JPH08325646A - Treatment of dust of electric furnace - Google Patents

Treatment of dust of electric furnace

Info

Publication number
JPH08325646A
JPH08325646A JP24174995A JP24174995A JPH08325646A JP H08325646 A JPH08325646 A JP H08325646A JP 24174995 A JP24174995 A JP 24174995A JP 24174995 A JP24174995 A JP 24174995A JP H08325646 A JPH08325646 A JP H08325646A
Authority
JP
Japan
Prior art keywords
dust
furnace
exhaust gas
electric furnace
tuyeres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24174995A
Other languages
Japanese (ja)
Other versions
JP3336167B2 (en
Inventor
Kazuhiko Sato
和彦 佐藤
Shoji Miyagawa
昌治 宮川
Hiroshi Itaya
宏 板谷
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24174995A priority Critical patent/JP3336167B2/en
Priority to TW085114418A priority patent/TW369567B/en
Publication of JPH08325646A publication Critical patent/JPH08325646A/en
Application granted granted Critical
Publication of JP3336167B2 publication Critical patent/JP3336167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: To efficiently recover valuable metal in a high yield by reducing dust of an electric furnace with carbon base solid reducing agent, recovering molten iron having Fe as the main component, dividing the vaporized Zn into low content dust and high content dust and recovering. CONSTITUTION: The carbonaceous material is charged into a vertical type fusing furnace 1 from a hopper 2 to form a reducing agent packing layer 3. In hear, the dust of the electric furnace is injected from upper step tuyeres 1u and hot blast at about 800-1000 deg.C is blown from lower step tuyeres 1s and reduced. By thus method, the dust containing produced Zn vapor is discharged into a hopper 8 and the molten iron containing Cr, etc., from an iron tap hole 6, and slag fixing harmful Cd, etc., from a slag tapping hole 7, are recovered. Besides, the dust is separated with a cyclone and a part of the low Zn-containing dust is returned back to the fused furnace 1 and the other part is recovered through a hopper 12. Further, the high Zn-containing dust is formed to slurry 16 by a water spraying means 15 in a cooling vessel 14 and shifted to a dehydrator 20 through a precipitator 23 to obtain a dehydro-cake having 50-80% Zn, desirably about 60-80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、炭素系の固体還
元剤の充てん層を有する上下2段の羽口を有する竪型溶
融炉を用いて電気炉ダストから有効資源、とくに亜鉛分
を効率よく回収しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a vertical melting furnace having two upper and lower tuyeres having a packed bed of a carbon-based solid reducing agent to efficiently produce effective resources, especially zinc, from electric furnace dust. It is about to be collected.

【0002】[0002]

【従来の技術】近年、資源のリサイクルやエネルギーの
節減等の観点から鉄スクラップのリサイクルが望まれて
いるが、鉄スクラップはその発生源によって品質が大き
く異なる。
2. Description of the Related Art In recent years, it has been desired to recycle iron scrap from the viewpoint of resource recycling and energy saving, but the quality of iron scrap varies greatly depending on its source.

【0003】例えば、自家発生スクラップは、鉄鋼製造
過程で発生する鉄スクラップであり、その素性が明確で
しかも不純物の混入が少ないためその大部分は発生工場
内で消費される。
[0003] For example, self-generated scrap is iron scrap generated in the steel manufacturing process, and most of it is consumed in the generation plant because its identity is clear and impurities are little mixed.

【0004】これに対して、二次加工スクラップや老廃
スクラップは、鉄鋼製品の二次加工の際や最終製品に至
るまでの過程で分別回収されたものであって、表面処理
鋼板や特殊鋼のスクラップ等を多く含んでいる。
On the other hand, the secondary processing scrap and the abolished scrap are those which are separated and collected during the secondary processing of the steel product and in the process of reaching the final product, and include the surface treated steel plate and the special steel. It contains a lot of scraps.

