JPS61217514A - Production of preliminary dephosphorizing agent - Google Patents

Production of preliminary dephosphorizing agent

Info

Publication number
JPS61217514A
JPS61217514A JP6032785A JP6032785A JPS61217514A JP S61217514 A JPS61217514 A JP S61217514A JP 6032785 A JP6032785 A JP 6032785A JP 6032785 A JP6032785 A JP 6032785A JP S61217514 A JPS61217514 A JP S61217514A
Authority
JP
Japan
Prior art keywords
slag
pipe
suction
soda ash
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6032785A
Other languages
Japanese (ja)
Other versions
JPH0588283B2 (en
Inventor
Shuji Yoshida
修司 吉田
Masaki Tateno
舘野 正毅
Setsuo Okamoto
岡本 節男
Shigeyoshi Matsuo
松尾 重良
Yatsuhiro Kawayoshi
川良 八紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6032785A priority Critical patent/JPS61217514A/en
Publication of JPS61217514A publication Critical patent/JPS61217514A/en
Publication of JPH0588283B2 publication Critical patent/JPH0588283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To produce a granular preliminary dephosphorizing agent easily and inexpensively by sucking and removing the molten slag of soda ash refining by an ejector and adding soda ash-contg. powder to the slag in the mid-way of suction. CONSTITUTION:The aperture at the bottom end of a suction pipe 3 of an ejector type slag sucking and discharging device 1 which ejects a high-pressure gas such as air from a high-pressure gas ejection pipe 4 into a discharge pipe 2 consisting of a pipe closed at one end and branched with the pipe 3 is brought near to the molten slag 7 generated by molten iron refining by the soda ash refining agent to suck the slag. The sucked slag is removed through a suction area 8. The soda ash-contg. collected dust 6 from a powder adding pipe 5 is ejected and added to the sucked slag 7 by using a carrier gas. The solidification of the slag 7 liquid drops is thereby accelerated to prevent clogging. The granular dephosphorizing agent 12 having adequate components are efficiently formed and are recovered into a recovering boxy 11 provided with an air filter 13 and an exhauster 14 through a lead-out pipe 10 from a scattering area 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ソーダ灰系予備脱燐剤の製造方法、特にエジ
ェクター式吸引排滓装置による溶融スラグの除滓を利用
して、溶銑の一次脱燐処理に通した粒状の安価な予備脱
燐剤を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a method for producing a soda ash-based preliminary dephosphorizing agent. This invention relates to a method for producing a granular, inexpensive preliminary dephosphorizing agent that has been subjected to a dephosphorizing treatment.

(従来の技術) 出銑後、転炉装入前の溶銑に説硅、脱燐、脱硫などの溶
銑予備処理を施し、これらの各予備処理で発生したスラ
グを完全に除去したのち転炉で税炭精錬する、いわゆる
スラグレス精錬が、精錬効率および合金還元率の面から
最近注目され、一部実施に移されている。
(Conventional technology) After tapping and before charging into the converter, the hot metal is subjected to preliminary treatments such as desilicification, dephosphorization, and desulfurization, and the slag generated in each of these preliminary treatments is completely removed before being transferred to the converter. So-called slagless refining, which involves refining tax coal, has recently attracted attention in terms of refining efficiency and alloy reduction rate, and has been put into practice in some cases.

かかる溶銑予備処理においては、高炉より出銑した溶銑
は、高炉樋上で高炉スラグを分離してから、まず酸化鉄
などの脱珪剤による樋脱珪処理を受け、次いで普通には
別の容器、たとえば混銑車、取鍋などに移された後で脱
硫と脱燐を受ける。
In such hot metal pretreatment, the hot metal tapped from the blast furnace is separated from the blast furnace slag on the blast furnace gutter, first subjected to gutter desiliconization treatment using a desiliconizing agent such as iron oxide, and then usually placed in another container, For example, after being transferred to a mixer car, ladle, etc., it undergoes desulfurization and dephosphorization.

溶銑予備処理処理に使用する脱燐剤は、石灰系とソーダ
灰(Na2CO3)系とに大別されるが、CaOとFe
2O3からなる石灰系脱燐剤に比べて、ソーダ灰系脱燐
剤の方が反応時間が短く、脱燐効率も高いため、脱燐剤
としての性能はすぐれている。
Dephosphorization agents used in hot metal pretreatment are roughly divided into lime-based and soda ash (Na2CO3)-based dephosphorization agents, but CaO and Fe
Compared to a lime-based dephosphorizing agent made of 2O3, a soda ash-based dephosphorizing agent has a shorter reaction time and higher dephosphorizing efficiency, so it has superior performance as a dephosphorizing agent.

しかし、ソーダ灰系脱燐剤は高価であり、また生成スラ
グの処理が複雑になることから、広く実用化されるには
至っていない。
However, soda ash-based dephosphorizing agents are expensive and the treatment of the generated slag is complicated, so they have not been widely put into practical use.

本発明者らは先に、溶銑をまず脱珪処理してSi含有量
を十分に低下させた後、ソーダ灰を吹込んで脱燐処理し
、生成スラグからソーダ灰を回収・再利用することを提
案した(特開昭57−35604号)。これは、高価な
ソーダ灰が溶銑中のStと反応して脱燐剤の損失となる
のを防ぐことを主眼としたものであるが、反応しないま
ま溶銑上スラグまたは粉塵として回収されるソーダ灰が
多く、回収再利用により精錬剤の原単位は抑えられるも
のの、多量のソーダ灰の添加補充を要した。
The present inventors first desilicated the hot metal to sufficiently reduce the Si content, then injected soda ash to perform the dephosphorization treatment, and recovered and reused the soda ash from the generated slag. (Japanese Patent Application Laid-Open No. 57-35604). The main purpose of this is to prevent expensive soda ash from reacting with St in the hot metal, resulting in loss of dephosphorizing agent. Although the basic unit of refining agent could be reduced by collecting and reusing it, a large amount of soda ash had to be added and replenished.

