JPS61218741A - Controller for feed of alcohol-mixed fuel for internal-combustion engine - Google Patents

Controller for feed of alcohol-mixed fuel for internal-combustion engine

Info

Publication number
JPS61218741A
JPS61218741A JP60058497A JP5849785A JPS61218741A JP S61218741 A JPS61218741 A JP S61218741A JP 60058497 A JP60058497 A JP 60058497A JP 5849785 A JP5849785 A JP 5849785A JP S61218741 A JPS61218741 A JP S61218741A
Authority
JP
Japan
Prior art keywords
fuel
alcohol
concentration
acceleration
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60058497A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60058497A priority Critical patent/JPS61218741A/en
Publication of JPS61218741A publication Critical patent/JPS61218741A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent the generation of misfire and deterioration of emission by controlling the quantity of feed of fuel according to the concentration of alcohol in fuel during acceleration and deceleration, thus preventing the formation of excessively thick or lean mixed gas. CONSTITUTION:In an engine into which alcohol-mixed fuel is supplied, a concentration detecting means 30 for detecting the concentration of alcohol in fuel and an acceleration detecting means 31 are installed. When acceleration state is detected, a fuel increasing signal is sent into a fuel feeding apparatus from a fuel increasing means 32 in proportion to the concentration of alcohol. Therefore, the state where the hardly vaporized alcohol-mixed fuel adheres onto the inner wall of an intake passage in acceleration and the mixed gas is made lean, and misfire is generated can be prevented. Similarly, in deceleration, fuel is reduced in proportion to the concentration of alcohol, and the deterioration of emission can be prevented by making the mixed gas thick.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のアルコール混合燃料供給制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alcohol mixed fuel supply control device for an internal combustion engine.

〔従来の技術〕[Conventional technology]

ガソリンのみを用いた場合の理論空燃比は14.6程度
であるがアルコールのみを用いた場合の理論空燃比はガ
ソリンのみを用いた場合の約半分となる。従ってガソリ
ンにアルコールを混合したアルコール混合燃料を用いた
場合の理論空燃比はガソリンのみを用いた場合の理論空
燃比よりも小さく、しかもこの理論空燃比はガソリン中
のアルコール濃度によって変化する。従ってアルコール
混合燃料を用いて機関シリンダ内に理論空燃比の混合気
を供給しようとするとアルコール濃度に応じて燃料供給
量を制御しなければならない。そのためにアルコール濃
度を検出し、機関シリンダ内に供給される混合供給の空
燃比が理論空燃比となるようにアルコール濃度に応じて
燃料噴射量を制御するようにした内燃機関が公知である
(特開昭58−28557号公報)。
The stoichiometric air-fuel ratio when only gasoline is used is about 14.6, but the stoichiometric air-fuel ratio when only alcohol is used is about half that when only gasoline is used. Therefore, the stoichiometric air-fuel ratio when using an alcohol-mixed fuel made by mixing alcohol with gasoline is smaller than the stoichiometric air-fuel ratio when using only gasoline, and this stoichiometric air-fuel ratio changes depending on the alcohol concentration in the gasoline. Therefore, if an attempt is made to supply a mixture at a stoichiometric air-fuel ratio into an engine cylinder using alcohol mixed fuel, the amount of fuel supplied must be controlled in accordance with the alcohol concentration. For this purpose, an internal combustion engine is known that detects the alcohol concentration and controls the fuel injection amount according to the alcohol concentration so that the air-fuel ratio of the mixed supply supplied into the engine cylinder becomes the stoichiometric air-fuel ratio. Publication No. 58-28557).

