JPS6121790A - Treatment of sewage - Google Patents

Treatment of sewage

Info

Publication number
JPS6121790A
JPS6121790A JP14159384A JP14159384A JPS6121790A JP S6121790 A JPS6121790 A JP S6121790A JP 14159384 A JP14159384 A JP 14159384A JP 14159384 A JP14159384 A JP 14159384A JP S6121790 A JPS6121790 A JP S6121790A
Authority
JP
Japan
Prior art keywords
treatment
nitrogen
sewage
tank
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14159384A
Other languages
Japanese (ja)
Inventor
Takao Ikehata
池幡 隆夫
Tatsuo Takechi
武智 辰夫
Toshiaki Tsubone
俊明 局
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14159384A priority Critical patent/JPS6121790A/en
Publication of JPS6121790A publication Critical patent/JPS6121790A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the effect of biological treatment, by removing ammoniacal nitrogen from sewage containing a BOD component, a nitrogen component and a phosphorus component before performing boilogical treatment including anaerobic treatment and aerobic treatment. CONSTITUTION:Biological treatment including anaerobic treatment and aerobic treatment is performed after ammoniacal nitrogen is removed from aewage containing a BOD component, a nitrogen component and a phosphorus component. for example, the removal of ammonical nitrogen is performed by an ammonia stripping method. That is, raw sewage 1, to which an alkali agent 9 was added, is introduced into a gas-liquid contact reactor 10 where sewage is contacted with gas 11 and ammonia in sewage is volatilized into the gas as ammonia gas. The sewage 13, from which ammonia was removed, is introduced into an anaerobic tank 4 along with the return sludge 3 obtained from a sedimentation basin 2 to receive anaerobic treatment and the resulting sludge mixed liquid receives aerobic treatment in an aerobic tank 5 to be introduced into the sedimentation basin 2 where solid-liquid separation is performed to obtain separated sludge and separated water 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、BOD成分、アンモニア性窒素成分及びリン
成分を含む汚水を生物学的に処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for biologically treating wastewater containing BOD components, ammonia nitrogen components and phosphorus components.

〔従来の技術〕[Conventional technology]

従来、BOD成分、窒素成分、リン成分等を含有する有
機性汚水の処理においては、活性汚泥法が広く利用され
ておシ、標準的な活性汚泥法によシ、主にBOD成分の
処理が可能である。この方法では、汚泥が汚水中の汚濁
物質を取シ込んで増殖するため、菌体合成に利用される
窒素成分およびリン成分も除去されるが、その除去量は
BODの除去量に比して少ない。とのため下水やし尿等
の汚水に対し、標準的な活性汚泥処理を行った場合窒素
成分、リン成分が比較的高濃度で残留していた。窒素及
びリンは、閉鎖性水域における富栄養化の原因物質とな
るため、その除去が望まれているが、標準的な活性汚泥
法では、この問題に充分対処できなかった。
Conventionally, the activated sludge method has been widely used to treat organic wastewater containing BOD components, nitrogen components, phosphorus components, etc., and the standard activated sludge method mainly treats BOD components. It is possible. In this method, the sludge absorbs pollutants in the wastewater and multiplies, so the nitrogen and phosphorus components used for bacterial cell synthesis are also removed, but the amount removed is compared to the amount of BOD removed. few. Therefore, when standard activated sludge treatment is applied to wastewater such as sewage or human waste, nitrogen and phosphorus components remain at relatively high concentrations. Nitrogen and phosphorus are the causative agents of eutrophication in closed water bodies, and their removal is desired, but standard activated sludge methods have not been able to adequately address this problem.

近時、このような問題を解決するための方法が種々研究
されてきている。第3図はBOD成分。
Recently, various methods for solving such problems have been studied. Figure 3 shows the BOD component.

