JPS61218904A - Diameter measuring instrument - Google Patents

Diameter measuring instrument

Info

Publication number
JPS61218904A
JPS61218904A JP6044585A JP6044585A JPS61218904A JP S61218904 A JPS61218904 A JP S61218904A JP 6044585 A JP6044585 A JP 6044585A JP 6044585 A JP6044585 A JP 6044585A JP S61218904 A JPS61218904 A JP S61218904A
Authority
JP
Japan
Prior art keywords
pattern
measured
photoelectric conversion
workpiece
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6044585A
Other languages
Japanese (ja)
Inventor
Makoto Sagara
誠 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP6044585A priority Critical patent/JPS61218904A/en
Publication of JPS61218904A publication Critical patent/JPS61218904A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the diameter with good accuracy and high efficiency by arranging plural photoelectric transducers at equal intervals along the peripheral direction in opposition to an object to be measured and comparing information detected by turning the transducer line and the object to be measured relatively with pattern information prior to this and calculating a deviated amount between both. CONSTITUTION:The photoelectric transducer line 11 is arranged along the peripheral direction which is the opposite position separated by an prescribed interval with reference to the outside peripheral face of the object 4 to be measured and the relative movement direction on a detecting head 9. A straight pipe type light source 12 or the like irradiating rays of light with reference to the outside peripheral face of the object 4 to be measured is provided. The photoelectric transducer line 11 is constituted with the photoelectric transducers 111-118 arranged at the equal intervals along the peripheral direction and an optical brightness pattern of the outside peripheral face of the object 4 to be measured is detected with the transducers 111-118 of the transducer line 11 and sent to a pattern processing part 21. Then, this information is amplified with an amplifier 22 and converted into a digital signal with an A/D converter 23 and stored in a detection pattern memory 26 and sent to an arithmetic circuit 27 every time a reading command 24 is given and compared with a reference pattern and the deviated amount is decided there.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、直径測定装置に係り、特に大型立旋盤等で加
工された被加工物の直径測定に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a diameter measuring device, and is particularly applicable to measuring the diameter of a workpiece machined with a large vertical lathe or the like.

[背景技術とその問題点] 従来、大型立旋盤で加工された被加工物の直径、例えば
外径を測定するには、専用の大型マイクロメータを使っ
たり、或いは被加工物外径の対向位置にブロックを置き
、このブロック間をインサイドマイクロメータをつない
で測定していた。
[Background technology and its problems] Conventionally, in order to measure the diameter, for example, the outer diameter, of a workpiece machined with a large vertical lathe, a dedicated large micrometer was used, or a position opposite to the outer diameter of the workpiece was measured. Measurements were taken by placing blocks between the blocks and connecting an inside micrometer between the blocks.

前者の大をマイクロメータによる測定は、マイクロメー
タ自体の重量が重く、従って操作が困難であることから
測定精度の点で問題があった。また、後者のインサイド
マイクロメータによる測定は、ブロックを正確に被加工
物に接して置くことが困難であり、またインサイドマイ
クロメータを正確につなぐことも困難であった。
Measuring the former size using a micrometer has a problem in measurement accuracy because the micrometer itself is heavy and therefore difficult to operate. Furthermore, in the latter measurement using an inside micrometer, it is difficult to place the block accurately in contact with the workpiece, and it is also difficult to connect the inside micrometers accurately.

一方、これらの方式のほかに、被加工物を載置している
テーブルを回転させ、被加工物の測定面に直径が既知の
ローラを押し当て、ローラの回転数から被加工物の直径
を算出する方式もあるが、被加工物に接するローラの回
転数はスリップがあるので精度が落る。しかも、ローラ
を押しつけると、被加工物のその部分に光沢が生じ嫌わ
れることもあった。
On the other hand, in addition to these methods, the table on which the workpiece is placed is rotated, a roller with a known diameter is pressed against the measurement surface of the workpiece, and the diameter of the workpiece is calculated from the number of rotations of the roller. There is a calculation method, but the rotation speed of the roller in contact with the workpiece has slippage, so the accuracy is reduced. Moreover, when the roller is pressed against the surface of the workpiece, a gloss may appear on that part of the workpiece, which may be objectionable.

また、被加工物の内径を測定するには、通常、インサイ
ドマイクロメータが用いられるが、被測定物の内径が大
きくなるに従って、上述した問題が生じる。
Further, an inside micrometer is usually used to measure the inner diameter of the workpiece, but as the inner diameter of the workpiece becomes larger, the above-mentioned problems arise.