溶銑脱燐における脱燐剤の使用量を低減させる方法とし
て、高炉樋上で脱珪処理に続いて連続的に一次脱燐を実
施し、次いで容器内で二次脱燐を行う2段階脱燐方法が
提案された(特開昭58−48614号)。これは、高
燐域で少量の脱燐剤により短時間の一次脱燐を行った後
、低燐域で十分な量の脱燐剤により十分時間をかけて目
標値まで脱燐処理する方法であって、従来の方法に比べ
て同じ脱燐率を得るのに必要な脱燐剤の原単位が低減さ
れるので、特に高価なソーダ灰系脱燐剤による脱燐に適
した方法である。より詳しく説明すると、植土での一次
脱燐は比較的高燐濃度域での反応であるため、ごく少量
の脱燐剤で効率よく脱燐が進み、この段階で燐の大半は
溶銑から除去される。
As a method for reducing the amount of dephosphorizing agent used in hot metal dephosphorization, there is a two-step dephosphorization method in which primary dephosphorization is performed continuously following desiliconization treatment on the blast furnace gutter, and then secondary dephosphorization is performed in a vessel. was proposed (Japanese Unexamined Patent Publication No. 58-48614). This is a method in which primary dephosphorization is performed in a short period of time using a small amount of dephosphorizing agent in a high phosphorus region, and then dephosphorization is carried out in a low phosphorous region over a sufficient amount of time using a sufficient amount of dephosphorizing agent to reach the target value. Therefore, compared to conventional methods, the basic unit of dephosphorizing agent required to obtain the same dephosphorizing rate is reduced, so this method is particularly suitable for dephosphorizing using expensive soda ash-based dephosphorizing agents. To explain in more detail, primary dephosphorization in planted soil is a reaction in a relatively high phosphorus concentration range, so dephosphorization proceeds efficiently with a very small amount of dephosphorizing agent, and most of the phosphorus is removed from the hot metal at this stage. be done.

その後に排滓して容器内での本格脱燐を行うことで、こ
の二次脱燐の負荷を大幅に軽減でき、結果として脱燐剤
の合計使用量は従来の2/3程度で転炉吹錬前に燐濃度
を目標値まで低減させることができる。さらに、一般に
脱燐においては溶銑中のSiが脱燐剤と反応してスラグ
塩基度が低下し、スラグ性状が悪化するため、塩基度調
整の目的でSiとの反応量も見越して脱燐剤を余分に投
入しているが、上記方法での一次脱燐においては連続処
理であるためStの影響が小さく、そのため塩基度調整
に使用される脱燐剤量が少なくなることも原単位の低減
に寄与している。
By then discharging the slag and performing full-scale dephosphorization in the container, the load of this secondary dephosphorization can be significantly reduced, and as a result, the total amount of dephosphorization agent used in the converter furnace is reduced to about 2/3 of the conventional amount. The phosphorus concentration can be reduced to the target value before blowing. Furthermore, in general, during dephosphorization, Si in the hot metal reacts with the dephosphorizing agent, reducing the basicity of the slag and deteriorating the slag properties. However, since the primary dephosphorization in the above method is a continuous process, the influence of St is small, and therefore the amount of dephosphorizing agent used for basicity adjustment is reduced, which also reduces the basic unit. contributes to

上記の2段階脱燐法において、−次脱燐は極めて反応効
率の高い高燐域で行われ、しかもその後に二次脱燐、脱
硫などの精錬を受けることより、この−次段階に高価な
ソーダ灰を用いる必要はなく、多少の夾雑物が混入した
精錬剤でも十分にその目的は達することができるので、
できるだけ安価なものを使用するのが有利である。
In the above two-step dephosphorization method, the -second dephosphorization is carried out in a high phosphorus region where the reaction efficiency is extremely high, and furthermore, since it is followed by refining such as secondary dephosphorization and desulfurization, this second step is expensive. There is no need to use soda ash; a refining agent mixed with some impurities can suffice for the purpose.
It is advantageous to use the cheapest possible material.

また、−次脱燐は普通には植土で行われる。植土を流れ
る溶銑への精錬剤の添加方法には上置き法、ブラスティ
ング法(上部吹付は法)、インジェクション法(ランス
を浸漬して吹込む方法)などがあるが、装置の耐久性お
よび反応効率に優れたブラスティング法が最も多用され
ている。このブラスティング法では精錬剤は上から吹付
けて添加するので、精錬剤が微粉状であるとその大部分
が未反応のまま溶銑上にすぐに浮上してしまい、精錬効
率が低下する。そのため、精錬剤は、溶銑への侵入性や
搬送時の取扱い性も考慮して、粒径2〜2(1+n程度
の粒状であるのが好ましい。
Furthermore, secondary dephosphorization is usually carried out in planted soil. Methods for adding refining agents to hot metal flowing through the planting soil include the overlay method, blasting method (top spraying method), and injection method (method in which the lance is immersed and injected), but the durability of the equipment and The blasting method, which has excellent reaction efficiency, is most frequently used. In this blasting method, the refining agent is added by spraying from above, so if the refining agent is in the form of fine powder, most of it will immediately float to the top of the hot metal without reacting, reducing the refining efficiency. Therefore, the refining agent is preferably in the form of particles with a particle size of about 2 to 2 (1+n), taking into account the ability to penetrate into the hot metal and the ease of handling during transportation.

しかし、従来の脱燐剤はインジェクション法により添加
されることが多かったので微粉状のものが多く、これを
粒状化するには造粒工程を要し、コストがかかる。
However, since conventional dephosphorizing agents are often added by injection, they are often in the form of fine powder, and granulating this requires a granulation process, which is costly.

かかる状況から、脱燐効率のよいソーダ灰系材料から溶
銑の一次脱燐(予備脱燐)に適した安価な粒状の脱燐剤
を供給することがなお要望されている。
Under such circumstances, it is still desired to supply an inexpensive granular dephosphorizing agent suitable for primary dephosphorization (preliminary dephosphorization) of hot metal from soda ash-based materials with high dephosphorization efficiency.