一方、アルコール混合燃料を用い、理論空燃比において
出力電圧がステップ状に変化する0□センサを機関排気
通路に取付け、0□センサの出力信号に基いて機関シリ
ンダ内に供給される混合気の空燃比を理論空燃比に一致
せしめるようにした内燃機関が公知である(特開昭56
−98540号公報又は特開昭56−104131号公
報)。
On the other hand, using alcohol mixed fuel, a 0□ sensor whose output voltage changes stepwise at the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and the air-fuel mixture supplied into the engine cylinder is determined based on the output signal of the 0□ sensor. An internal combustion engine in which the fuel ratio is made to match the stoichiometric air-fuel ratio is known (Japanese Unexamined Patent Application Publication No. 56
-98540 or JP-A-56-104131).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらアルコール混合燃料を用いた場合に変化す
るのは理論空燃比ばかりでなく、ガソリンのみを用いた
場合に比べて燃料供給量が約2倍必要であり、しかもア
ルコールの混合割合が多くなるとそれだけ気化が悪くな
る。従ってアルコール混合燃料を用いた場合にはこれら
のことも考慮しなければ良好な車両の運転性を確保する
ことはできない。即ち、アルコール混合燃料を用いた場
合には上述したように多量の燃料を供給しなければなら
ず、しかも気化が悪化するために加速運転時に吸気通路
内壁面上に付着する燃料量が増大する。この付着燃料量
はアルコール混合割合が大きくなるほど多くなる。従っ
て加速運転時に従来のガソリンのみを用いた場合のよう
に一定量だけ燃料を増量してもアルコール混合割合が大
きい場合には機関シリンダ内に吸気される混合気が過薄
となって失火を生じ、アルコール混合割合が小さい場合
には逆に機関シリンダ内に供給される混合気が過濃とな
ってエミッションや燃料消費率の悪化を招くことになる
。一方車両減速時には大きな負圧が発生することにより
吸気通路内壁面に付着した燃料が短時間のうちに気化す
るので付着燃料が多い場合には供給燃料を大巾に減少さ
せ、付着燃料が少ない場合には供給燃料をわずかばかり
減少させるようにしないと機関シリンダ内に供給される
混合気が過薄または過濃となって同様な問題を生ずる。
However, when alcohol mixed fuel is used, it is not only the stoichiometric air-fuel ratio that changes, but also the amount of fuel that is required to be approximately twice that of when only gasoline is used.Moreover, the higher the mixing ratio of alcohol, the more vaporized the fuel becomes. becomes worse. Therefore, when using alcohol mixed fuel, it is not possible to ensure good vehicle drivability unless these considerations are taken into consideration. That is, when alcohol-mixed fuel is used, a large amount of fuel must be supplied as described above, and furthermore, since vaporization deteriorates, the amount of fuel that adheres to the inner wall surface of the intake passage increases during acceleration operation. The amount of adhering fuel increases as the alcohol mixing ratio increases. Therefore, even if the amount of fuel is increased by a certain amount, such as when only conventional gasoline is used during acceleration operation, if the alcohol mixture ratio is large, the air-fuel mixture taken into the engine cylinder will become too lean, resulting in a misfire. Conversely, if the alcohol mixing ratio is small, the air-fuel mixture supplied into the engine cylinder will become too rich, leading to deterioration in emissions and fuel consumption. On the other hand, when the vehicle decelerates, a large negative pressure is generated and the fuel adhering to the inner wall of the intake passage vaporizes in a short period of time. If the fuel supply is not slightly reduced, the air-fuel mixture supplied into the engine cylinders will become too lean or too rich, causing similar problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明によれば第1図の発
明の構成図に示すように機関吸気通路5内にアルコール
混合燃料を供給するようにした内燃機関において、ガソ
リン中のアルコール濃度を検出する濃度検出手段30と
、加速運転状態を検出する加速検出手段31と、濃度検
出手段30および加速検出手段31の検出結果に基いて
加速運転時にアルコール濃度に比例して燃料を増量する
燃料増量手段32とを具備している。
In order to solve the above problems, the present invention provides an internal combustion engine in which alcohol mixed fuel is supplied into the engine intake passage 5 as shown in the block diagram of the invention in FIG. A concentration detecting means 30 for detecting, an acceleration detecting means 31 for detecting an accelerated driving state, and a fuel increase for increasing the amount of fuel in proportion to the alcohol concentration during accelerated driving based on the detection results of the concentration detecting means 30 and the acceleration detecting means 31. means 32.

更に上記問題点を解決するために本発明によれば第2図
の発明の構成図に示すように機関吸気通路5内にアルコ
ール混合燃料を供給するようにした内燃機関において、
ガソリン中のアルコール濃度を検出する濃度検出手段3
0と、減速運転状態を検出する減速検出手段33と、濃
度検出手段30および減速検出手段33の検出結果に基
いて減速運転時にアルコール濃度に比例して燃料を減量
する燃料減量手段34とを具備している。
Furthermore, in order to solve the above-mentioned problems, according to the present invention, in an internal combustion engine in which alcohol-mixed fuel is supplied into the engine intake passage 5, as shown in the configuration diagram of the invention in FIG.
Concentration detection means 3 for detecting alcohol concentration in gasoline
0, a deceleration detecting means 33 for detecting a decelerating driving state, and a fuel reducing means 34 for reducing the amount of fuel in proportion to the alcohol concentration during decelerating driving based on the detection results of the concentration detecting means 30 and the decelerating detecting means 33. are doing.