[発明の目的] 本発明の目的は、このような従来の欠点を解決すべくな
、されたもので、比較的大径の被測定物の内径または外
径を精度よくかつ能率よく測定する直径測定装置を提供
することにある。
[Object of the Invention] The object of the present invention is to solve the above-mentioned conventional drawbacks, and is to provide a method for accurately and efficiently measuring the inner diameter or outer diameter of a relatively large-diameter object. The purpose of this invention is to provide a measuring device.

[問題点を解決するための手段および作用]そのため、
本発明では、被測定物の内周面または外周面に対向゛し
て複数の光電変換素子を周方向に沿って等間隔に配置し
、この光電変換素子列および被測定物を相対回転させ、
この状態において、光電変換素子列によって検出される
被測定物の周面の光学的パターン情報をそれ以前に検出
されたパターン情報と比較して両者のずれ量を求め、こ
のずれ量を相対1回転について累計した後、その累計値
を円周率で徐算して被測定物の直径を求めるようにした
ものである。
[Means and actions to solve the problem] Therefore,
In the present invention, a plurality of photoelectric conversion elements are arranged at equal intervals along the circumferential direction so as to face the inner peripheral surface or the outer peripheral surface of the object to be measured, and the photoelectric conversion element array and the object to be measured are rotated relative to each other.
In this state, the optical pattern information on the circumferential surface of the object detected by the photoelectric conversion element array is compared with the previously detected pattern information to determine the amount of deviation between the two, and this amount of deviation is determined by one relative rotation. The diameter of the object to be measured is determined by dividing the cumulative value by pi.

具体的には、被測定物の内周面または外周面の状態を明
暗の光学的情報として捉えるための光源と、被測定物の
内径または外径を測定する装置であって、被測定物の内
周面または外周面に対向して複数の光電変換素子を周方
向に沿って等間隔に配置した光電変換素子列と、この光
電変換素子列および被測定物のいずれか一方を他方に対
して所定の間隔を保ちながら回転させる回転駆動手段と
、この回転駆動手段による光電変換素子列または被測定
°物の1回転を検出する1回転検出器と、前記光電変換
素子列によって検出された被測定物周面のパターン情報
を記憶する第1のパターン記憶部と、この第1のパター
ン記憶部のパターン情報より前に前記光電変換素子列に
よって検出されたパターン情報を基準パターンとして記
憶している第2のパターン記憶部と、前記第2のパター
ン記憶部に記憶された基準パターンに対して前記第1の
パターン記憶部のパターン情報のずれ量を判定し、その
判定結果に応じて、求められたずれ量を累計記憶させる
とともに、前記第2のパターン記憶部の基準パターンを
前記第1のパターン記憶部のパターン情報に更新する判
定手段と、前記1回転検出器によって1回転が検出され
たときの前記ずれ量の累計値を円周率で徐算して被測定
物の直径を求める手段と、を具備したことを特徴として
いる。
Specifically, it includes a light source for capturing the state of the inner or outer circumferential surface of the object to be measured as bright and dark optical information, and a device for measuring the inner or outer diameter of the object to be measured. A photoelectric conversion element array in which a plurality of photoelectric conversion elements are arranged at equal intervals along the circumferential direction facing the inner circumferential surface or the outer circumferential surface, and one of the photoelectric conversion element array and the object to be measured relative to the other. a rotational drive means for rotating while maintaining a predetermined interval; a one-rotation detector for detecting one rotation of a photoelectric conversion element array or an object to be measured by the rotational drive means; a first pattern storage section that stores pattern information on the peripheral surface of the object; and a first pattern storage section that stores pattern information detected by the photoelectric conversion element array before the pattern information of the first pattern storage section as a reference pattern. The deviation amount of the pattern information in the first pattern storage unit with respect to the reference pattern stored in the second pattern storage unit and the second pattern storage unit is determined, and according to the determination result, the obtained pattern information is determined. determining means for cumulatively storing the amount of deviation and updating the reference pattern in the second pattern storage section to the pattern information in the first pattern storage section; The present invention is characterized by comprising means for calculating the diameter of the object to be measured by dividing the cumulative value of the amount of deviation by pi.

[実施例5] 第1図は本発明の直径測定装置を大型立旋盤に適用した
一実施例を示している。同図において。
[Embodiment 5] FIG. 1 shows an embodiment in which the diameter measuring device of the present invention is applied to a large-sized vertical lathe. In the same figure.

