図にお
いて左方)を太く、下流側を細く、コーン状に形成し、
内部にノズル内室14を設け、その室壁に燃料噴出用の
ノズル孔26を多数設ける。
The first stage nozzle 13 is formed into a cone shape, with the upstream side (left side in the figure) of the combustor being thicker and the downstream side being narrower.
A nozzle internal chamber 14 is provided inside, and a large number of nozzle holes 26 for ejecting fuel are provided in the chamber wall.

第6図は、上記の実施例における流速分布を示し、横軸
はノズル先端のコーン状部分の長さ方向の位置を表わし
、大径側(上流側)端を0位置、小径側(下流側)端を
100位置として示しである。縦軸は、上記のコーン状
部の外周に形成される予混合室15内における流速を表
わしている。
FIG. 6 shows the flow velocity distribution in the above example, where the horizontal axis represents the position in the length direction of the cone-shaped part at the tip of the nozzle, with the large diameter side (upstream side) end being the 0 position, and the small diameter side (downstream side ) The end is shown as the 100 position. The vertical axis represents the flow velocity within the premixing chamber 15 formed around the outer periphery of the cone-shaped portion.

本発明を実施する際、必ずしも本例と同じ流速分布にし
なくても良いが、少なくとも、予混合室流速を上流側が
高く力るよう(本図において左上がシのカーブとするよ
う)燃焼器ライナと燃料ノズルのコーン状部との関係寸
法を設定し、予混容室流速の最大値を、バツクファイヤ
限界よシも高く設定する。
When implementing the present invention, the flow velocity distribution does not necessarily have to be the same as in this example, but at least the combustor liner should be designed so that the flow velocity in the premixing chamber is high on the upstream side (in this figure, the upper left is a curved line). and the cone-shaped portion of the fuel nozzle, and set the maximum value of the premixing chamber flow velocity higher than the backfire limit.

即ち、予混合室の最大流速を、最悪条件におけるバツク
ファイヤの火炎伝播速度(例えば40m/S)よシも速
くする。これによシ、バツクファイヤの火炎が予混合流
に押し流されて逆火しなくなるので、安定した低No工
燃焼を行うことができる。
That is, the maximum flow velocity in the premixing chamber is made faster than the flame propagation velocity of the backfire under the worst conditions (for example, 40 m/s). As a result, the flame of the backfire is swept away by the premixed flow and no backfire occurs, so that stable low-No.

次に、本発明の応用例について述べる。本発明の構成は
、上述のように予混合室にてほぼ一様な減速流を形成す
ることが直接の目的であるので、燃料ノズルを直管にし
て、燃焼器ライナのオープン端を少径にして奥行ヘテー
パをつける拡大管に構成しても同様の効果が得られる。
Next, an application example of the present invention will be described. The structure of the present invention has a direct purpose of forming a substantially uniform decelerated flow in the premixing chamber as described above, so the fuel nozzle is made into a straight pipe and the open end of the combustor liner is made into a small diameter pipe. A similar effect can be obtained by configuring the expansion tube to be tapered in depth.

但し、燃焼器ライナのオープン端は流量によって決るの
で、後部燃焼室が大径となシコスト的には不利である。
However, since the open end of the combustor liner is determined by the flow rate, the rear combustion chamber has a large diameter, which is disadvantageous in terms of cost.