【0005】これらの多くは、電気炉メーカーにおいて
精錬され、再利用されるのが普通であるが、その際に発
生する電気炉ダスト中にはクロム、カドミウム、鉛等、
埋め立て廃棄した場合には溶出して環境汚染を引き起こ
す元素が数%含まれている他、亜鉛分が10〜40%、鉄分
が25〜50%程度含まれており、これらの処理、再資源
化、すなわちクロムやカドミウム、鉛等の有害金属を安
価に固定化し亜鉛や鉄等の有価金属の回収、再資源化を
可能とする技術の確立が強く望まれていた。
Most of these are usually refined and reused by electric furnace manufacturers, but in the electric furnace dust generated at that time, chromium, cadmium, lead, etc.
When it is disposed of in landfill, it contains several% of elements that elute and cause environmental pollution, zinc content of 10-40% and iron content of 25-50%. That is, there has been a strong demand for establishment of a technique for fixing harmful metals such as chromium, cadmium, and lead at low cost and enabling recovery and recycling of valuable metals such as zinc and iron.

【0006】この点に関しては、上下二段の羽口を有す
る竪型溶融還元炉を用い、この炉の上段羽口から粉状鉱
石を吹込む特公昭59-18452号公報に開示の技術の適用が
考えられる。
In this regard, the technique disclosed in Japanese Examined Patent Publication No. 59-18452 is used, in which a vertical smelting reduction furnace having upper and lower tuyeres is used and powdered ore is blown from the upper tuyeres of the furnace. Can be considered.

【0007】ここに、上段羽口から電気炉ダストを吹込
むとその中に含まれる酸化亜鉛は還元され、Zn蒸気とな
り、この蒸気は炭素系固体還元剤をとおり炉頂部から排
出されるが、竪型溶融還元炉の後段設備としてサイクロ
ン等の集塵装置や冷却槽 (ダストや排ガスの被冷却物と
冷却水等の冷媒が直接接触しないような構成になる間接
冷却式の冷却槽) 、バグフィルター等を配置した場合に
は以下のような不都合が避けられなかった。
When electric furnace dust is blown in from the upper tuyeres, the zinc oxide contained therein is reduced to Zn vapor, which is discharged from the furnace top through the carbon-based solid reducing agent. As a post-stage facility for the vertical smelting reduction furnace, a dust collector such as a cyclone or a cooling tank (an indirect cooling type cooling tank that does not directly contact the object to be cooled such as dust or exhaust gas with a coolant such as cooling water), a bug When a filter or the like is arranged, the following problems cannot be avoided.

【0008】1)溶融還元炉から排ガスとともに飛び出す
Znを主体とするダストを間接冷却式の冷却槽に通すと、
冷却水配管や冷却槽内壁の表面に含Znダストが付着し剥
離除去が困難なうえに時間の経過とともに付着物が成長
しこれが塊状化した場合にダストの排出が円滑にできな
い。2)間接冷却式の冷却槽では、冷却槽内部に配置され
る冷却水配管や冷却槽内壁に含Znダストが大量に付着す
ると排ガスの流路面積が縮小し系内の圧力損失が大きく
なり操業が不安定になる。3)間接冷却式の冷却槽では、
冷却水配管にダストが大量に付着するとダストと排ガス
の冷却効率が大幅に低下するため、排ガスの温度が上昇
しバグフィルターや排出装置が損傷する等のトラブルが
発生する。
1) Jump out from the smelting reduction furnace together with the exhaust gas
When dust mainly composed of Zn is passed through an indirect cooling type cooling tank,
Zn-containing dust adheres to the surface of the cooling water pipes and the inner wall of the cooling tank and is difficult to peel and remove. In addition, when the adhered matter grows over time and becomes clumped, the dust cannot be discharged smoothly. 2) In the indirect cooling type cooling tank, if a large amount of Zn-containing dust adheres to the cooling water pipes placed inside the cooling tank and the inner wall of the cooling tank, the flow passage area of exhaust gas will decrease and the pressure loss in the system will increase, resulting in operation. Becomes unstable. 3) In the indirect cooling type cooling tank,
If a large amount of dust adheres to the cooling water pipe, the cooling efficiency of the dust and the exhaust gas is significantly reduced, and the temperature of the exhaust gas rises, causing problems such as damage to the bag filter and the exhaust device.