〔実施例〕〔Example〕

第3図を参照すると、1は機関本体、2はピストン、3
は燃焼室、4は吸気弁、5は吸気通路、6は吸気通路5
内に設けられたサージタンク、7はスロットル弁、8は
排気弁、9は排気通路、IOは吸気通路5内に配置され
た燃料噴射弁を示す。燃料噴射弁IOは燃料供給管11
および燃料供給ポンプ12を介して燃料タンク13に連
結され、燃料タンク13内にはアルコールを含有したガ
ソリン、即ちアルコール混合燃料が貯えられている。燃
料供給管ll内にはアルコール混合燃料中のアルコール
濃度を検出するアルコール濃度検出器14が配置され、
サージタンク6内にはサージタンク6内に発生する負圧
に比例した出力電圧を発生する負圧センサ15が配置さ
れる。これらアルコール濃度検出器14および負圧セン
サ15は電子制御ユニット20に接続される。
Referring to Figure 3, 1 is the engine body, 2 is the piston, and 3
is a combustion chamber, 4 is an intake valve, 5 is an intake passage, 6 is an intake passage 5
7 is a throttle valve, 8 is an exhaust valve, 9 is an exhaust passage, and IO is a fuel injection valve arranged in the intake passage 5. Fuel injection valve IO is fuel supply pipe 11
It is connected to a fuel tank 13 via a fuel supply pump 12, and gasoline containing alcohol, ie, alcohol mixed fuel, is stored in the fuel tank 13. An alcohol concentration detector 14 for detecting the alcohol concentration in the alcohol mixed fuel is disposed within the fuel supply pipe ll,
A negative pressure sensor 15 is disposed within the surge tank 6 and generates an output voltage proportional to the negative pressure generated within the surge tank 6. These alcohol concentration detector 14 and negative pressure sensor 15 are connected to an electronic control unit 20.

電子制御ユニット20はディジタルコンピュータからな
り、双方向性バス21によって相互に接続されたROM
 (リードオンリメモリ)22 、RAM(ランダムア
クセスメモリ)23 、CPU(マイクプロセッサ)2
4、入力ポート25および出力ポート26を具備する。
The electronic control unit 20 consists of a digital computer with ROMs interconnected by a bidirectional bus 21.
(read-only memory) 22, RAM (random access memory) 23, CPU (microphone processor) 2
4, an input port 25 and an output port 26.

更に電子ユニット20はマルチプレクサ機能を有するA
D変換器27を具備し、このAD変換器27は入力ポー
ト25に接続される。AD変換器270入力端子にはア
ルコール濃度検出器14および負圧センサ15が接続さ
れ、これらアルコール濃度検出器14および負圧センサ
15の出力信号はAD変換器27を介して順次入力ボー
ト25に入力される。更に、入力ポート25には機関ク
ランクシャフトが所定のクランク角だけ回転する毎に出
力パルスを発生する回転数センサ16が接続される。ま
た、出力ポート26は駆動回路28を介して燃料噴射弁
10に接続される。アルコール濃度検出器14は燃料噴
射弁10から噴射される燃料中のアルコール濃度を検出
し、アルコール濃度に比例した出力電圧を発生する。
Furthermore, the electronic unit 20 has a multiplexer function.
A D converter 27 is provided, and this AD converter 27 is connected to the input port 25. The alcohol concentration detector 14 and the negative pressure sensor 15 are connected to the input terminal of the AD converter 270, and the output signals of the alcohol concentration detector 14 and the negative pressure sensor 15 are sequentially input to the input port 25 via the AD converter 27. be done. Furthermore, a rotation speed sensor 16 is connected to the input port 25, which generates an output pulse every time the engine crankshaft rotates by a predetermined crank angle. Further, the output port 26 is connected to the fuel injection valve 10 via a drive circuit 28. The alcohol concentration detector 14 detects the alcohol concentration in the fuel injected from the fuel injection valve 10 and generates an output voltage proportional to the alcohol concentration.