窒素成分およびリン成分を含肩する汚水に対してBOD
 、窒素およびリンを生物学的に除去する方法の一例を
示す。この方法は、原汚水1を沈殿池2で得た汚泥の一
部である返送汚泥3と共に、嫌気槽4へ導入し、嫌気処
理したる後、汚泥混合液を好気槽(曝気槽)5にて好気
処理し、沈殿池2を経て処理水6を得る方法である。こ
の方法は有機物の存在下で汚泥を嫌気性処理すると、汚
泥は体内のリンを放出し、しかる後好気性処理すれば、
汚泥は放出し九量以上のリンを体内に取シ込むという現
象を利用してリン除去を行うもので、この方法によシ原
汚水中のリンが、最終的に汚泥中に濃縮され、該汚泥を
分離・除去、処理・処分することによって汚水からの除
去が完結する。
BOD for wastewater containing nitrogen and phosphorus components
, shows an example of a method for biologically removing nitrogen and phosphorus. In this method, raw sewage 1 is introduced into an anaerobic tank 4 together with return sludge 3, which is a part of the sludge obtained in a settling tank 2, and after anaerobic treatment, the sludge mixture is transferred to an aerobic tank (aeration tank) 5. In this method, the water is subjected to aerobic treatment and passed through a settling tank 2 to obtain treated water 6. In this method, when sludge is treated anaerobically in the presence of organic matter, the sludge releases its phosphorus, and then treated aerobically,
Phosphorus is removed by utilizing the phenomenon that sludge is released and more than 90% of phosphorus is taken into the body. By this method, the phosphorus in the raw sewage is finally concentrated in the sludge, and the phosphorus is removed. Removal from sewage is completed by separating, removing, treating, and disposing of sludge.

また、嫌気槽4においては、嫌気性菌である脱窒菌が存
在するので、硝化処理の結果生じた亜硝酸性窒素、硝酸
性窒素を導入すれば原汚水1中のBOD成分を有機炭素
源としだ生物学的脱窒反応が起る。曝気槽5では、好気
的な生物処理を行ない、BOD汚泥負荷を低く保つこと
によってBOD除去および硝化処理を行なう。第3図に
は示していないが、好気槽5の汚泥混合液の一部もしく
は、処理水6の一部を嫌気槽4へ循環返送することによ
って、硝化処理で生じた亜硝酸性窒素、硝酸性窒素を嫌
気槽4へ導入して、脱窒処理を行うことができる。
In addition, in the anaerobic tank 4, denitrifying bacteria, which are anaerobic bacteria, are present, so if nitrite nitrogen and nitrate nitrogen produced as a result of nitrification treatment are introduced, the BOD component in the raw wastewater 1 can be used as an organic carbon source. A biological denitrification reaction occurs. In the aeration tank 5, aerobic biological treatment is performed to keep the BOD sludge load low, thereby performing BOD removal and nitrification. Although not shown in FIG. 3, by circulating a portion of the sludge mixture in the aerobic tank 5 or a portion of the treated water 6 to the anaerobic tank 4, nitrite nitrogen generated in the nitrification process, Nitrate nitrogen can be introduced into the anaerobic tank 4 to perform denitrification treatment.

かくて)この方法を用いることによって、生物学的にB
OD除去、脱窒及び脱リン処理が可能である。
Thus, by using this method, biologically B.
OD removal, denitrification and dephosphorization treatments are possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし外から、この方法は、BOD除去、脱窒脱リンの
処理をすべて生物の作用によって行なう方法である。こ
のためこの方法の処理性能は、原汚水中のアンモニア性
窒素の毒性によシ影響を受け、アンモニア性窒素濃度が
高い場合には阻害作用も著しい。また、この方法におい
て原汚水1は嫌気槽4内で嫌気処理を受けるため、原汚
水中の蛋白質成分の分解によシアンモニア性窒素を生じ
、とれと原汚水中のアンモニア性窒素との相乗作用によ
って、嫌気性処理及び好気性処理の生物活性が阻害され
るという問題もある。また、硝化の結果生じた亜硝酸性
窒素。
However, from the outside, this method is a method in which BOD removal and denitrification and dephosphorization are all performed by the action of living organisms. Therefore, the treatment performance of this method is affected by the toxicity of ammonia nitrogen in the raw wastewater, and when the ammonia nitrogen concentration is high, the inhibitory effect is significant. In addition, in this method, the raw sewage 1 is subjected to anaerobic treatment in the anaerobic tank 4, so cyanmoniac nitrogen is produced by decomposition of protein components in the raw sewage, and a synergistic effect between the sewage and the ammonia nitrogen in the raw sewage occurs. There is also the problem that the biological activity of anaerobic treatment and aerobic treatment is inhibited by this. Also, nitrite nitrogen produced as a result of nitrification.