【0009】[0009]

【発明が解決しようとする課題】この発明は、上記のよ
うな従来の問題を起こすことなしに電気炉ダストを処理
できる新規な方法を提案するところにある。
SUMMARY OF THE INVENTION The present invention proposes a new method for treating electric furnace dust without causing the above-mentioned conventional problems.

【0010】すなわちこの発明の目的は、竪型還元炉か
ら排出されるZnを主体とするダストを冷却槽の内部に付
着、塊状化させることなしに安定して次の工程に輸送す
ること可能にし、また、冷却槽内部でのダストの付着に
る圧力損失の上昇や冷却効率の低下に伴うバクフィルタ
ー、排出装置の損傷を防止し操業の安定化を図ること、
さらに、FeやZn等の有価金属を高歩留りで回収、再資源
化することを可能にした方法を提案するところにある。
That is, the object of the present invention is to make it possible to stably transport the dust mainly containing Zn discharged from the vertical reduction furnace to the next step without adhering to the inside of the cooling tank and agglomerating. In addition, to prevent damage to the vacuum filter and discharge device due to the increase in pressure loss due to the adhesion of dust inside the cooling tank and the decrease in cooling efficiency, and to stabilize the operation,
Furthermore, we are proposing a method that makes it possible to recover and recycle valuable metals such as Fe and Zn with a high yield.

【0011】[0011]

【課題を解決するための手段】この発明は、炭素系固体
還元剤の充てん層を備えた上下2段の羽口を有する竪型
溶融炉を用いて電気炉ダストを処理するに当たり、竪型
溶融炉の少なくとも上段羽口から粉状の電気炉ダストを
吹込み、該電気炉ダスト中に含まれる亜鉛分を還元、蒸
発させ、該竪型溶融炉の出側にて、まず、低亜鉛濃度含
有ダストをサイクロンにて回収し、次いで冷却槽内にお
いて水スプレーを施して高亜鉛濃度含有ダストをスラリ
ーダストとして回収することを特徴とする電気炉ダスト
の処理方法であり、この発明においては、冷却槽内のス
ラリーダスト排出口にポンプを配置しておき、スラリー
ダストを沈殿槽に輸送し、沈殿槽底部のZn含有量の高い
スラリーダストを脱水装置を用いて脱水しスラリー濃度
を50〜80%程度とし、脱水ケーキとして回収する。ま
た、この発明においてはZn蒸気の安定化を図るため水ス
プレーを施す前、とくに竪型溶融炉の炉頂につながるダ
クトにおいて排ガスを二次燃焼させるのがよい。
The present invention is directed to treating vertical electric furnace dust with a vertical melting furnace having two upper and lower tuyeres equipped with a carbon-based solid reducing agent packed layer. Powdered electric furnace dust is blown from at least the upper tuyeres of the furnace to reduce and evaporate the zinc content contained in the electric furnace dust. At the exit side of the vertical melting furnace, first, a low zinc content is contained. A method for treating electric furnace dust, characterized in that the dust is recovered by a cyclone, and then water spray is applied in the cooling tank to recover the high zinc concentration-containing dust as slurry dust. A pump is placed at the slurry dust outlet inside to transport the slurry dust to the settling tank, and the slurry dust with a high Zn content at the bottom of the settling tank is dehydrated using a dewatering device to a slurry concentration of about 50-80%. age It recovered as dehydrated cake. In addition, in the present invention, in order to stabilize Zn vapor, it is preferable to perform secondary combustion of the exhaust gas before applying water spray, particularly in a duct connected to the top of the vertical melting furnace.