第3図及び第5図に示した実施例は、(1)第6図に示
すように予混合室の流速を通常バツクファイヤ限界速よ
シ充分大きな速度とすることが出来るため、バツクファ
イヤを起すことなくNo、低減が出来、(10起動時に
於いてもノズル先端のよどみ部で着火するため安定した
燃焼が得られ、Qトくツクファイヤ条件が変動しても、
燃焼範囲が若干上流側へ広がるのみで、安定性を保ち得
る。
The embodiments shown in FIGS. 3 and 5 have the following advantages: (1) As shown in FIG. 6, the flow velocity in the premixing chamber can be made sufficiently higher than the normal backfire limit speed; (10) Stable combustion can be obtained because the ignition occurs at the stagnation part of the nozzle tip even at startup, and even if the fire conditions change,
Stability can be maintained only by expanding the combustion range slightly toward the upstream side.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明はガスタービン用の燃焼器
において、燃焼器ライナの上流側の端をオープンにし、
燃焼器ライナの中央付近にコーン状の燃料ノズルを設け
、上記のコーン形状は上流側を太く下流側を細く形成し
て前記の燃焼器ライナと燃料ノズルとの間隙を、ノズル
上流側で小さく下流側で大きくして、この間隙を通過す
る流体の速度が上流側で速く下流側で遅くなるように構
成することによシ、予混合室にほぼ一様な減速流を形成
せしめてバツクファイヤを防止しかつ安定した燃料特性
が得られ、低NO,燃焼器の信頼性向上に貢献するとこ
ろ多大である。
As detailed above, the present invention provides a combustor for a gas turbine in which the upstream end of the combustor liner is open,
A cone-shaped fuel nozzle is provided near the center of the combustor liner, and the above cone shape is thicker on the upstream side and narrower on the downstream side, so that the gap between the combustor liner and the fuel nozzle is smaller on the upstream side of the nozzle and narrower on the downstream side. By making the gap larger on the side and configuring the gap so that the velocity of the fluid passing through it is faster on the upstream side and slower on the downstream side, an almost uniform decelerated flow is formed in the premixing chamber and backfire is suppressed. This greatly contributes to low NO and improved reliability of the combustor, as it prevents this and provides stable fuel characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ低NOx燃焼器の公知例
を説明するための断面図、第3図は本発明の低NOx燃
焼器を備えたガスタービンの断面図、第4図は上記のガ
スタービンの燃料流量制御を表わす図表、第5図は第3
図に示した低NO。 燃焼器の拡大断面図、第6図は同じく速度分布を表わし
た図表である。 5・・・圧縮空気、燃焼器ライナ、7・・・希釈空気、
8・・・スワラ、9・・・冷却空気、10・・・燃料、
11・・・制御弁、12・・・燃料導入管、13・・・
1段ノズル、14・・・ノズル内室、15・・・予混合
室、16・・・起動着火部、17・・・制御弁、18・
・・後部燃焼室、19・・・予混合燃料、20・・・ス
ワラ、21・・・外筒、22・・・カバー、23・・・
フロースリーブ、25・・・ストッパ、26・・・ノズ
ル孔、27・・・2段ノズル、28・・・点火プラグ、
29・・・ノズルコーン部の上流側の端、毛/図 箔4図
FIGS. 1 and 2 are sectional views for explaining known examples of low NOx combustors, FIG. 3 is a sectional view of a gas turbine equipped with the low NOx combustor of the present invention, and FIG. 4 is the above-mentioned example. Figure 5 is a diagram showing the fuel flow control of the gas turbine.
The low NO shown in the figure. FIG. 6, an enlarged cross-sectional view of the combustor, is also a chart showing the velocity distribution. 5... Compressed air, combustor liner, 7... Dilution air,
8...Swirler, 9...Cooling air, 10...Fuel,
11... Control valve, 12... Fuel introduction pipe, 13...
1st stage nozzle, 14... Nozzle inner chamber, 15... Premixing chamber, 16... Starting ignition part, 17... Control valve, 18...
... Rear combustion chamber, 19... Premixed fuel, 20... Swirler, 21... Outer cylinder, 22... Cover, 23...
Flow sleeve, 25... Stopper, 26... Nozzle hole, 27... Two-stage nozzle, 28... Spark plug,
29...Upstream end of nozzle cone part, hair/Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン用の燃焼器において、燃焼器ライナの
上流側の端をオープンにし、該燃焼器ライナの中央付近
にコーン状の燃料ノズルを設け、上記のコーン形状は上
流側を太く下流側を細を形成して前記の燃焼器ライナと
燃料ノズルとの1141隙を、ノズル上流側で小さく下
流側で大きくして、この間隙を通過する流体の速度が上
流側で速く下流fllで遅くなるように構成したことを
特徴とする低NO工燃焼器。
1. In a combustor for a gas turbine, the upstream end of the combustor liner is open, and a cone-shaped fuel nozzle is provided near the center of the combustor liner, with the cone shape being thicker on the upstream side and thicker on the downstream side. The 1141 gap between the combustor liner and the fuel nozzle is made smaller on the upstream side of the nozzle and larger on the downstream side, so that the velocity of the fluid passing through this gap is faster on the upstream side and slower on the downstream side. A low NO combustor characterized by having the following configuration.
JP5788283A 1983-04-04 1983-04-04 Low nox burner Pending JPS59183202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5788283A JPS59183202A (en) 1983-04-04 1983-04-04 Low nox burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5788283A JPS59183202A (en) 1983-04-04 1983-04-04 Low nox burner