ベッドlの上部には1回転駆動手段としての駆動機構2
により回転されるテーブル3が設けられている。テーブ
ル3には、その上面に円筒形状に加工された被測定物と
しての被加工物4が載置されているとともに、外周面に
1回転検出器5が対向配置されている。1回転検出器5
は、前記ベッド1に図示しないブラケット等を介して固
定され。
At the top of the bed l, there is a drive mechanism 2 as a one-rotation drive means.
A table 3 is provided which is rotated by. On the table 3, a workpiece 4 processed into a cylindrical shape as a workpiece to be measured is placed on the upper surface thereof, and a one-rotation detector 5 is disposed facing the table 3 on its outer peripheral surface. 1 revolution detector 5
is fixed to the bed 1 via a bracket (not shown) or the like.

かつ前記テーブル3の外周面1箇所に設けられた突起や
マーク3Aの接近によってオンされるスイッチ等により
構成されている。
It also includes a protrusion provided at one location on the outer peripheral surface of the table 3, a switch that is turned on when the mark 3A approaches, and the like.

また、ベッドlの両側にはコラム6がそれぞれ立設され
、この両側のコラム6間にはクロスレール7が昇降自在
に設けられている。クロスレール7には刃物台8が図中
左右方向へ摺動自在に取付けられ、この刃物台8のラム
8Aの先端には被加工物4の外周面に対向して検出ヘッ
ド9が取付けられている。ここで、被加工物4の外周面
には。
Furthermore, columns 6 are erected on both sides of the bed 1, and a cross rail 7 is provided between the columns 6 on both sides so as to be movable up and down. A tool post 8 is attached to the cross rail 7 so as to be slidable in the left and right directions in the figure, and a detection head 9 is attached to the tip of a ram 8A of this tool post 8 so as to face the outer peripheral surface of the workpiece 4. There is. Here, on the outer peripheral surface of the workpiece 4.

検出ヘッド9との相対移動方向つまり円周方向において
、一定の光源(自然光をも含む)に対し反射光の明度が
均一とならないような処理が施されている0例えば、相
対移動方向に沿って反射光の明度が均一とならないよう
な不規則な明暗模様等のマークが施されている。
In the direction of relative movement with the detection head 9, that is, in the circumferential direction, processing has been performed so that the brightness of the reflected light is not uniform for a certain light source (including natural light).For example, along the direction of relative movement, Marks such as irregular light and dark patterns are applied so that the brightness of the reflected light is not uniform.

一方、前記検出ヘッド9には、第2図に示す毎く、光電
変換素子列11が前記被加工物4の外周面に対して所定
間隔離れた対向位置でかつ相対移動方向つまり円周方向
に沿って配置されているとともに、被加工物4の外周面
に対して光照射する直管型の光源12等が設けられてい
る。光電変換素子列11は、前記円周方向に沿って等間
隔に配置された8素子の光電変換素子11+〜llaに
よって構成されている。これにより、被加工物4の外周
面の光学的明度パターンが光電変換素子列11の8素子
の光電変換素子11 I” l l gにより検知され
た後、パターン処理部21へ送られる。
On the other hand, as shown in FIG. 2, the detection head 9 has a photoelectric conversion element array 11 located at a position facing the outer peripheral surface of the workpiece 4 at a predetermined distance and in a relative movement direction, that is, in the circumferential direction. A straight tube type light source 12 and the like are arranged along the workpiece 4 and emit light onto the outer circumferential surface of the workpiece 4. The photoelectric conversion element row 11 is composed of eight photoelectric conversion elements 11+ to lla arranged at equal intervals along the circumferential direction. As a result, the optical brightness pattern on the outer peripheral surface of the workpiece 4 is detected by the eight photoelectric conversion elements 11 I''l lg of the photoelectric conversion element array 11, and then sent to the pattern processing section 21.