【0012】[0012]

【発明の実施の形態】以下、この発明を図面を用いて詳
細に説明する。図1に電気炉ダストを処理するのに適し
た設備の構成を示す。竪型溶融炉1には炭材用ホッパー
2から供給され炉頂において所定のストックラインを維
持する充てん層3が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 shows the configuration of equipment suitable for treating electric furnace dust. A vertical melting furnace 1 is provided with a packing layer 3 which is supplied from a carbon material hopper 2 and maintains a predetermined stock line at the furnace top.

【0013】電気炉ダストは、スラグの粘度や融点を調
整する目的で添加される石灰石と硅石からなる製錬用溶
剤とが予め所定の割合で混合されていて粉体吹込み装置
4から竪型溶融炉1の上段羽口1U を通して炉内に吹き
込まれる。
In the electric furnace dust, limestone added for the purpose of adjusting the viscosity and melting point of slag and a smelting solvent composed of silica are mixed in a predetermined ratio in advance, and the powder blowing device 4 is used to form a vertical mold. It is blown into the furnace through the upper tuyere 1 U of the melting furnace 1.

【0014】送風空気は800 〜1000℃程度に加熱され、
送風管を通し熱風として上段羽口1 U および下段羽口1
S からそれぞれ炉内に吹き込まれる。その際、必要に応
じて適量の酸素が熱風中に供給され、竪型溶融炉1内に
おいて炭材を燃焼させるが、その際の燃焼熱と還元ガス
により上段羽口1U から吹き込まれた電気炉ダストは溶
融することになる。
The blown air is heated to about 800 to 1000 ° C.,
The upper tuyeres 1 as hot air through the air duct UAnd lower tuyeres 1
SEach is blown into the furnace. At that time, if necessary
Then, an appropriate amount of oxygen is supplied into the hot air,
The carbonaceous material is burned in the air, but the heat of combustion and reducing gas at that time
By upper tuyeres 1UElectric furnace dust blown from the
Will melt.

【0015】そして、電気炉ダスト中の酸化Znは還元さ
れZn蒸気となり炭材の充てん層3を通過し炉頂部から排
出される。竪型溶融炉1の上部には二次燃焼ランス5が
配置されていて、充てん層3の上部の温度をZn蒸気が安
定化する温度である600 〜1000℃に保持すべく排ガスを
燃焼させる。
Then, Zn oxide in the electric furnace dust is reduced to Zn vapor, which passes through the carbonized material packed layer 3 and is discharged from the furnace top. A secondary combustion lance 5 is arranged above the vertical melting furnace 1 to burn the exhaust gas so as to maintain the temperature of the upper portion of the packed bed 3 at 600 to 1000 ° C. which is the temperature at which Zn vapor is stabilized.

【0016】また、電気炉ダスト中の鉄酸化物はクロ
ム、カドミウム等とともに炭材の燃焼熱により上段羽口
U の羽口先レースウエイ内で溶融し生成した融体は炭
材充てん層3を下段羽口1S に向かって下降しその過程
で下段羽口1S の羽口先で生成した還元ガスと向流接触
して還元されるとともに、滴下途中で充てん層3の炭材
と接触して直接還元されてメタルとスラグに分離する。
Further, the iron oxide in the electric furnace dust is melted in the tuyere raceway of the upper tuyere 1 U by the combustion heat of the carbonaceous material together with chromium, cadmium, etc., and the resulting melt forms the carbonaceous material filling layer 3. It descends toward the lower tuyeres 1 S , and in the process, it is countercurrently contacted with the reducing gas generated at the tuyere tips of the lower tuyeres 1 S to be reduced, and during contact with the carbonaceous material of the packed bed 3 during the dropping. It is directly reduced and separated into metal and slag.

【0017】最終的に炉床に溜まった溶融メタルは出銑
口6から、また、スラグは出滓口7からそれぞれ排出さ
れ、その際、クロム等は溶融メタル中に、カドミウム等
はスラグ中に固定されて無害化される。
The molten metal finally accumulated in the hearth is discharged from the tap hole 6 and the slag is discharged from the slag port 7, respectively. At that time, chromium and the like are put into the molten metal and cadmium and the like are put into the slag. It is fixed and rendered harmless.