安価な精錬剤として、製鉄所内で発生する各種スラグお
よびダストを使用して精錬剤を製造する試みがなされて
いる(例、特開昭50−160115号、同58−16
010号、同5B−64307号、特公昭54−410
05号、同55−21812号参照)。しかし、これら
のほとんどは微粉状の精錬剤を製造するものであるので
粒状化するには造粒工程が必要であり、また粒状精錬剤
が得られる方法でも水ガラスのような高価な造粒剤を必
要とし、しかも多くの方法は脱珪剤の製造を目的として
いる。したがって、粒状の脱燐剤をスラグやダストから
造粒工程を要しないで安価に製造する方法はなかった。
Attempts have been made to manufacture inexpensive refining agents using various types of slag and dust generated within steelworks (e.g., JP-A-50-160115, JP-A-58-16).
No. 010, No. 5B-64307, Special Publication No. 54-410
No. 05, see No. 55-21812). However, since most of these methods produce finely powdered refining agents, a granulation process is required to granulate them, and even methods that produce granular refining agents require expensive granulating agents such as water glass. However, many methods are aimed at producing desiliconizing agents. Therefore, there has been no method for manufacturing granular dephosphorizing agents from slag or dust at low cost without requiring a granulation process.

一方、前述したスラグレス精錬では、各溶銑予備処理工
程で発生したスラグは、次工程の精錬への妨害や復燐、
復硫などを避けるために、原則として各処理ごとにその
都度排滓される。特に、転炉装入に際しては、予備処理
スラグ中の不純物が転炉内で還元されて溶鋼内に入るの
を避けるため、スラグの完全除去が求められる。また、
転炉出鋼時にも同様に溶鋼清浄化のために完全除滓が求
められる。
On the other hand, in the above-mentioned slagless refining, the slag generated in each hot metal pretreatment process may interfere with the next refining process, cause rephosphorization,
In principle, slag is removed after each treatment to avoid resulfurization. In particular, when charging the slag into the converter, complete removal of the slag is required to prevent impurities in the pretreated slag from being reduced in the converter and entering the molten steel. Also,
Similarly, complete slag removal is required to clean molten steel during tapping from a converter.

これらの排滓手段としては、従来はノロ掻きによるか、
あるいは取鍋や転炉の場合は残銑もしくは残鋼が少なく
なりスラグが巻き込まれる直前に出銑もしくは出鋼を止
め、スラグを残銑もしくは残鋼とともに排出する方法が
普通であった。しかし、特にスラグレス精錬の場合は、
各溶銑予備処理工程で迅速かつ可及的に完全な排滓が必
要であるが、ノロ掻き方式ではノロの量が少なくなるに
つれてノロ擾き時に同時に溶銑も掻き出されるため完全
なノロ排出が行えず、また排滓に時間もかかるため、前
述したスラグレス精錬の効果を十分に発揮させることが
できなかった。
Conventionally, the means for removing these sludge was by scraping,
Alternatively, in the case of a ladle or converter, the usual method was to stop tapping or tapping just before residual pig iron or residual steel became low and slag was involved, and to discharge the slag together with the residual pig iron or residual steel. However, especially in the case of slagless refining,
It is necessary to remove slag quickly and as completely as possible in each hot metal pretreatment process, but with the slag scraping method, as the amount of slag decreases, the hot metal is also scraped out at the same time as slag scraping, making it possible to completely remove slag. Moreover, since it takes time to remove the slag, the effects of the slagless refining described above cannot be fully demonstrated.

迅速な排滓方法として、特開昭56−160868号に
、取鍋内のスラグを掻き寄せながら真空吸引する方法が
提案されている。この方法では、真空吸引後の溶融スラ
グが管壁などに付着し、管が詰まるのを防止するため、
吸引直後に注水してスラグを凝固、破砕し、スラリー状
でスラグを回収する。しかし、溶銑上で水を出すことよ
り、水蒸気爆発などの危険があり、作業員の多い工場内
では実施できない、そのため、この方法は混銑車中のス
ラグの排滓に通用できる程度である。また、高温のスラ
グを水で冷却するため大量の水を必要とし、設備の規模
が大きくなる上、高温のスラグの持つ顕熱が全く利用さ
れず、エネルギー的に損失である。
As a quick method for removing slag, Japanese Patent Application Laid-Open No. 160868/1983 proposes a method of vacuum suction while scraping up the slag in the ladle. This method prevents molten slag from adhering to the pipe wall after vacuum suction and clogging the pipe.
Immediately after suction, water is poured to solidify and crush the slag, and the slag is recovered in the form of a slurry. However, this method is more dangerous than discharging water over hot metal, such as steam explosion, and cannot be carried out in a factory with many workers.Therefore, this method can only be used to remove slag from a pig iron mixing car. In addition, a large amount of water is required to cool the high-temperature slag with water, which increases the scale of the equipment, and the sensible heat of the high-temperature slag is not utilized at all, resulting in an energy loss.

しかも、回収スラグはスラリー状であるため、固液分離
後にそのまま投棄されるのが普通で、再利用するには乾
燥などの工程が必要である。
Moreover, since the recovered slag is in the form of a slurry, it is normally discarded as is after solid-liquid separation, and requires steps such as drying in order to be reused.

(発明が解決しようとする問題点) 上述したように、現状では溶銑の予備脱燐処理、特にブ
ラスティング法による樋脱燐処理に適した粒状の脱燐剤
を、製鉄所内の副生材料から少ない工程で簡便かつ安価
に製造できる方法がない。
(Problems to be Solved by the Invention) As mentioned above, at present, granular dephosphorizing agents suitable for preliminary dephosphorization of hot metal, especially gutter dephosphorization by blasting, cannot be obtained from by-product materials in steel works. There is no way to easily and inexpensively manufacture it with fewer steps.

また、一方では、溶銑の予備精錬あるいは転炉精錬で生
成したスラグを迅速かつ可及的完全に排滓でき、しかも
その際にスラグの顕熱を有効利用してスラグを何らかの
用途に再利用できる形態で回収する排滓方法が要望され
ている。
On the other hand, the slag generated during preliminary refining of hot metal or converter refining can be quickly and completely removed, and the sensible heat of the slag can be used effectively to reuse the slag for some purpose. There is a need for a method for collecting slag in the form of sludge.

(問題点を解決するための手段) 本発明者らは先に、高速気流の噴射による周囲空気の巻
込みに伴って生ずる吸引力を利用したエジェクター方式
による水不要の簡便かつ迅速な熔融スラグの吸引排滓装
置を提案した(特願昭58−156426号)、またそ
の改良として、上記吸引排滓装置により吸引中の熔融ス
ラグに、吸引中の熔融スラグの管壁への付着の防止とス
ラグの造粒性の向上のために粉状の塩基性物質を添加し
ながら溶融スラグを吸引排滓し、固体スラグを粒状で回
収することも提案した(特願昭59−164629号)
(Means for Solving the Problems) The present inventors have previously proposed a simple and quick method for producing molten slag without the need for water using an ejector method that utilizes the suction force generated when surrounding air is drawn in by jetting high-speed airflow. proposed a suction slag removal device (Japanese Patent Application No. 58-156426), and as an improvement thereof, the molten slag being sucked by the suction slag removal device was In order to improve the granulation properties of molten slag, it was proposed to collect the solid slag in granular form by adding a powdered basic substance and sucking out the molten slag (Japanese Patent Application No. 164629/1982).
.