パターン処理部21へ送られたパターン情報は、第3図
に示す如く、アンプ22で増幅された後、A/D変換器
り3でデジタル信号に変換される。A/D変換器23で
デジタル信号に変換されたパターン情報は、第1のパタ
ーン記憶部としての検出パターンメモリ26へ記憶され
る。検出パターンメモリ26に記憶されたパターン情報
は、判定手段としての演算回路2から読取指令24が与
えられる毎に演算回路27へ読込まれ、そこで第2のパ
ターン記憶部としての基準パターンメモリ28に記憶さ
れている基準パターンと比較され、その基準パターンに
対するずれ量が判定されル、基準パターンメモリ28の
基準パターンは。
The pattern information sent to the pattern processing section 21 is amplified by an amplifier 22 and then converted into a digital signal by an A/D converter 3, as shown in FIG. The pattern information converted into a digital signal by the A/D converter 23 is stored in a detected pattern memory 26 as a first pattern storage section. The pattern information stored in the detection pattern memory 26 is read into the calculation circuit 27 every time the reading command 24 is given from the calculation circuit 2 as a determination means, and then stored in the reference pattern memory 28 as a second pattern storage section. The reference pattern in the reference pattern memory 28 is compared with the reference pattern that has been stored, and the amount of deviation from the reference pattern is determined.

前記演算回路27の演算結果に応じて、前記検出パター
ンメモリ26のパターン情報に順次更新される。また、
一連の処理が行なわれると1次の演算のための読取指令
24が演算回路27から検出パターンメモリ26へ検出
され、その検出パターンメモリ26のパターン情報が演
算回路27へ読込まれる。
According to the calculation results of the calculation circuit 27, the pattern information in the detection pattern memory 26 is sequentially updated. Also,
When a series of processes is performed, a read command 24 for the primary calculation is detected from the calculation circuit 27 to the detection pattern memory 26, and the pattern information in the detection pattern memory 26 is read into the calculation circuit 27.

いま、検出パターンメモリ26に記憶されているパター
ン情報、つまり今回のサンプリングで取込まれたパター
ン情報のベクトルをP(p+、p2・・・pa)、基準
パターンメモリ28に記憶されている基準パターン、つ
まり前回のサンプリングまでで更新された基準パターン
のベクトルをP′(p+  ’ l P2 ’・・・p
6′)とすると、演算回路27では、 S0=Σ(pLpt’)2  ・・・・・・・・・(1
)LLIヱ S、=Σ(pL PL−+’)2   ・・・・・・・
・・(2)S−=Σ(PL−pt◆l′)2   ・・
・・・・・・・(3)を演算し、S、、Sや、S−の中
で最も小さい値を求める。
Now, the pattern information stored in the detection pattern memory 26, that is, the vector of pattern information captured in the current sampling, is P (p+, p2...pa), and the reference pattern stored in the reference pattern memory 28 is , that is, the vector of the reference pattern updated up to the previous sampling is P'(p+' l P2'...p
6'), then in the arithmetic circuit 27, S0=Σ(pLpt')2 . . . (1
)LLIヱS,=Σ(pL PL-+')2 ・・・・・・・・・
・・(2) S−=Σ(PL−pt◆l′)2 ・・
......Calculate (3) and find the smallest value among S, , S, and S-.

ここで、■S0が最小値のときは、1素子分ずれていな
いと判定し、■Sやが最小値のときは、l素子分子方向
にずれていると判定し、■S−が最小値のときは、1素
子分一方向にずれていると判定し、その判定結果に応じ
て基準パターンメモリ28の基準パターンの更新処理お
よび変位量メモリ29のカウント値を増減させる。
Here, when ■S0 is the minimum value, it is determined that there is no deviation by one element, and when ■S and is the minimum value, it is determined that there is a deviation in the l element molecule direction, and ■S- is the minimum value. In this case, it is determined that there is a deviation in one direction by one element, and the reference pattern in the reference pattern memory 28 is updated and the count value in the displacement amount memory 29 is increased or decreased in accordance with the determination result.

即ち。That is.

■のときには、基準パターンメモリ28の基準パターン
および変位量メモリ29のカウント値を共に更新しない
In case (2), neither the reference pattern in the reference pattern memory 28 nor the count value in the displacement amount memory 29 are updated.

■のときには、基準パターンメモリ28の基準パターン
を検出パターンメモリ26のパターン情報に更新し、か
つ変位量メモリ29のカウント値を+1カウントアツプ
させる。
In case (2), the reference pattern in the reference pattern memory 28 is updated to the pattern information in the detection pattern memory 26, and the count value in the displacement amount memory 29 is increased by +1.

■のときには、基準パターンメモリ28の基準パターン
を検出パターンメモリ26のパターン情報に更新し、か
つ変位量イモリ29のカウント値を一1カウントダウン
させる。
In case (2), the reference pattern in the reference pattern memory 28 is updated to the pattern information in the detection pattern memory 26, and the count value in the displacement newt 29 is counted down by one.