【0018】一方、竪型溶融炉1の上部から排出された
Zn分を主体 (カーボンとアッシュ分を含む) とするダス
トはまずサイクロン8をとおり、ここで炉内の炭材から
発生する約10μm 以上の比較的粗いカーボン分を含むダ
ストを補集しダスト中に含まれるカーボン分の大部分を
分離する。
On the other hand, it was discharged from the upper part of the vertical melting furnace 1.
Dust mainly composed of Zn (including carbon and ash) first passes through the cyclone 8, where dust containing carbon particles of about 10 μm or more, which is relatively coarse and is generated from the carbonaceous material in the furnace, is collected in the dust. Most of the carbon content contained in is separated.

【0019】このサイクロン8で分離されたカーボンを
主体とするダスト (回収ダスト) は、ポッパー9を経由
しその一部分はダスト輸送装置10から上端羽口1U を通
して炉内へ、残りのダストはバルブ11、ダスト排出ポッ
パー12、バルブ13を経て系外へ排出される。
The dust (recovered dust) mainly composed of carbon separated by the cyclone 8 passes through the popper 9, a part of the dust is transferred from the dust transport device 10 to the inside of the furnace through the upper end tuyere 1 U , and the rest of the dust is valved. 11. Dust is discharged to the outside of the system through the dust discharge popper 12 and the valve 13.

【0020】サイクロン8で補集されなかった微細なダ
ストはZn分を主体としたダストであり、排ガスとともに
冷却槽14に導入され水スプレー手段15により冷却されて
冷却槽14の底部で冷却水と懸濁してスラリー液16とな
る。
The fine dust that has not been collected by the cyclone 8 is a dust mainly composed of Zn, and is introduced into the cooling tank 14 together with the exhaust gas and cooled by the water spraying means 15 to form cooling water at the bottom of the cooling tank 14. Suspension becomes a slurry liquid 16.

【0021】除塵、冷却後の排ガスは200 ℃以下の温度
になって系外へ排出されるが、冷却槽14の底部に溜まっ
たスラリー液16はレベル計17と流量調節弁18によって液
面レベルが調整され、スラリーポンプ19aによって沈殿
槽23に輸送され、次に沈殿槽23の底部からスラリーポン
プ19b によって脱水機20に輸送されて濃度50〜80%、よ
り好ましくは60〜80%の範囲で脱水、次いでスラリー輸
送装置21を経てZn分の濃化されたスラリーとして容器22
に排出される。
The exhaust gas after dust removal and cooling reaches a temperature of 200 ° C. or less and is discharged to the outside of the system, but the slurry liquid 16 accumulated at the bottom of the cooling tank 14 is leveled by a level meter 17 and a flow control valve 18. Is adjusted and transported to the settling tank 23 by the slurry pump 19a, and then transported to the dehydrator 20 from the bottom of the settling tank 23 by the slurry pump 19b in a concentration range of 50 to 80%, more preferably 60 to 80%. Dehydration, then a slurry transport device 21, and a container 22 as a Zn enriched slurry
Is discharged to.

【0022】脱水機20の廃液は沈殿槽23に送られ廃液中
に含まれるダスト等の固形分を沈降させ、固形分の大半
を取り除いた処理水24を処理水ポンプ25で水スプレー手
段15を通して冷却槽14に循環させる。
The waste liquid of the dehydrator 20 is sent to a settling tank 23 to settle solids such as dust contained in the waste liquid, and the treated water 24 from which most solids have been removed is passed through a water spray means 15 by a treated water pump 25. Circulate in the cooling tank 14.

【0023】この発明においては、脱水機20にて回収し
たスラリーダストの濃度は50〜80%としたが、その理由
は次のとおりである。
In the present invention, the concentration of the slurry dust collected by the dehydrator 20 is set to 50 to 80% for the following reason.