かかるエジェクター方式による排滓についてさらに研究
を続けたところ、ソーダ灰系精錬剤による溶銑精錬時に
生成する溶融スラグの排滓にあっては、上記のように塩
基性物質の粉末を添加する代わりに製鉄所内で捕集され
た集塵ダストなどのソーダ灰含有粉末を添加しても、付
着の防止効果はほぼ同等であり、造粒性も良好であった
。しかも、回収されたスラグは粒径の揃った粒状で、集
塵ダスト等の混入によりソーダ灰を多く含有し、さらに
適度に酸化鉄も含有するため、特にブラスティング法に
より溶銑に添加する脱燐剤として極めて好適な組成およ
び性状のものが得られることを見出し、本発明を完成さ
せた。
Further research on the ejector method revealed that the molten slag waste produced during hot metal refining using a soda ash-based refining agent can be used in iron manufacturing instead of adding basic substance powder as described above. Even when soda ash-containing powder such as dust collected in-house was added, the adhesion prevention effect was almost the same, and the granulation properties were also good. Moreover, the recovered slag is granular with uniform particle size and contains a large amount of soda ash due to contamination with collected dust, etc., and also contains a moderate amount of iron oxide. The present invention was completed based on the discovery that a composition and properties that are extremely suitable as a pharmaceutical agent can be obtained.

ここに、本発明は、ソーダ灰系精錬剤にょる溶銑精錬に
より生じたスラグを高圧気体を駆動源とするエジェクタ
ー式吸引排滓装置により吸引除滓する際に、吸引途中の
スラグにソーダ灰含有粉末を添加し、前記吸引排滓装置
から粒状物を回収することからなる、予備脱燐剤の製造
方法である。
Here, the present invention provides that when slag produced by hot metal refining using a soda ash-based refining agent is suctioned and sludge-removed by an ejector-type suction-slag device using high-pressure gas as a driving source, soda ash is contained in the slag during suction. A method for producing a pre-dephosphorizing agent, comprising adding powder and collecting particulate matter from the suction slag device.

(作用) 以下、本発明を添付図面を参照しながらさらに詳しく説
明する0本発明において、%は特に指定のない限り重量
%である。
(Function) Hereinafter, the present invention will be explained in more detail with reference to the accompanying drawings. In the present invention, % is by weight unless otherwise specified.

添付図面は、本発明の方法による脱燐剤の製造に使用す
るエジェクター式吸引排滓装置の1例を示す模式図であ
る。この吸引排滓装置は、前述の特願昭59−1646
29号に記載の装置とほぼ同じものであるので、装置の
詳細については特願昭59−164629号の明細書を
参照されたい。
The accompanying drawing is a schematic diagram showing an example of an ejector-type suction slag device used for producing a dephosphorizing agent according to the method of the present invention. This suction sludge discharge device was developed in the above-mentioned Japanese Patent Application No. 59-1646.
Since the device is almost the same as that described in Japanese Patent Application No. 164629/1988, please refer to the specification of Japanese Patent Application No. 164629/1983 for details of the device.

添付図面に示したエジェクター方式による乾式の吸引排
滓装置について簡単に説明すると、この排滓装置lは、
内部を高速気体流が流れる一端閉鎖管からなる吐出管2
、この吐出管から連通、分岐した吸引管3、吐出管2の
閉鎖端面を貫通して吐出管内に挿入された高圧気体噴出
管4、および溶融スラグの吸引域に管壁を貫通して開口
している粉体の噴射添加管5から構成される。粉体添加
管5は、これに連通している容器内に収容されている集
塵ダスト6をキャリヤガスにより気流搬送し、排滓装置
内に噴射するためのものである。
To briefly explain the ejector-type dry suction sludge removal device shown in the attached drawing, this sludge removal device l:
Discharge pipe 2 consisting of a tube with one end closed through which a high-speed gas flow flows
, a suction pipe 3 that communicates with and branches from this discharge pipe, a high-pressure gas jet pipe 4 that penetrates the closed end surface of the discharge pipe 2 and is inserted into the discharge pipe, and a pipe wall that penetrates and opens into the molten slag suction area. It consists of a powder jet addition pipe 5. The powder addition pipe 5 is for transporting the collected dust 6 contained in a container communicating therewith by means of a carrier gas, and injecting it into the slag removal device.

噴出管4は、高圧気体(例、圧ta空気)の供給源(図
示せず)、たとえばコンプレッサに接続されており、噴
出管4の先端は好ましくは吸引管3の中心軸の延長上よ
りやや引込んだ位置に達している。噴出管4から高圧気
体を噴出させると、吐出管2の内部に高速気流が生じ、
この気流は吸引管3内の空気を巻込んで吐出管2の吹出
し口から噴出する。この吸引管内空気の巻込みに伴って
、吸引管3の下端からは周囲の空気が吸込まれ、吸引管
内への吸引風を生じ、吸引管内に上昇気流、すなわち吸
引力が発生する。
The ejection pipe 4 is connected to a supply source (not shown) of high-pressure gas (e.g., pressure ta air), such as a compressor, and the tip of the ejection pipe 4 is preferably slightly above the extension of the central axis of the suction pipe 3. It has reached the retracted position. When high-pressure gas is ejected from the ejection pipe 4, a high-speed airflow is generated inside the ejection pipe 2,
This airflow entrains the air in the suction pipe 3 and is ejected from the outlet of the discharge pipe 2. As the air in the suction tube is drawn in, surrounding air is sucked in from the lower end of the suction tube 3, generating suction wind into the suction tube, and generating an upward air current, that is, a suction force inside the suction tube.