従って、被加工物4が静止したままの状態では、Soが
最小値となるから、基準パターンメモリ28の基準パタ
ーンおよび変位量メモリ29のカウント値は共に更新さ
れない、しかし、被加工物4が回転すると、その回転方
向によってS、またはS−が最小値となるから、基準パ
ターンメモリ28の基準パターンは検出パターンメモリ
26のパターン情報に更新され、かつ回転方向によって
変位量メモリ29のカウント値が増減される。
Therefore, when the workpiece 4 remains stationary, So becomes the minimum value, so the reference pattern in the reference pattern memory 28 and the count value in the displacement memory 29 are not updated.However, when the workpiece 4 is rotating Then, S or S- becomes the minimum value depending on the rotation direction, so the reference pattern in the reference pattern memory 28 is updated to the pattern information in the detection pattern memory 26, and the count value in the displacement amount memory 29 increases or decreases depending on the rotation direction. be done.

このようにして、被加工物4が回転していくと。In this way, the workpiece 4 rotates.

変位量メモリ29には、被加工物4の外周面移動距離が
累計記憶されていく。
In the displacement amount memory 29, the total moving distance of the outer circumferential surface of the workpiece 4 is stored.

変位量メモリ29に記憶された値は、リセット/ホール
ド回路30からのリセット信号が与えられたときリセッ
トされ、またホールド信号が与えられたときホールドさ
れ、直径演算11131において円周率πで徐算された
後1表示部32に表示される。リセット/ホールド回路
30は、前記1回転検出器5が始めにオンしたときリセ
ット信号を出力し、2回目にオンしたときホールド信号
を出力する。 従って、駆動機構2によりテーブル3を
回転させ、被加工物4の外周面移動距離を変位量メモリ
29へ記憶していく途中で、1回転検出器5が初めにオ
ンすると、リセット/ホールド回路30からのリセット
信号により変位量メモリ29の値がリセットされる。
The value stored in the displacement memory 29 is reset when a reset signal from the reset/hold circuit 30 is given, and is held when a hold signal is given, and is divided by pi in the diameter calculation 11131. After that, it is displayed on the 1 display section 32. The reset/hold circuit 30 outputs a reset signal when the one-rotation detector 5 turns on for the first time, and outputs a hold signal when it turns on for the second time. Therefore, when the table 3 is rotated by the drive mechanism 2 and the movement distance of the outer peripheral surface of the workpiece 4 is stored in the displacement amount memory 29, when the one-rotation detector 5 is turned on for the first time, the reset/hold circuit 30 The value of the displacement amount memory 29 is reset by a reset signal from the displacement amount memory 29.

更に、テーブル3が回転すると、リセットされた時点か
らの被加工物4の外周面移動距離が変位量メモリ29へ
累計記憶されていく、やがて。
Furthermore, as the table 3 rotates, the distance traveled by the outer circumferential surface of the workpiece 4 from the time of resetting is accumulated and stored in the displacement amount memory 29, eventually.

テーブル3が1回転すると、1回転検出器5がオンする
ので、リセット/ホールド回路30からのホールド信号
により変位量メモリ29の値がホールドされる。すると
、そのホールド値は、直径演算部31において円周率π
で徐算され、その結果つまり被加工物4の外径が表示部
32に表示される。
When the table 3 makes one rotation, the one-rotation detector 5 is turned on, so the value of the displacement amount memory 29 is held by a hold signal from the reset/hold circuit 30. Then, the hold value is determined by the diameter calculation unit 31 as pi
The result, that is, the outer diameter of the workpiece 4 is displayed on the display section 32.

従って、本実施例によれば、被加工物4の外周面の光学
的パターン情報を光電変換素子列11で電気信号に変換
し、この変換されたパターン情報4を前回のサンプリン
グまでに更新記憶された基準パターンと比較して、基準
パターンに対する検出されたパターン情報のずれ量を求
め、このずれ量を被加工物4の1回転について累計し、
この累計値を円周率πで徐算して被加工物4の外径を求
めるようにしたので、大きくて重量のあるマイクロメー
タやインサイドマイクロメータを使用する必要がないの
で、操作が極めて容易な上、高精度な測定が可能である
Therefore, according to this embodiment, the optical pattern information on the outer peripheral surface of the workpiece 4 is converted into an electrical signal by the photoelectric conversion element array 11, and this converted pattern information 4 is updated and stored before the previous sampling. The amount of deviation of the detected pattern information with respect to the reference pattern is determined by comparing the detected pattern information with the reference pattern, and the amount of deviation is accumulated for one rotation of the workpiece 4.
This cumulative value is divided by pi to determine the outer diameter of the workpiece 4, so there is no need to use a large and heavy micrometer or inside micrometer, making operation extremely easy. Moreover, highly accurate measurements are possible.