硝酸性窒素を高濃度で嫌気処理工程へ導入すると、生物
脱リン反応のうちの嫌気反応が阻害される点も問題であ
る。
Another problem is that when nitrate nitrogen is introduced at a high concentration into the anaerobic treatment process, the anaerobic reaction among the biological dephosphorization reactions is inhibited.

第4図は、従来技術によるBOD除去、脱窒。Figure 4 shows BOD removal and denitrification using conventional technology.

脱リン処理のための生物処理法の他の例を示すものであ
る。この方法が、第3図における従来法と異る点は、脱
窒槽7を設け、好気槽5よシ脱窒槽7へ至る汚泥混合液
の循環経路8を設けた点である。即ちこの方法では、脱
リンのための嫌気反応を行わしめる嫌気槽4と脱窒のた
めの嫌気反応を行わしめる脱窒槽7とを分離している。
This figure shows another example of a biological treatment method for dephosphorization treatment. This method differs from the conventional method shown in FIG. 3 in that a denitrification tank 7 is provided and a circulation path 8 for the sludge mixture from the aerobic tank 5 to the denitrification tank 7 is provided. That is, in this method, an anaerobic tank 4 that performs an anaerobic reaction for dephosphorization and a denitrification tank 7 that performs an anaerobic reaction for denitrification are separated.

乙の方法によれば、好気槽5での硝化処理によシ生じた
亜硝酸性窒素、硝酸性窒素を嫌気槽4へ導入することが
なくなシ、生物脱リン反応のうちの嫌気反応が、亜硝酸
性窒素、硝酸性窒素に二って阻害されることを防止する
ことができる。
According to method B, nitrite nitrogen and nitrate nitrogen generated by nitrification in the aerobic tank 5 are not introduced into the anaerobic tank 4, and the anaerobic reaction of the biological dephosphorization reaction is eliminated. can be prevented from being inhibited by nitrite nitrogen and nitrate nitrogen.

しかし、この方法においても、原汚水中のアンモニア性
窒素あるいは蛋白質成分に由来するアンモ;、ア性窒素
による生物反応への影響、すなわち、反応速度の低下、
停止といった現象を避けることができない。
However, even in this method, ammonia derived from ammonia nitrogen or protein components in the raw wastewater;
Phenomena such as outages cannot be avoided.

本発明は、かかる事情に鑑みてなされたもので、その目
的とするところは、予じめアンモニア性窒素を除去して
から生物学的彦汚水処理を行なうことによってその処理
効果を向上せんとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to improve the treatment effect by removing ammonia nitrogen in advance and then performing biological Hiko wastewater treatment. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明は、 BOD成分、窒素成分及びリン成分を
含む汚水に対しアンモニアストリッピング法、ゼオライ
ト吸着法、イオン交換法、不連続点塩素化法などの物理
化学的な前処理を施こしてからアンモニア性窒素を除去
してアンモニア性窒素による生物反応への影響をなくし
てから、嫌気性処理及び好気性処理を含む生物学的処理
を効果的におこなう汚水の処理方法である。
That is, in the present invention, wastewater containing BOD components, nitrogen components, and phosphorus components is subjected to physicochemical pretreatment such as ammonia stripping method, zeolite adsorption method, ion exchange method, discontinuous point chlorination method, etc. This is a wastewater treatment method that effectively performs biological treatment including anaerobic treatment and aerobic treatment after removing ammonia nitrogen to eliminate the influence of ammonia nitrogen on biological reactions.

〔実施例〕〔Example〕

以下本発明方法を図示する実施例を参照して説明する。 The method of the present invention will be explained below with reference to illustrative examples.