かかる構成のエジェクター式吸引排滓装置1を上方より
溶融スラグ7に近づけると、熔融スラグはその周囲の空
気と共に吸込まれ、液滴状で上昇気流により吸引管3内
を上方に搬送された後、吐出管2に入ると噴出管(エジ
ェクター)4からの高速気流にぶつかってスラグ滴の進
路変更と吹飛ばしが起こる。すなわち、8がスラグ吸引
域、9がスラグ吹飛び域である。スラグ滴は、吐出管出
口から排出されるまでに凝固して粒状スラグとして回収
される。
When the ejector-type suction slag device 1 having such a configuration is brought close to the molten slag 7 from above, the molten slag is sucked in together with the surrounding air, and after being transported upward in the suction pipe 3 in the form of droplets by an upward air current, When the slag drops enter the discharge pipe 2, they collide with the high-speed airflow from the ejector 4, changing the course of the slag droplets and causing them to be blown away. That is, 8 is a slag suction area, and 9 is a slag blow-off area. The slag droplets solidify before being discharged from the outlet of the discharge pipe and are recovered as granular slag.

本発明の方法にあっては、粉体添加管5からソーダ灰含
有集塵ダストをキャリヤガスにより噴射して、スラグ液
滴の凝固を促進させ、液滴の管壁への付着による目詰り
防止および粒状化促進を図ると共に、生成する粒状スラ
グの組成を脱燐剤として適当な成分に調整する。この粉
体添加管5の開口位置は、スラグ吸引域内(すなわち、
吹飛ばされる前)であればよく、図示のように吐出管2
の閉鎖端面を貫通して噴出管4の下方にほぼ平行に開口
させても、あるいはさらに下側の位置、すなわち吸引管
の管壁を貫通して開口させてもよい。
In the method of the present invention, collected dust containing soda ash is injected from the powder addition pipe 5 using a carrier gas to promote coagulation of slag droplets and prevent clogging caused by droplets adhering to the pipe wall. In addition to promoting granulation, the composition of the resulting granular slag is adjusted to an appropriate component as a dephosphorizing agent. The opening position of this powder addition pipe 5 is within the slag suction area (i.e.
before it is blown away), and as shown in the figure, the discharge pipe 2
It may be opened substantially parallel to the bottom of the ejection pipe 4 by penetrating the closed end face of the suction pipe, or it may be opened at a further lower position, that is, through the pipe wall of the suction pipe.

ただし、図示の位置の方が吐出管内の高速気流によるエ
ジェクター効果が高まる利点がある。
However, the illustrated position has the advantage of increasing the ejector effect due to the high-speed airflow within the discharge pipe.

吐出管出口から排出される粒状スラグ、すなわち脱燐剤
の回収を容易にするために、図示例にあっては、吸引排
滓装置1の吐出管2の出口に続けて導出管10を設け、
排出された脱燐剤を導出管10により回収箱11に案内
し、回収箱11内で粒状脱燐剤12は気流から分離され
て堆積する。回収箱からの気流に同伴されるダストの分
離のためにエアフィルター13を、また気流の排出促進
のために排風ta14を設置するのが好ましい。
In order to facilitate recovery of the granular slag, that is, the dephosphorizing agent, discharged from the outlet of the discharge pipe, in the illustrated example, a discharge pipe 10 is provided following the outlet of the discharge pipe 2 of the suction slag device 1.
The discharged dephosphorizing agent is guided to the collection box 11 through the outlet pipe 10, and the granular dephosphorizing agent 12 is separated from the airflow and deposited in the collection box 11. It is preferable to install an air filter 13 to separate dust entrained in the airflow from the collection box, and an exhaust air ta 14 to promote discharge of the airflow.

本発明の方法によれば、上述したようにエジェクター式
吸引排滓装置で粉体を添加しつつ熔融スラグを排滓、造
粒することによって脱燐剤を製造する。この目的を達成
するには、熔融スラグと粉体がいずれも脱燐剤の製造に
通した組成のものであることが必要である。
According to the method of the present invention, a dephosphorizing agent is produced by adding powder with an ejector-type suction/slag device, draining and granulating molten slag as described above. To achieve this objective, it is necessary that both the molten slag and the powder have a composition that is compatible with the production of dephosphorizing agents.

具体的には、溶融スラグはNa 2 Co 3またはN
a2Oを多く含んでいる必要があり、また滓化が十分に
行われたものが好ましい。この意味で好ましい溶融スラ
グは、転炉装入前の取鍋内でのソーダ灰系精錬剤による
溶銑の予備脱燐処理で生成した脱硫スラグである。かか
る予備脱硫は溶銑を機械的手段で攪拌することにより行
われるので、生成スラグは滓化が十分で、しかも未反応
のソーダ灰をかなりの量で含んでいる。ただし、このよ
うな脱硫スラグの吸引排滓によって本発明により脱燐剤
を製造すると、スラグ中の8分が脱燐剤の中に入ってく
るが、溶銑の予備脱燐処理は前述したように通常は植土
で行われ、その後取鍋内でさらに本格脱燐および脱硫が
行われるため、8分の脱燐剤への混入はさほど問題とな
らない。一般に、本発明に用いるスラグは、Na 2 
CO3を約20%以上、好ましくは約40%以上含有す
るものであればよく、このようなスラグであれば上記以
外のものでもよい。ただし、ソーダ灰を含有する必要が
あることから、ソーダ灰系精錬剤による溶銑の精錬で生
じたスラグを使用する。
Specifically, the molten slag is Na 2 Co 3 or N
It is necessary to contain a large amount of a2O, and it is preferable that the slag has been sufficiently formed. In this sense, preferred molten slag is desulfurization slag produced by preliminary dephosphorization of hot metal using a soda ash-based refining agent in a ladle before charging into a converter. Since such preliminary desulfurization is carried out by stirring the hot metal by mechanical means, the resulting slag is sufficiently slaged and also contains a considerable amount of unreacted soda ash. However, when a dephosphorizing agent is produced according to the present invention by sucking and discharging such desulfurizing slag, 80% of the slag goes into the dephosphorizing agent, but the preliminary dephosphorizing treatment of hot metal is performed as described above. Usually, dephosphorization and desulfurization are carried out in the planted soil, and then full-scale dephosphorization and desulfurization are carried out in a ladle, so the mixing of 8 minutes into the dephosphorization agent does not pose much of a problem. Generally, the slag used in the present invention is Na 2
Any slag containing about 20% or more, preferably about 40% or more of CO3 may be used, and any slag other than the above may be used as long as it contains CO3. However, since it is necessary to contain soda ash, slag produced by refining hot metal with a soda ash-based refining agent is used.