特に、被加工物4の外周面の光学的パターン情報を検出
するようにしたので、被加工物4の外周面が円周方向に
おいて反射光の明度が均一とならないようa:!1様で
あればよく1例えば不規則なマーク、更には傷等の処理
でよく、極端には何も処理することなく加工面粗度のパ
ターンをそのまま利用することもできる結果、測定部材
に対する加工がほとんど不要である。
In particular, since the optical pattern information on the outer peripheral surface of the workpiece 4 is detected, the brightness of the reflected light should not be uniform in the circumferential direction of the outer peripheral surface of the workpiece 4. For example, irregular marks or even scratches can be treated as long as the pattern is 1. In extreme cases, the pattern of machined surface roughness can be used as is without any treatment. is almost unnecessary.

しかも、被加工物4に対して非接触型であるので、測定
面を傷付けることがない、このことは。
Moreover, since it is a non-contact type with respect to the workpiece 4, it does not damage the measurement surface.

従来のローラの押し付けによる方法と比較しても、スリ
ップがないので高精度測定が可能な上。
Compared to the conventional method of pressing rollers, there is no slippage, allowing for highly accurate measurements.

被加工物の材質が比較的軟質な材料でも高精度に測定で
きる利点がある。
This method has the advantage of being able to measure with high precision even relatively soft materials of the workpiece.

なお、実施にあたって、被加工物4の外周面と光電変換
素子11との間に被加工物4の外周面からの反射光を光
電変換素子列11上に所定倍率で結像させるレンズを設
ければ、各光電変換素子11 I” l l aの一隔
δに対し、被加工物4の外周面からレンズまでの距離L
I/レンズから光電変換素子列11までの距離L2倍の
分解能が得られる。更に、n個の光電変換素子列11を
予め用意し、これらを被加工物4の円周方向へ素子間隔
のn分の1づつずらして並列配置すれば、分解能をn倍
に向上させることができる。
In addition, in carrying out the process, a lens is provided between the outer peripheral surface of the workpiece 4 and the photoelectric conversion element 11 to form an image of the reflected light from the outer peripheral surface of the workpiece 4 onto the photoelectric conversion element array 11 at a predetermined magnification. For example, the distance L from the outer peripheral surface of the workpiece 4 to the lens is
A resolution that is twice the distance L from the I/lens to the photoelectric conversion element array 11 can be obtained. Furthermore, by preparing n photoelectric conversion element arrays 11 in advance and arranging them in parallel in the circumferential direction of the workpiece 4 by shifting 1/n of the element spacing, the resolution can be improved by n times. can.

また、検出されたパターン情報と比較される基準パター
ンについては、前回のサンプリング時までに更新記憶さ
れた1つの基準パターンだけでなく、それ以前に更新さ
れた複数個の基準パターンを記憶しておき、これら全て
について検出されたパターン情報と比較すれば、パター
ンの解析をより正確に行うことができ、また相対回転量
が速くて1回の演算で1素子分以上の移動をするような
場合でも測定可能である。更に、直径算出にあたっては
、被加工物4の1回転のみに限らず、被加工物4を複数
回回転させ、1回転当りの外周面移動量を求め、これを
円周率πで除算して被加工物の直径を求めるようにすれ
ば、より高精度な測定ができる。
Furthermore, regarding the reference pattern to be compared with the detected pattern information, not only one reference pattern updated and stored up to the previous sampling time, but also multiple reference patterns updated before that are stored. By comparing the pattern information detected for all of these, it is possible to analyze the pattern more accurately, and even when the amount of relative rotation is fast and more than one element is moved in one calculation. Measurable. Furthermore, in calculating the diameter, the workpiece 4 is not limited to one revolution, but is rotated multiple times, the amount of movement of the outer peripheral surface per one revolution is determined, and this is divided by the pi ratio π. By determining the diameter of the workpiece, more accurate measurements can be made.

また、上記実施例では、被加工物4を回転させるように
したが、光電変換素子列11を被加工物4の外周面に沿
って回転させるようにしても、同様な効果が期待できる
Further, in the above embodiment, the workpiece 4 is rotated, but the same effect can be expected even if the photoelectric conversion element array 11 is rotated along the outer peripheral surface of the workpiece 4.