第1図は本発明方法に係る汚水処理方法の一実施例を示
すフローシートである。この方法ではアンモニア性窒素
の除去をアンモニアストリッピング法で行っている。即
ち原汚水1にアルカリ剤9を添加した後、気液接触反応
器10へ導入し、ここで気体11と汚水とを接触せしめ
て、汚水中のアンモニアをアンモニアガスとして気体中
に揮散せしめる。そしてアンモニアを含む気体12とア
ンモニアを除去した汚水13とを得る。この工程でアル
カリ剤9としては、消石灰、力性ソーダ等を用いること
ができる。またその添加量は、原汚水の性状、例えばア
ンモニア性窒素濃度、酸度あるいは所望のアンモニア性
窒素除去率などによって異なる。
FIG. 1 is a flow sheet showing one embodiment of the sewage treatment method according to the present invention. In this method, ammonia nitrogen is removed by an ammonia stripping method. That is, after adding the alkaline agent 9 to the raw sewage 1, the raw sewage 1 is introduced into the gas-liquid contact reactor 10, where the gas 11 and the sewage are brought into contact with each other, and the ammonia in the sewage is volatilized into the gas as ammonia gas. Then, a gas 12 containing ammonia and waste water 13 from which ammonia has been removed are obtained. In this step, slaked lime, aqueous soda, etc. can be used as the alkali agent 9. Further, the amount added varies depending on the properties of the raw sewage, such as the ammonia nitrogen concentration, acidity, or desired ammonia nitrogen removal rate.

例えば90%以上の除去率を得るには、pH11以上と
なるようにアルカリ剤を添加し、50チ程度の除去率を
得るには、PI(9〜10程度となるようにアルカリを
添加すればよい。気体1)としては、空気、水蒸気等を
用いることができる。
For example, to obtain a removal rate of 90% or more, add an alkali agent so that the pH becomes 11 or more, and to obtain a removal rate of about 50%, add an alkali agent to make the PI (about 9 to 10). Good. As the gas 1), air, water vapor, etc. can be used.

次いでアンモニアを含む気体12については、必要に応
じてさらに処理を行う。一方アンモニア除去した汚水1
3については、沈殿池2から得た返送汚泥3と共に嫌気
槽4へ導入して嫌気処理を行った後、汚泥混合液を好気
槽5にて好気処理を行い、その後汚泥混合液を沈殿池2
へ稽大して固液分離し、分離汚泥と分離水(処理水6)
とを得る。
Next, the gas 12 containing ammonia is further processed as necessary. On the other hand, sewage from which ammonia was removed 1
Regarding 3, the sludge mixture is introduced into the anaerobic tank 4 together with the returned sludge 3 obtained from the settling tank 2 for anaerobic treatment, and then the sludge mixture is subjected to aerobic treatment in the aerobic tank 5, and then the sludge mixture is sedimented. Pond 2
The solid and liquid are separated into separated sludge and separated water (treated water 6).
and get.

この方法によれば、生物処理工程に導入する前に、原汚
水中のアンモニア窒素濃度を所望の濃度にまで低下させ
、アンモニア性窒素に起因する生物処理反応速度の低下
を防止し、生物の能力を有効に発揮させるととができる
。即ち、生物処理工程に導入される窒素の濃度が低下す
るため、好気槽5での硝化反応によシ生じる亜硝酸性窒
素、硝酸性窒素の濃度を低下させるととができ、それが
嫌気槽4へ循環返送された場合の生物脱リン嫌気反応に
対する阻害効果も低減できる。また、一般的に反応槽単
位容積当シのアンモニア性窒素除去反応速度は、第1図
の前処理工程におけるような物理化学的処理法の方が生
物学的処理法よシ大である。このため、このような前処
理を行うことによって、全体の処理装置をコンノぐクト
化することができる。
According to this method, the ammonia nitrogen concentration in the raw wastewater is reduced to the desired concentration before introducing it into the biological treatment process, and the biological treatment reaction rate is prevented from decreasing due to ammonia nitrogen. If you make effective use of it, you can achieve. That is, since the concentration of nitrogen introduced into the biological treatment process decreases, the concentration of nitrite nitrogen and nitrate nitrogen produced by the nitrification reaction in the aerobic tank 5 decreases, which causes anaerobic treatment. The inhibitory effect on the biological dephosphorization anaerobic reaction when it is circulated back to the tank 4 can also be reduced. Furthermore, in general, the ammonia nitrogen removal reaction rate per unit volume of the reaction tank is higher in the physicochemical treatment method as in the pretreatment step shown in FIG. 1 than in the biological treatment method. Therefore, by performing such pre-processing, the entire processing apparatus can be interconnected.

第1図の実施例では、アンモニア除去工程にストリッピ
ング法を用いたが、その代シに一ゼオライト吸着処理法
、イオン交換処理法あるいは、不連続点塩素イビ処理法
を用いることも可能である。
In the embodiment shown in Fig. 1, a stripping method was used in the ammonia removal process, but it is also possible to use a zeolite adsorption treatment method, an ion exchange treatment method, or a discontinuous point chlorine treatment method instead. .