一方、吸引途中のスラグに添加する粉体としては、ソー
ダ灰系脱燐剤を製造するという目的から、ソーダ灰を主
成分として含有する粉末を使用する。
On the other hand, as the powder to be added to the slag during suction, a powder containing soda ash as a main component is used for the purpose of producing a soda ash-based dephosphorizing agent.

このような粉末の代表例は、混銑車などの容器内溶銑中
にソーダ灰を吹込み脱燐脱硫処理する際に発生するダス
トである。この処理中に多量のNa2O、Na 2 C
O3が発生し、Na2Oはガス中のCO2と反応してN
a 2 CO3となるため、集塵器で捕集されるダスト
中の半分以上、通常は60%以上がNa 2 C03と
なる。従来かかるダストは溶銑1トン当たり6kgも捕
集されており、その処理に多大の費用を要しているのが
現状である。このような集塵ダストを本発明において使
用すると、これはソーダ灰以外に酸化鉄もかなりの割合
(例、30%程度)含有しているため、製造される脱燐
剤に適度の酸化鉄も混入し、これが脱燐効率の一層の向
上とともに脱珪作用も与える。したがって、この組成上
の利点と脱燐剤の製造コストの両面から、このような製
鉄所内で捕集されるソーダ灰含有集塵ダストを使用する
のが好ましいが、これ以外のソーダ灰を主成分とする粉
末も使用できるのは当然である。
A typical example of such powder is dust generated when soda ash is blown into hot metal in a container such as a pig iron mixing car to perform dephosphorization and desulfurization treatment. During this process, a large amount of Na2O, Na2C
O3 is generated, Na2O reacts with CO2 in the gas, and N
Since it becomes a 2 CO3, more than half, usually 60% or more, of the dust collected by the dust collector becomes Na 2 C03. Conventionally, 6 kg of such dust has been collected per ton of hot metal, and the current situation is that it requires a large amount of cost to dispose of it. When such collected dust is used in the present invention, since it contains a considerable proportion of iron oxide (e.g., about 30%) in addition to soda ash, a moderate amount of iron oxide is also added to the dephosphorizing agent produced. This further improves the dephosphorization efficiency and also provides a desiliconization effect. Therefore, from both the compositional advantage and the manufacturing cost of the dephosphorizing agent, it is preferable to use dust containing soda ash that is collected in steel plants, but other soda ash-based dusts are preferable. It goes without saying that powders such as these can also be used.

なお、添付図面および以下の説明には便宜上「集塵ダス
ト」と記載するが、本発明の方法においてスラグに添加
する粉体は製鉄所内などで捕集された集塵ダストに限定
されるものではない。
Although the term "collected dust" is used in the attached drawings and the following explanation for convenience, the powder added to the slag in the method of the present invention is not limited to collected dust collected in steel works, etc. do not have.

次に、本発明の方法の操業条件について簡単に説明する
。エジェクター式排滓装置lの噴出管4からは高圧気体
、たとえば5kg/alIの圧力の圧縮空気を、吐出管
2内にマツハ0.5〜1.5程度の高速気流が流れるよ
うな流量で噴出させる。吐出管内の気流の流速は、吐出
管および噴出管の管径によっても変動するので、所望の
流速が得られるように流量を調整する。溶融スラグ7の
吸引排滓は、排滓装置lを上方より適当な熔融スラグに
近づけることにより行うが、比重が約2〜3の溶融スラ
グの吸引にはスラグ上面で5m/sec以上の吸引気流
が必要なので、吐出管内の気流の流速が上記範囲内の場
合には、吸引管下端とスラグ上面との距離を20〜80
m+−の範囲内とするのがよい。
Next, the operating conditions of the method of the present invention will be briefly explained. High-pressure gas, for example, compressed air at a pressure of 5 kg/alI, is ejected from the ejection pipe 4 of the ejector-type sludge removal device 1 at a flow rate such that a high-speed airflow of about 0.5 to 1.5 matsuha flows into the ejector pipe 2. let Since the flow rate of the airflow in the discharge pipe varies depending on the pipe diameters of the discharge pipe and the ejection pipe, the flow rate is adjusted so as to obtain the desired flow velocity. The suction and removal of the molten slag 7 is carried out by bringing the sludge removal device l close to a suitable molten slag from above, but in order to suction the molten slag with a specific gravity of approximately 2 to 3, a suction air flow of 5 m/sec or more is required on the top surface of the slag. Therefore, if the flow rate of the air flow in the discharge pipe is within the above range, the distance between the lower end of the suction pipe and the upper surface of the slag should be 20 to 80 mm.
It is preferable to set it within the range of m+-.

集塵ダストの添加は、その搬送・噴射に通した流量でキ
ャリヤガス(例、圧縮空気)を流しながら、この気流に
同伴させて吸引域に噴射させることにより行う、集塵ダ
ストの添加量は、熔融スラグの排滓装置内での付着を防
止し、粒状化させるのに十分な量とし、通常は溶融スラ
グlトンに対して06〜1トンの割合で添加する。
Addition of collected dust is carried out by flowing a carrier gas (e.g. compressed air) at the flow rate through which it is conveyed and injected, and injecting it into the suction area along with this air flow.The amount of collected dust added is It is added in an amount sufficient to prevent the molten slag from adhering in the slag removal device and to granulate it, and is usually added at a ratio of 0.6 to 1 ton per ton of molten slag.