このほか、上記実施例では、被加工物4の外径測定につ
いて述べたが、被加工物の内周面に沿って光電変換素子
列を平行に配置すれば、被加工物の内径をも測定するこ
とができる。更に、大型立旋盤に適用した例について述
べたが、本発明の直径測定装置では、大型立旋盤に限ら
ず、専用の測定装置でもよい。
In addition, although the above embodiment describes the measurement of the outer diameter of the workpiece 4, if the photoelectric conversion element rows are arranged in parallel along the inner peripheral surface of the workpiece, the inner diameter of the workpiece can also be measured. can do. Furthermore, although an example has been described in which the diameter measuring device of the present invention is applied to a large vertical lathe, the diameter measuring device of the present invention is not limited to a large vertical lathe, and may be a dedicated measuring device.

[発明の効果] 以上の通り、本発明によれば、比較的大径の被加工物の
内径や外径等の直径を精度よくかつ能率よく測定する直
径測定装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a diameter measuring device that accurately and efficiently measures the diameters, such as the inner diameter and outer diameter, of a relatively large-diameter workpiece.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すもので、第1図は全体の説
・引回、第2図は被加工物と検出ヘッドとの関係を示す
図、−3図はパターン処理部を示すブロック図である。 2・・・回転駆動手段としての駆動機構、4・・・被測
定物としての被加工物、5・・・1回転検出器、11・
・・光電変換素子列、12・・・光源、13・・・レン
ズ。 lit〜lla・・・光電変換素子、26・・・第1の
パターン記憶部としての検出パターンメモリ、27・・
・判定手段としての演算回路、28・・・第2のパター
ン記憶部としての基準パターンメモリ、29・・・変位
量メモリ、31・・・直径演算部。
The figures show one embodiment of the present invention; Fig. 1 shows the overall theory and layout, Fig. 2 shows the relationship between the workpiece and the detection head, and Fig. 3 shows the pattern processing section. It is a block diagram. 2... Drive mechanism as a rotational drive means, 4... Workpiece as a measured object, 5... 1 rotation detector, 11.
...Photoelectric conversion element array, 12...Light source, 13...Lens. lit~lla...Photoelectric conversion element, 26...Detection pattern memory as a first pattern storage section, 27...
- Arithmetic circuit as determination means, 28... Reference pattern memory as second pattern storage section, 29... Displacement amount memory, 31... Diameter computing section.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定物の内径または外径を測定する装置であっ
て、 被測定物の内周面または外周面の状態を明暗の光学的情
報として捉えるための光源と、 被測定物の内周面または外周面に対向して複数の光電変
換素子を周方向に沿って等間隔に配置した光電変換素子
列と、 この光電変換素子列および被測定物のいずれか一方を他
方に対して所定の間隔を保ちながら回転させる回転駆動
手段と、 この回転駆動手段による光電変換素子列または被測定物
の1回転を検出する1回転検出器と、前記光電変換素子
列によって検出された被測定物周面のパターン情報を記
憶する第1のパターン記憶部と、 この第1のパターン記憶部のパターン情報より前に前記
光電変換素子列によって検出されたパターン情報を基準
パターンとして記憶している第2のパターン記憶部と、 前記第2のパターン記憶部に記憶された基準パターンに
対して前記第1のパターン記憶部のパターン情報のずれ
量を判定し、その判定結果に応じて、求められたずれ量
を累計記憶させるとともに、前記第2のパターン記憶部
の基準パターンを前記第1のパターン記憶部のパターン
情報に更新する判定手段と、 前記1回転検出器によって1回転が検出されたときの前
記ずれ量の累計値を円周率で徐算して被測定物の直径を
求める手段と、 を具備したことを特徴とする直径測定装置。
(1) A device for measuring the inner diameter or outer diameter of an object to be measured, which includes a light source for capturing the state of the inner or outer circumferential surface of the object as bright and dark optical information, and an inner circumference of the object to be measured. A photoelectric conversion element array in which a plurality of photoelectric conversion elements are arranged at equal intervals along the circumferential direction facing a surface or an outer circumferential surface, and either the photoelectric conversion element array or the object to be measured is placed at a predetermined distance with respect to the other. a rotational drive means for rotating while maintaining an interval; a one-rotation detector for detecting one rotation of a photoelectric conversion element array or a measured object by the rotational driving means; and a circumferential surface of the measured object detected by the photoelectric conversion element array. a first pattern storage section that stores pattern information of the first pattern storage section; and a second pattern that stores pattern information detected by the photoelectric conversion element array before the pattern information of the first pattern storage section as a reference pattern. determining the amount of deviation of the pattern information in the first pattern storage unit with respect to the reference pattern stored in the storage unit and the second pattern storage unit, and determining the calculated amount of deviation according to the determination result. determining means for cumulatively storing and updating the reference pattern in the second pattern storage section to the pattern information in the first pattern storage section; and the amount of deviation when one rotation is detected by the one rotation detector. A diameter measuring device comprising: means for determining the diameter of an object to be measured by dividing the cumulative value of by pi.
JP6044585A 1985-03-25 1985-03-25 Diameter measuring instrument Pending JPS61218904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6044585A JPS61218904A (en) 1985-03-25 1985-03-25 Diameter measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6044585A JPS61218904A (en) 1985-03-25 1985-03-25 Diameter measuring instrument