また、第1図の実施例における生物処理工程の部分で、
好気槽5から汚泥混合液を嫌気槽4へ循環・返送するこ
と、あるいは、処理水6の一部を嫌気槽4へ循環・返送
することも可能である。
In addition, in the biological treatment process part of the embodiment shown in FIG.
It is also possible to circulate and return the sludge mixture from the aerobic tank 5 to the anaerobic tank 4, or to circulate and return a portion of the treated water 6 to the anaerobic tank 4.

第2図は、本発明方法に係る汚水処理方法の他の実施例
を示すフローシートである。この方法は、原汚水1をス
トリッピング処理し、アンモニア除去した汚水13を得
る点は、第1図の実施例と同様である。本実施例におい
ては、アンモニア除去した汚水を沈殿池2から得た返送
汚泥3と共に嫌気槽4へ導入して嫌気処理した後、汚泥
混合液をもう1つの嫌気槽である脱窒槽7へ導入する。
FIG. 2 is a flow sheet showing another embodiment of the sewage treatment method according to the present invention. This method is similar to the embodiment shown in FIG. 1 in that raw wastewater 1 is subjected to a stripping treatment to obtain wastewater 13 from which ammonia has been removed. In this embodiment, the sewage from which ammonia has been removed is introduced into the anaerobic tank 4 together with the return sludge 3 obtained from the settling tank 2 for anaerobic treatment, and then the sludge mixture is introduced into the denitrification tank 7, which is another anaerobic tank. .

そして汚泥混合液を好気槽5からI!51!窒槽7へ循
環経路8を通じて循環返送し1、この汚泥混合液と嫌気
槽4からの汚泥混合液とを共に脱窒処理し、その後、汚
泥混合液を好気槽5にて好気処理する。次いで汚泥混合
液を沈殿池2にて固液分離を行って処理水6を得る。
Then, the sludge mixture is transferred from the aerobic tank 5 to I! 51! The sludge mixture is circulated and returned to the nitrogen tank 7 through the circulation path 8 1, and both the sludge mixture and the sludge mixture from the anaerobic tank 4 are subjected to denitrification treatment, and then the sludge mixture is subjected to aerobic treatment in the aerobic tank 5. Next, the sludge mixture is subjected to solid-liquid separation in the settling tank 2 to obtain treated water 6.

この方法によれば、原汚水中のアンモニア性窒素と原汚
水中の蛋白質性窒素が嫌気的生物処理を受ける過程で発
生したアンモニア性窒素とによる相乗的な生物処理効率
低減効果を防止することができる。この点は、第3図の
実施例の場合と同様である。
According to this method, it is possible to prevent the synergistic effect of reducing biological treatment efficiency due to the ammonia nitrogen in the raw wastewater and the ammonia nitrogen generated during the process in which the protein nitrogen in the raw wastewater undergoes anaerobic biological treatment. can. This point is similar to the case of the embodiment shown in FIG.

第2図における実施例においては、好気槽5から返送さ
れた弗硝酸性窒素、硝酸性窒素が、生物脱リン嫌気反応
のだめの嫌気槽4に入らないので、脱窒槽7へ返送する
亜硝酸性窒素、硝酸性窒素の濃度が高くとも、良好なリ
ン除去性能を得ることができ、前処理工程でのアンモニ
ア性窒素除去率を低下させることが可能となる。
In the embodiment shown in FIG. 2, the fluornitrate nitrogen and nitrate nitrogen returned from the aerobic tank 5 do not enter the anaerobic tank 4, which is the reservoir for the biological dephosphorization anaerobic reaction, so nitrite is returned to the denitrification tank 7. Even if the concentrations of ammonia nitrogen and nitrate nitrogen are high, good phosphorus removal performance can be obtained, and it is possible to reduce the ammonia nitrogen removal rate in the pretreatment step.

アンそニア性窒素の除去法として、ゼオライト吸着処理
法あるいはイオン交換処理法等をも使うことができる点
は、第1図における実施例と同様である。
Similar to the embodiment shown in FIG. 1, a zeolite adsorption treatment method or an ion exchange treatment method can also be used as a method for removing anthonia nitrogen.