このようにして本発明の方法により脱燐剤を製造すると
、集塵ダストの添加により目詰りを起こさずに熔融スラ
グを排滓しながら、粒径2〜20m5+程度に造粒され
た脱燐剤を得ることができる。この脱燐剤は、前述した
ように溶銑の樋脱燐にブラスティング法で添加するのに
通しているが、もちろんその他の脱燐処理にも使用でき
る0粒径は吐出管内の高速気流の流速により調整できる
。造粒されずにそのままエアフィルター13で捕集され
る集塵ダストが少し出るが、エアフィルターで捕集され
たダストあるいは回収箱11で回収された粒状脱燐剤の
うち粒径の小さすぎるものは、集塵ダスト6に混合して
再利用するか、インジエクシッン法による吹込みで添加
する脱燐剤として使用することができる。
When the dephosphorizing agent is produced by the method of the present invention in this way, the dephosphorizing agent is granulated to a particle size of about 2 to 20 m5+ while removing the molten slag without causing clogging by adding the collected dust. can be obtained. As mentioned above, this dephosphorizing agent is added by the blasting method for gutter dephosphorization of hot metal, but of course it can also be used for other dephosphorizing processes. It can be adjusted by A small amount of collected dust is collected without being granulated by the air filter 13, but among the dust collected by the air filter or the granular dephosphorizing agent collected in the collection box 11, the particle size is too small. can be mixed with the collected dust 6 and reused, or can be used as a dephosphorizing agent added by blowing using the in-die excin method.

次に実施例により、本発明を説明する。Next, the present invention will be explained with reference to Examples.

皇l拠 高炉樋上でミルスケールを主とする脱珪剤40kg/V
8銑Tにより脱珪処理した溶銑を排滓後に混銑車に移し
、ソーダ灰(Na 2 Co 395.9%、5i02
1゜0%、T、Fe O,2%、PO35%、So、3
%) 15kg/溶銑トンをインジェクシッン法により
溶銑に吹込んで脱燐・説破処理した。これらの工程にお
ける溶銑成分の変化を次の第1表に示す。
Desiliconizing agent mainly containing mill scale 40kg/V on the blast furnace gutter
The hot metal that has been desiliconized using 8-pig T is transferred to a pig iron mixer after being slaged, and is mixed with soda ash (Na 2 Co 395.9%, 5i02
1゜0%, T, Fe O, 2%, PO35%, So, 3
%) 15 kg/ton of hot metal was injected into the hot metal using the injection method to perform dephosphorization and blasting treatment. The following Table 1 shows the changes in hot metal components during these steps.

第1表 この脱燐により生成した溶融スラグの約半量を真空吸引
式排滓装置により混銑車より除滓した。
Table 1 Approximately half of the molten slag produced by this dephosphorization was removed from the pig iron mixer using a vacuum suction type removal device.

次に溶銑を取鍋に移し、溶銑上に浮上しているスラグの
うち、まず大塊および未滓化部分をノロ掻き法で除去し
、残り約1.5トンのほぼ100%を本発明の方法によ
り添付図面に示したエジェクター式吸引排滓装置を2台
使用して排滓しつつ、集塵ダストを添加して粒状の脱燐
剤を製造した。使用した各排滓装置は吐出管、吸引管と
も直径120L1mの鋼管からなるものであり、長さは
吐出管1200B。
Next, the hot metal is transferred to a ladle, and among the slag floating on top of the hot metal, large lumps and unslaged parts are first removed by the slag scraping method, and approximately 100% of the remaining approximately 1.5 tons is removed using the method of the present invention. According to the method, a granular dephosphorizing agent was produced by adding collected dust while removing the slag using two ejector-type suction and evacuation devices shown in the attached drawings. In each of the slag removal devices used, both the discharge pipe and the suction pipe were made of steel pipes with a diameter of 120L1m, and the length of the discharge pipe was 1200B.

吸引管800+u+であった。エジェクター駆動源とし
て、噴出管から圧力5kg/cdの圧縮空気を7ONn
?/+mtn/台の流量で噴出させた。粉体添加管から
は、上記の混銑車内でのソーダ灰による脱燐・脱硫処理
時に集塵機で捕集されたダスト(平均組成: Fe 2
9.22%、Na 2 C0361,27%、Si O
20,80%、S O,39%)を、圧力が上と同じで
流量が25Nn?/win /台の圧縮空気をキャリヤ
ガスとして、合計100 kg/winの割合で添加し
た。粉体添加管は図示例のように、エジェクター効果を
高めるように噴出管の下側に噴出管とほぼ平行(やや上
向き)になるように吐出管内に挿入した。回収箱上は図
示例のように密閉し、エアフィルターおよび排風機を設
けた。
The suction tube was 800+u+. As the ejector driving source, compressed air with a pressure of 5 kg/cd is supplied from the ejection pipe for 7 ONn.
? It was ejected at a flow rate of /+mtn/. From the powder addition pipe, dust (average composition: Fe 2
9.22%, Na2C0361,27%, SiO
20.80%, SO, 39%), the pressure is the same as above and the flow rate is 25Nn? /win/unit of compressed air was added as a carrier gas at a total rate of 100 kg/win. As shown in the illustrated example, the powder addition tube was inserted into the discharge tube so as to be substantially parallel (slightly upward) to the lower side of the discharge tube so as to enhance the ejector effect. The top of the collection box was sealed as shown in the figure, and an air filter and exhaust fan were installed.

上記条件下で、吸引管下端と熔融スラグ上面との距離を
約50+++mに制御して排滓を行ったが、最初にノロ
掻きにより大塊を除去したため、管内目詰り等の問題も
なく約10分間隔で吸引排滓を終了した。その間に管壁
には約5〜1511I11程度の厚みで溶融スラグが付
着しただけであった。排滓終了後に回収箱には約2トン
の粒状物が堆積していた。そのうち粒径21111未満
の微細粒子をフルイにより分離した結果、平均粒径的5
smの粒状脱燐剤が得られた。得られた脱燐剤の組成を
、集塵ダストを添加する前の脱燐スラグの組成と共に次
の第2表に示す。
Under the above conditions, the distance between the lower end of the suction tube and the upper surface of the molten slag was controlled to approximately 50 + + + m, and since the large lumps were removed by scraping first, there was no problem such as clogging in the tube, and the slag was removed for about 10 m. Suction and drainage were terminated at minute intervals. During this time, only molten slag adhered to the tube wall to a thickness of about 5 to 1511I11. Approximately 2 tons of particulate matter had accumulated in the collection box after the slag removal was completed. As a result of separating fine particles with a particle size of less than 21111 using a sieve, the average particle size was 5.
A granular dephosphorizing agent of sm was obtained. The composition of the obtained dephosphorizing agent is shown in the following Table 2 together with the composition of the dephosphorizing slag before adding the dust collection dust.