Publications (1)

Publication Number Publication Date
JPS61218904A true JPS61218904A (en) 1986-09-29

Family

ID=13142481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6044585A Pending JPS61218904A (en) 1985-03-25 1985-03-25 Diameter measuring instrument

Country Status (1)

Country Link
JP (1) JPS61218904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202315A (en) * 1988-02-03 1989-08-15 Kubota Ltd Device for measuring inner diameter of pipe and executing correction of ellipse
CN105203038A (en) * 2015-11-12 2015-12-30 深圳市沃尔核材股份有限公司 Linear array CCD on-line diameter gauge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113762A (en) * 1981-12-28 1983-07-06 Fujitsu Ltd Speed measuring device
JPS5928667A (en) * 1982-08-11 1984-02-15 Fuji Photo Film Co Ltd Detection of moving body
JPS6015503A (en) * 1983-07-08 1985-01-26 Res Dev Corp Of Japan Non-contacting diameter measurement and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113762A (en) * 1981-12-28 1983-07-06 Fujitsu Ltd Speed measuring device
JPS5928667A (en) * 1982-08-11 1984-02-15 Fuji Photo Film Co Ltd Detection of moving body
JPS6015503A (en) * 1983-07-08 1985-01-26 Res Dev Corp Of Japan Non-contacting diameter measurement and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202315A (en) * 1988-02-03 1989-08-15 Kubota Ltd Device for measuring inner diameter of pipe and executing correction of ellipse
CN105203038A (en) * 2015-11-12 2015-12-30 深圳市沃尔核材股份有限公司 Linear array CCD on-line diameter gauge

Similar Documents

Publication Publication Date Title
CN100335860C (en) Workpiece inspection method
CN206056522U (en) A kind of contactless cylinder part inside/outside diameter size and form and position error measurement device
US20010008047A1 (en) Traverse linearity compensation method and rotational accuracy compensation method of measuring device
JPS6097207A (en) Method and device for leading out position and/or size of specimen to be inspected
JPH0792383B2 (en) Method and apparatus for inspecting gear pitch
US4756621A (en) Apparatus for measuring a length of displacement
JP5297749B2 (en) Automatic dimension measuring device
JP2004045206A (en) Measuring instrument for measuring dimension of cylindrical object
JPS61218904A (en) Diameter measuring instrument
CN108061503B (en) Method for detecting outer diameter of conical part on length measuring instrument
RU2471145C1 (en) Method of controlling accuracy parameters of end faces of body of rotation type articles
JP2935603B2 (en) Roundness measuring device with straightness measuring function
JPH0786409B2 (en) Diameter measuring device
JP2754128B2 (en) Cylindricity measuring device and measuring method
JP2504561B2 (en) Shape measuring device
JPS61218903A (en) Displacement measuring instrument
JPS5845506A (en) Method and device for measuring screw element
JPS614911A (en) Method and device for dimensional measurement of nuclear fuel pellet
JPS62134514A (en) Apparatus for measuring thickness and flatness degree of magnetic disk
JP3083758B2 (en) Method and apparatus for calibrating detector sensitivity of roundness measuring machine
JPS5973701A (en) Cubic material measuring device
JPH02210206A (en) Center indexing method for circle
JP2512790B2 (en) Feed instruction accuracy inspection method and its gage
JPH0692881B2 (en) Displacement measuring device
JPH08261744A (en) Method and device for vessel shape measurement