〔実験例〕[Experiment example]

次に、本発明に基いて実験を行った実施例につき説明す
る。本発明方法において用いた装置は、第1図および第
2図に基くもので、比較方法として用いた装置は、第3
図および第4図に基くものである。
Next, examples in which experiments were conducted based on the present invention will be described. The apparatus used in the method of the present invention is based on FIGS. 1 and 2, and the apparatus used in the comparative method is the one shown in FIG.
It is based on FIG.

原汚水1としては、合成廃水を用い、処理量を0.2 
m” /日とした。第3図に基く装置の有効容量は、嫌
気槽4を0.2 m” 、好気槽5を0.6m3とし、
第4図に基く装置においては、嫌気槽4および脱窒槽7
をそれぞれ0.1 m” *好気槽5を0.6 m”と
した。第1図および第2図に基く装置の生物処理反応槽
の有効容量は、それぞれ第3図および第4図における反
応槽有効容、量の1710ずつとした。第3図に基〈従
来方法および第1図に基く本発明方法での装置において
は、好気槽5から嫌気槽4への循環返送流量を0.4m
”/日とし、第4図に基〈従来方法および第2図に基く
本発明方法においては、好気槽5から脱窒槽7への循環
返送流量を0.4m”/日とした。
As raw sewage 1, synthetic wastewater was used, and the treatment amount was 0.2
m"/day. The effective capacity of the device based on Figure 3 is 0.2 m" for the anaerobic tank 4, 0.6 m3 for the aerobic tank 5,
In the apparatus based on FIG. 4, an anaerobic tank 4 and a denitrification tank 7
were each 0.1 m" *The aerobic tank 5 was 0.6 m". The effective capacity of the biological treatment reaction tank of the apparatus based on FIGS. 1 and 2 was set to be 1710 times the effective capacity of the reaction tank in FIGS. 3 and 4, respectively. Based on FIG. 3, in the conventional method and the apparatus according to the present invention method based on FIG.
Based on FIG. 4, the circulating return flow rate from the aerobic tank 5 to the denitrification tank 7 was set to 0.4 m/day.

いずれの場合も、返送汚泥3の流量は、0.2fn37
日とした。第1図および第2図に基く本発明方法におい
て、原汚水1に対して、40チカ性ソーダ水溶液を添加
して、pH11となし、原汚水1の容量の1200倍の
容量の空気を散気管を通じて吹き込んでアンモニア性窒
素除去処理を行った。それぞれの生物処理装置において
、嫌気槽4および脱窒槽7は、攪拌機によシ攪拌を行い
、好気槽5はDo 2 m?/7以上となるように散気
管を通じて曝気を行った。
In either case, the flow rate of the return sludge 3 is 0.2fn37
It was a day. In the method of the present invention based on FIGS. 1 and 2, a 40% strength soda aqueous solution is added to the raw sewage 1 to adjust the pH to 11, and a volume of air 1200 times the volume of the raw sewage 1 is supplied through an aeration tube. Ammonia nitrogen removal treatment was performed by blowing through the tank. In each biological treatment device, the anaerobic tank 4 and denitrification tank 7 are stirred by a stirrer, and the aerobic tank 5 is Do 2 m? Aeration was carried out through an aeration pipe so that the air pressure was 0.7 or higher.

本実験によシ得た水質の分析結果は第1表の通シで、本
発明方法による処理水の水質は、従来方法による、処理
水よシも良好でアシ、生物処理工程での反応槽単位有効
容量当シのBOD除去量、全窒素除去量およびリン除去
量は従来方法に比して高く、生物処理活性が有効に発揮
されていることがわかった・ 〔発明の効果〕 本発明によれば、生物学的処理の前に予じめアンモニア
性窒素を除去しておくので、汚水のBOD除去、脱窒、
脱リンの同時処理のための生物処理を効果的に行なうこ
とができ、とくにアンモニア性窒素濃度、蛋白質性窒素
濃度がBOD濃度、リン濃度に比して高いような汚水に
対しては、その効果が顕著である。
The water quality analysis results obtained in this experiment are shown in Table 1.The water quality of the water treated by the method of the present invention was as good as that of the water treated by the conventional method. It was found that the BOD removal amount, total nitrogen removal amount, and phosphorus removal amount per unit effective capacity were higher than those of the conventional method, and the biological treatment activity was effectively exhibited. [Effects of the Invention] The present invention According to the study, since ammonia nitrogen is removed in advance before biological treatment, BOD removal, denitrification, and
Biological treatment for simultaneous dephosphorization can be performed effectively, especially for wastewater where ammonia nitrogen concentration and protein nitrogen concentration are higher than BOD concentration and phosphorus concentration. is remarkable.