次に第7図に示すフローチャートを参照しつつ本発明に
よる燃料供給方法について説明する。
Next, the fuel supply method according to the present invention will be explained with reference to the flowchart shown in FIG.

第7図を参照するとまず始めにステップ102において
機関回転数NEを表わす回転数センサ16の出力信号を
取込んで機関回転数NEを計算し、次いでステップ10
4において吸気管負圧Pを表わす負圧センサ15の出力
信号を取込む0次いでステップ106においてROM 
22内にマツプの形で予め記憶されているNE、Pと基
本噴射量TAυ。との関係から基本噴射量TA[Iaを
求める。次いでステップ10Bでは前回の割込みサイク
ルにおいて検出された吸気管負圧P0をRAM 23内
の所定の番地から呼び出す。次いでステップ110では
現在の吸気管負圧Pから前回の吸気管負圧P0を減算し
て負圧の変化量へPを求める。次いでステップ112で
はΔPが一定値aよりも大きいか否かが判別される。
Referring to FIG. 7, first, in step 102, the output signal of the rotation speed sensor 16 representing the engine rotation speed NE is taken in to calculate the engine rotation speed NE, and then in step 10
At step 4, the output signal of the negative pressure sensor 15 representing the intake pipe negative pressure P is taken in.Then, at step 106, the ROM is
NE, P and basic injection amount TAυ are stored in advance in the form of a map in 22. The basic injection amount TA[Ia is determined from the relationship with . Next, in step 10B, the intake pipe negative pressure P0 detected in the previous interrupt cycle is read from a predetermined address in the RAM 23. Next, in step 110, the previous intake pipe negative pressure P0 is subtracted from the current intake pipe negative pressure P to find the amount of change in the negative pressure P. Next, in step 112, it is determined whether ΔP is larger than a constant value a.

Δpeaの場合には加速運転状態でないと判別され、ス
テップ124において加速増量αをOとした後、ステッ
プ122において燃料噴射量TAUが定められる。この
場合には加速増量は行なわれない。
In the case of Δpea, it is determined that the engine is not in an accelerating operation state, and after the acceleration increase α is set to O in step 124, the fuel injection amount TAU is determined in step 122. In this case, no accelerated increase is performed.

一方、ステップ112においてΔPeaであると判別さ
れたとき、即ち加速運転時にはステップ114に進んで
加速増量αが計算される。次いでステップ116ではア
ルコール濃度Fを表わすアルコール濃度検出器14の出
力信号が取込まれ、次いでステップ118において予め
ROM 22内に記憶された第5図に示す関係から補正
係数Kが求められる。第5図かられかるようにこの補正
係数にはアルコール濃度Fが0%のときには1.0であ
り、アルコール濃度Fが大きくなるとそれに伴なって増
大する。
On the other hand, when it is determined in step 112 that ΔPea is present, that is, during acceleration operation, the process proceeds to step 114, where the acceleration increase amount α is calculated. Next, in step 116, the output signal of the alcohol concentration detector 14 representing the alcohol concentration F is taken in, and then in step 118, a correction coefficient K is determined from the relationship shown in FIG. 5, which is previously stored in the ROM 22. As can be seen from FIG. 5, this correction coefficient is 1.0 when the alcohol concentration F is 0%, and increases as the alcohol concentration F increases.

次いでステップ120では加速増量αにKが乗算され、
その結果を加速増量αとする。次いでステップ122で
は基本噴射量TAU6に加速増量αが加算されることに
より燃料噴射量TAUが求められる。従って噴射量TA
Uはアルコール濃度Fが大きくなるほど増大せしめられ
ることがわかる。第4図は吸気通路内壁面への燃料の付
着率Qとアルコール濃度Fとの関係を示す。付着率Qは
アルコール濃度Fが大きくなるにつれて増大することが
わかる。
Next, in step 120, the acceleration increase α is multiplied by K.
The result is defined as acceleration increase α. Next, in step 122, the fuel injection amount TAU is determined by adding the acceleration increase α to the basic injection amount TAU6. Therefore, the injection amount TA
It can be seen that U increases as the alcohol concentration F increases. FIG. 4 shows the relationship between the fuel adhesion rate Q to the inner wall surface of the intake passage and the alcohol concentration F. It can be seen that the adhesion rate Q increases as the alcohol concentration F increases.