Publications (1)

Publication Number Publication Date
JPS59183202A true JPS59183202A (en) 1984-10-18

Family

ID=13068355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5788283A Pending JPS59183202A (en) 1983-04-04 1983-04-04 Low nox burner

Country Status (1)

Country Link
JP (1) JPS59183202A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311025A (en) * 1987-06-10 1988-12-19 Hitachi Ltd Combustion control method of multistage device and its device
EP0711957A3 (en) * 1994-10-14 1997-07-30 Ulstein Turbine As Fuel/air mixing device
JP2007044481A (en) * 2005-07-15 2007-02-22 Srj Corp Method for collecting/transporting medical capsule and endoscope device used for the same
US10265461B2 (en) 2013-08-29 2019-04-23 Motus Gi Medical Technologies Ltd. Colon cleaning system with automatic self-purging features
US10322226B2 (en) 2014-04-09 2019-06-18 Motus Gi Medical Technologies Ltd. Cleaning method for prepless colonoscopy
US10881277B2 (en) 2013-11-21 2021-01-05 Motus Gi Medical Technologies Ltd. Distal front end for coordinated positioning of an endoscope with a suction device
US10925466B2 (en) 2013-11-21 2021-02-23 Motus Gi Medical Technologies Ltd. Apparatus and method for coupling between a colonoscope and add-on tubes
US11246479B2 (en) 2018-08-16 2022-02-15 Motus Gi Medical Technologies Ltd. Integrated endoscope cleansing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311025A (en) * 1987-06-10 1988-12-19 Hitachi Ltd Combustion control method of multistage device and its device
EP0711957A3 (en) * 1994-10-14 1997-07-30 Ulstein Turbine As Fuel/air mixing device
JP2007044481A (en) * 2005-07-15 2007-02-22 Srj Corp Method for collecting/transporting medical capsule and endoscope device used for the same
US10265461B2 (en) 2013-08-29 2019-04-23 Motus Gi Medical Technologies Ltd. Colon cleaning system with automatic self-purging features
US11185625B2 (en) 2013-08-29 2021-11-30 Motus Gi Medical Technologies Ltd. Colon cleaning system with automatic self-purging features
US11904085B2 (en) 2013-08-29 2024-02-20 Motus Gi Medical Technologies Ltd. Colon cleaning system with automatic self-purging features
US10881277B2 (en) 2013-11-21 2021-01-05 Motus Gi Medical Technologies Ltd. Distal front end for coordinated positioning of an endoscope with a suction device
US10925466B2 (en) 2013-11-21 2021-02-23 Motus Gi Medical Technologies Ltd. Apparatus and method for coupling between a colonoscope and add-on tubes
US10322226B2 (en) 2014-04-09 2019-06-18 Motus Gi Medical Technologies Ltd. Cleaning method for prepless colonoscopy
US11446428B2 (en) 2014-04-09 2022-09-20 Motus Gi Medical Technologies Ltd. Cleaning method for prepless colonoscopy
US11246479B2 (en) 2018-08-16 2022-02-15 Motus Gi Medical Technologies Ltd. Integrated endoscope cleansing system

Similar Documents

Publication Publication Date Title
US5201181A (en) Combustor and method of operating same
US4587809A (en) Premixing swirling burner
US5127229A (en) Gas turbine combustor
US5121597A (en) Gas turbine combustor and methodd of operating the same
JPH0140246B2 (en)
JPH0370128B2 (en)
JP2005291504A (en) Method and apparatus to decrease combustor emission
JP2002162037A (en) Combustion chamber and its operation method
CA2599113C (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JPS59183202A (en) Low nox burner
JPH0440611B2 (en)
JPH0343535B2 (en)
JP3873119B2 (en) In-cylinder swirl combustor
JPH11101435A (en) Gas turbine combustor
JP2003279043A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JPS6235016B2 (en)
JPH0480292B2 (en)
JP2544515B2 (en) Gas combustor
JPS6213932A (en) Combustor for gas turbine
JP3901673B2 (en) Low NOx injection valve for liquid fuel and fuel injection method thereof
JP2607387Y2 (en) Gas turbine combustor
JPS5847928A (en) Gas turbine combustor
JPS581322B2 (en) How can I help you?
JPH08178291A (en) Gas turbine burner
JPH0580573B2 (en)