4、図の簡単な説明 第1図は、本発明に係る汚水の処理方法の一例を示すフ
ローシート図、第2図は本発明方法の他の例を示すフロ
ーシート図、第3図及び第4図は従来の汚水の処理方法
を示すフローシート図である。
4. Brief explanation of the figures FIG. 1 is a flow sheet diagram showing one example of the wastewater treatment method according to the present invention, FIG. 2 is a flow sheet diagram showing another example of the method of the present invention, and FIGS. FIG. 4 is a flow sheet diagram showing a conventional wastewater treatment method.

1・・・原汚水、2・・・沈殿池、3・・・返送汚泥、
4・・・嫌気槽、5・・・好気槽、6・・・処理水、7
・・・脱窒槽、8・・・循環経路、9・・・アルカリ剤
、10・・・気液接触反応器、11・・・気体、12・
・・アンモニアを含む気体、13・・・アンモニア除去
処理された汚水。
1... Raw sewage, 2... Sedimentation tank, 3... Returned sludge,
4... Anaerobic tank, 5... Aerobic tank, 6... Treated water, 7
... denitrification tank, 8 ... circulation path, 9 ... alkali agent, 10 ... gas-liquid contact reactor, 11 ... gas, 12.
...Gas containing ammonia, 13...Sewage treated to remove ammonia.

Claims (1)

【特許請求の範囲】[Claims] BOD成分、窒素成分及びリン成分を含む汚水からアン
モニア性窒素を除去した後、嫌気性処理及び好気性処理
を含む生物学的処理を行なう汚水の処理方法。
A method for treating wastewater, which involves removing ammonia nitrogen from wastewater containing BOD components, nitrogen components, and phosphorus components, and then performing biological treatment including anaerobic treatment and aerobic treatment.
JP14159384A 1984-07-09 1984-07-09 Treatment of sewage Pending JPS6121790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14159384A JPS6121790A (en) 1984-07-09 1984-07-09 Treatment of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14159384A JPS6121790A (en) 1984-07-09 1984-07-09 Treatment of sewage

Publications (1)

Publication Number Publication Date
JPS6121790A true JPS6121790A (en) 1986-01-30

Family

ID=15295613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14159384A Pending JPS6121790A (en) 1984-07-09 1984-07-09 Treatment of sewage

Country Status (1)

Country Link
JP (1) JPS6121790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424068B1 (en) * 2001-03-05 2004-03-24 주식회사 에코젠 Apparatus for wastewater treatment from livestock farm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424068B1 (en) * 2001-03-05 2004-03-24 주식회사 에코젠 Apparatus for wastewater treatment from livestock farm

Similar Documents

Publication Publication Date Title
JPH0122039B2 (en)
JP2003126887A (en) Method and device for treating water containing phosphorus and ammonia
JP2002263689A (en) Method for treating ammonia-containing waste water and device
JPS6117558B2 (en)
JPS585118B2 (en) Yuukiseihaisuino
JPH0639396A (en) Method for treating waste water
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPS6121790A (en) Treatment of sewage
JP4085436B2 (en) Drainage treatment apparatus and method
JP3288097B2 (en) Purification method of nitrogen-containing polluted water
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
JPS6099394A (en) Biological denitrification and dephosphorization apparatus of sewage
JPH01215400A (en) Biological denitrifying and dephosphorizing method for waste water
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
JPH1080697A (en) Complete treatment of organic sewage
JPS6274496A (en) Method for treating waste water
JP2003080298A (en) Method of treating surplus sludge in wastewater treatment process
KR100228739B1 (en) Disposal method of organic wastewater using oxygen
JPS5864190A (en) Treatment of malodorous gas and organic waste water
JPS6253238B2 (en)
JPH03229693A (en) Treatment of organic waste water
JPS6115797A (en) Treatment of sewage
JPH0642956B2 (en) Organic wastewater treatment method