ところが本発明では加速運転時にアルコール濃度Fが高
くなるに従って噴射量TAUが増大せしめられるので機
関シリンダ内に供給される混合気の空燃比を一定に維持
することができ、斯くして混合気が過濃になったり、過
薄になったりするのを阻止することができる。
However, in the present invention, since the injection amount TAU is increased as the alcohol concentration F increases during acceleration operation, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be maintained constant, and in this way, the air-fuel mixture is prevented from becoming excessive. It can prevent it from becoming too dark or too light.

第6図は減速運転時に本発明を通用した場合の補正係数
Kを示している。この場合には補正係数にはアルコール
濃度Fが高くなるにつれて1.0から次第に減少し、従
ってアルコール濃度Fが高くなるにつれて燃料噴射量T
AUが減少することがわかる。なお、この場合にはステ
ップ110においてP、−PをΔPとする必要がある。
FIG. 6 shows the correction coefficient K when the present invention is applied during deceleration operation. In this case, the correction coefficient gradually decreases from 1.0 as the alcohol concentration F increases, and therefore, as the alcohol concentration F increases, the fuel injection amount T
It can be seen that AU decreases. In this case, it is necessary to set P and -P to ΔP in step 110.

付着率Qが大きなときに減速運転が開始されると気化す
る燃料量が多くなる。ところが本発明ではアルコール濃
度Fが高くなるに従って噴射量TAUが減少せしめられ
るので機関シリンダ内に供給される混合気の空燃比を一
定に維持することができ、斯くして混合気が過濃になっ
たり、過薄になったりするのを阻止することができる。
If deceleration operation is started when the adhesion rate Q is large, the amount of vaporized fuel will increase. However, in the present invention, since the injection amount TAU is decreased as the alcohol concentration F increases, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder can be maintained constant, and in this way, the air-fuel mixture becomes overrich. This can prevent it from becoming too thin or too thin.

〔発明の効果〕〔Effect of the invention〕

加速運転時および減速運転時にアルコール濃度に応じて
燃料供給量を制御することにより機関シリング内に供給
される混合気が過濃或いは過薄になるのを阻止すること
ができ、斯くして失火を生じたり、或いはエミッション
、燃料消費率が悪化するのを阻止することができる。
By controlling the amount of fuel supplied according to the alcohol concentration during acceleration and deceleration, it is possible to prevent the mixture supplied into the engine cylinder from becoming too rich or too lean, thus preventing misfires. This can prevent emissions and fuel consumption from worsening.

【図面の簡単な説明】[Brief explanation of the drawing]

第、1図は本発明の構成図、第2図は本発明の構成図、
第3図は内燃機関の全体図、第4図は燃料の壁面付着率
Qを示す線図、第5図は加速運転時における補正係数に
とアルコール濃度Fとの関係を示す線図、第6図は減速
運転時における補正係数にとアルコール濃度Fとの関係
を示す線図、第7図は燃料噴射制御を実行するためのフ
ローチャートである。 5・・・吸気通路、  9・・・排気通路、10・・・
燃料噴射弁、14・・・アルコール濃度検出器、20・
・・電子制御ユニット。 第1図 第2図 第3図 5・・・吸気通路 9・・・排気通路 1o・・・燃料噴射弁 1481.アルコール濃度検出器 第7図
Fig. 1 is a block diagram of the present invention, Fig. 2 is a block diagram of the present invention,
Fig. 3 is an overall diagram of the internal combustion engine, Fig. 4 is a diagram showing the wall surface adhesion rate Q of fuel, Fig. 5 is a diagram showing the relationship between the correction coefficient during acceleration operation and the alcohol concentration F, and Fig. 6 is a diagram showing the relationship between the correction coefficient during acceleration operation and the alcohol concentration F. The figure is a diagram showing the relationship between the correction coefficient and the alcohol concentration F during deceleration operation, and FIG. 7 is a flowchart for executing fuel injection control. 5...Intake passage, 9...Exhaust passage, 10...
Fuel injection valve, 14... Alcohol concentration detector, 20.
...Electronic control unit. Fig. 1 Fig. 2 Fig. 3 Fig. 5...Intake passage 9...Exhaust passage 1o...Fuel injection valve 1481. Alcohol concentration detector Figure 7

Claims (1)