本実施例で得た脱燐剤を使って、試験炉内で溶銑中にこ
の脱燐剤10kg/ )ンを添加して脱燐試験を行った
。次の第3表に示す結果から明らかなように、この脱燐
剤は予備脱燐剤として十分な説燐能を有しており、また
脱珪効果もかなりあることが確認された。さらに、滓化
性が良好で、反応時の発塵も少ないなどソーダ灰単味以
上に良好な脱燐剤であった。
Using the dephosphorizing agent obtained in this example, a dephosphorizing test was conducted by adding 10 kg/ml of this dephosphorizing agent to hot metal in a test furnace. As is clear from the results shown in Table 3 below, it was confirmed that this dephosphorizing agent had sufficient phosphorizing ability as a preliminary dephosphorizing agent and also had a considerable desiliconizing effect. Furthermore, it was a better dephosphorizing agent than soda ash alone, with good slag-forming properties and little dust generation during the reaction.

第3表 なお、回収物からフルイで分離された粒径2IIIm未
満の微細粒子は、次回の排滓作業時に集塵ダストに混入
して使用するか、インジェクション法により添加する脱
燐剤として使用することができた。
Table 3: Fine particles with a particle size of less than 2IIIm separated from the collected material using a sieve are used by mixing them into the collected dust during the next slag removal operation, or are used as a dephosphorizing agent added by the injection method. I was able to do that.

(発明の効果) 以上の説明より明らかなように、本発明の脱燐剤の製造
方法は、次に挙げる効果を存する。
(Effects of the Invention) As is clear from the above explanation, the method for producing a dephosphorizing agent of the present invention has the following effects.

■従来廃棄または再生処理を行っていた集塵ダストおよ
び熔融スラグを簡単な手段で再生することにより、脱燐
剤が非常に低コストで得られ、特にスラグ中の鉄源(粒
鉄および酸化鉄)を回収でき、ダスト処理およびスラグ
処理が不要になるか、もしくは大幅に軽減できる。
■ By regenerating collected dust and molten slag, which were conventionally disposed of or recycled, by simple means, dephosphorizing agents can be obtained at a very low cost. ) can be recovered, and dust treatment and slag treatment can be eliminated or significantly reduced.

■熔融スラグをほぼ完全に溶銑から分離することができ
、しかも吸引管内への付着および目詰りも防止できるの
で、全体としての安定した操業が維持できる。
- Molten slag can be almost completely separated from hot metal, and adhesion to and clogging of the suction pipe can be prevented, so stable operation as a whole can be maintained.

■得られる脱燐剤は粒状であり、特にブラスティング法
による一次脱燐に通しており、また溶融スラグの持つ顕
熱が造粒に有効に利用される。
(2) The resulting dephosphorizing agent is in the form of granules and has been subjected to primary dephosphorization, particularly by a blasting method, and the sensible heat of the molten slag is effectively utilized for granulation.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明の方法による脱燐剤の製造に用いる
エジェクター式の吸引排滓装置の1例を示す模式図であ
る。
The accompanying drawing is a schematic diagram showing an example of an ejector-type suction slag device used for producing a dephosphorizing agent according to the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)ソーダ灰系精錬剤による溶銑精錬により生じたス
ラグを高圧気体を駆動源とするエジェクター式吸引排滓
装置により吸引除滓する際に、吸引途中のスラグにソー
ダ灰含有粉末を添加し、前記吸引排滓装置から粒状物を
回収することからなる、予備脱燐剤の製造方法。
(1) When removing slag by suction from slag produced by hot metal refining using a soda ash-based refining agent using an ejector-type suction slag device using high-pressure gas as a driving source, soda ash-containing powder is added to the slag during suction, A method for producing a pre-dephosphorizing agent, comprising collecting particulate matter from the suction and drainage device.
(2)前記ソーダ灰含有粉末がソーダ灰系精錬剤による
溶銑精錬時に捕集された集塵ダストである特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the soda ash-containing powder is collected dust collected during hot metal refining using a soda ash-based refining agent.
JP6032785A 1985-03-25 1985-03-25 Production of preliminary dephosphorizing agent Granted JPS61217514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032785A JPS61217514A (en) 1985-03-25 1985-03-25 Production of preliminary dephosphorizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032785A JPS61217514A (en) 1985-03-25 1985-03-25 Production of preliminary dephosphorizing agent

Publications (2)

Publication Number Publication Date
JPS61217514A true JPS61217514A (en) 1986-09-27
JPH0588283B2 JPH0588283B2 (en) 1993-12-21

Family

ID=13138961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032785A Granted JPS61217514A (en) 1985-03-25 1985-03-25 Production of preliminary dephosphorizing agent

Country Status (1)

Country Link
JP (1) JPS61217514A (en)

Also Published As

Publication number Publication date
JPH0588283B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US4861368A (en) Method for producing iron
CZ20002097A3 (en) Direct smelting vessel
JPS61246305A (en) Method and apparatus for removing slag from molten metal
JPS61217514A (en) Production of preliminary dephosphorizing agent
US4230477A (en) Apparatus for granulating molten slag
JP2007239034A (en) Method for recovering and recycling iron-content in steelmaking slag
JPH0475288B2 (en)
JPH0332601B2 (en)
US4084959A (en) Method for continuous refining of a molten iron base metal
KR100368239B1 (en) A process of refining molten steel for high clean steel
KR20140053195A (en) Method and apparatus for dephosphorising liquid hot metal such as liquid blast furnace iron
CN113215350A (en) Slag pressing agent for converter prepared from converter fly ash
JPH06145830A (en) Method for recovering zinc in dust
JP6402062B2 (en) Dust recycling method
JPH09194923A (en) Method for reusing dust generated in molten iron pre-treatment
JPH08325646A (en) Treatment of dust of electric furnace
JP2010236017A (en) Method and system for pre-treating molten iron
JPH0559417A (en) Method and apparatus for reusing dust in pretreatment of molten iron
JPH046208A (en) Method and apparatus for reusing dust in pre-treatment to molten iron
JP4599744B2 (en) Method for producing hot metal pretreatment agent using dust collection dust containing iron oxide
JPS63210007A (en) Collection of kish graphite from molten pig iron
JP3794048B2 (en) Hot metal desiliconization method
JP3787960B2 (en) Smelting reduction smelting method
CN115505668A (en) Movable molten iron desiliconizing and dephosphorizing method
JPS58144437A (en) Recovery of zinc from dust