【特許請求の範囲】 1、機関吸気通路内にアルコール混合燃料を供給するよ
うにした内燃機関において、ガソリン中のアルコール濃
度を検出する濃度検出手段と、加速運転状態を検出する
加速検出手段と、該濃度検出手段および加速検出手段の
検出結果に基いて加速運転時にアルコール濃度に比例し
て燃料を増量する燃料増量手段とを具備した内燃機関の
アルコール混合燃料供給制御装置。 2、機関吸気通路内にアルコール混合燃料を供給するよ
うにした内燃機関において、ガソリン中のアルコール濃
度を検出する濃度検出手段と、減速運転状態を検出する
減速検出手段と、該濃度検出手段および減速検出手段の
検出結果に基いて減速運転時にアルコール濃度に比例し
て燃料を減量する燃料減量手段とを具備した内燃機関の
アルコール混合燃料供給制御装置。
[Scope of Claims] 1. In an internal combustion engine configured to supply alcohol-mixed fuel into the engine intake passage, a concentration detection means for detecting the alcohol concentration in gasoline, an acceleration detection means for detecting an accelerated driving state, An alcohol mixed fuel supply control device for an internal combustion engine, comprising a fuel increasing means for increasing the amount of fuel in proportion to the alcohol concentration during acceleration operation based on the detection results of the concentration detecting means and the acceleration detecting means. 2. In an internal combustion engine configured to supply alcohol-mixed fuel into the engine intake passage, the concentration detection means detects the alcohol concentration in gasoline, the deceleration detection means detects a deceleration driving state, and the concentration detection means and deceleration An alcohol mixed fuel supply control device for an internal combustion engine, comprising a fuel reduction means for reducing the amount of fuel in proportion to the alcohol concentration during deceleration operation based on the detection result of the detection means.
JP60058497A 1985-03-25 1985-03-25 Controller for feed of alcohol-mixed fuel for internal-combustion engine Pending JPS61218741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058497A JPS61218741A (en) 1985-03-25 1985-03-25 Controller for feed of alcohol-mixed fuel for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058497A JPS61218741A (en) 1985-03-25 1985-03-25 Controller for feed of alcohol-mixed fuel for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61218741A true JPS61218741A (en) 1986-09-29

Family

ID=13086056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058497A Pending JPS61218741A (en) 1985-03-25 1985-03-25 Controller for feed of alcohol-mixed fuel for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61218741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283339U (en) * 1988-12-19 1990-06-27
US5159898A (en) * 1990-10-01 1992-11-03 Pierburg Gmbh Process and apparatus for utilization of fuels with alcohol additives for an internal combustion engine
JP2010031804A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Fuel injection control device for flexible fuel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283339U (en) * 1988-12-19 1990-06-27
US5159898A (en) * 1990-10-01 1992-11-03 Pierburg Gmbh Process and apparatus for utilization of fuels with alcohol additives for an internal combustion engine
JP2010031804A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Fuel injection control device for flexible fuel engine

Similar Documents

Publication Publication Date Title
US4391253A (en) Electronically controlling, fuel injection method
US4735181A (en) Throttle valve control system of internal combustion engine
GB2334348A (en) Deceleration fuel shut-off mode in a direct injection spark ignition engine
US4512318A (en) Internal combustion engine with fuel injection system
JPS58162735A (en) Fuel cut controller for internal combustion engine
JPH0251052B2 (en)
US4523570A (en) Fuel injection control in internal combustion engine
KR0122459B1 (en) Air-fuel ratio control apparatus for multi cylinder engine
JPS61218741A (en) Controller for feed of alcohol-mixed fuel for internal-combustion engine
JPH0512538B2 (en)
JPS58135332A (en) Method for controlling air-fuel ratio for internal-combustion engine
JPH0146696B2 (en)
GB2121215A (en) Automatic control of the fuel supply to an internal combustion engine immediately after termination of fuel cut
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JP2712153B2 (en) Load detection device for internal combustion engine
JP3552255B2 (en) Fuel injection control device for internal combustion engine
JPH0372824B2 (en)
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JPS6019942A (en) Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine
JPH0475382B2 (en)
JPS61132744A (en) Air-fuel ratio controller of internal-conbustion engine
JPH05542B2 (en)
JPH0830460B2 (en) Ignition timing control device for internal combustion engine
JPS62233441A (en) Fuel injection device of internal combustion engine
JPH059621B2 (en)