【0024】すなわち、スラリー濃度が50%未満では廃
液中に含まれるダストの量が多くなるため沈殿槽23の容
積が増大する不利があるとともに水スプレー手段15にお
けるダスト詰まり等のトラブルの発生が避けられないか
らであり、一方、スラリーダストの濃度が80%を超える
とスラリー輸送装置21の負荷が大きくなり輸送管が詰ま
る等の不都合があるからである。
That is, when the slurry concentration is less than 50%, the amount of dust contained in the waste liquid increases, which is disadvantageous in that the volume of the settling tank 23 increases and the occurrence of troubles such as dust clogging in the water spray means 15 is avoided. On the other hand, if the concentration of the slurry dust exceeds 80%, the load on the slurry transporting device 21 increases and the transport pipe is clogged.

【0025】図2は従来方式になる電気炉ダスト処理設
備の構成を示したものである。図2に示した設備におい
て溶融炉26は基本的には上掲図1に示したところと同様
の構成になるが、サイクロン8以降については熱交換式
の冷却槽27、バグフィルター28が配置されていて冷却槽
27、バグフィルター28にはそれぞれそこで補集されたダ
ストを輸送装置29に供給するバルブ30a, 30bが配置さ
れている。
FIG. 2 shows the structure of a conventional electric furnace dust treatment facility. In the equipment shown in FIG. 2, the melting furnace 26 has basically the same configuration as that shown in FIG. 1 above, but after the cyclone 8, a heat exchange type cooling tank 27 and a bag filter 28 are arranged. Cooling tank
27 and a bag filter 28 are provided with valves 30a and 30b for supplying the dust collected there to the transportation device 29.

【0026】かかる設備において冷却槽27に導入された
ダストを含む排ガスはここで約200℃以下まで冷却され
該排ガスに含まれているダストを除去したのちバクフィ
ルター28に送られるが、この従来方式では冷却槽27内で
の含Znダストの付着等の諸問題があったのは前述したと
おりである。
In such equipment, the exhaust gas containing dust introduced into the cooling tank 27 is cooled to about 200 ° C. or lower here, and the dust contained in the exhaust gas is removed, and then sent to the tap filter 28. However, as described above, there were various problems such as adhesion of Zn-containing dust in the cooling tank 27.

【0027】この発明においては、冷却槽14において排
ガス中に含まれる高亜鉛濃度含有ダストをスラリーダス
トとして回収するようにしたので、冷却槽14内での付着
やそれに伴う塊状化は抑制されるし、バクフィルターや
排出装置の損傷トラブルも回避できる。
In the present invention, since the high zinc concentration-containing dust contained in the exhaust gas is collected in the cooling tank 14 as slurry dust, the adhesion in the cooling tank 14 and the agglomeration associated therewith are suppressed. It is possible to avoid troubles such as damage to the back filter and the discharging device.

【0028】この発明では、水スプレーを施す前の段階
で排ガスを二次燃焼させるが、その理由について以下に
説明する。
In the present invention, the exhaust gas is secondarily burned before the water spray is applied. The reason for this will be described below.

【0029】炭材充てん層型の竪型溶融炉を用いた電気
炉ダストの処理においては排ガス中に多量のZn蒸気が含
まれており、排ガスをとおすダクトの内部においてはZn
やZnO を主体とするダストが多量に付着し通気阻害等の
操業トラブルを頻発させ溶融炉での操業が不安定になる
ことが懸念される。
A large amount of Zn vapor is contained in the exhaust gas in the treatment of electric furnace dust using a vertical melting furnace of the carbon material packed layer type, and Zn is contained in the duct passing through the exhaust gas.
It is feared that a large amount of dust mainly composed of ZnO and ZnO will adhere to it, causing operational troubles such as airflow obstruction frequently and making the operation in the melting furnace unstable.

【0030】このような原因を究明すべく、種々の実験
と検討を重ねた結果、次のようなことが明らかとなっ
た。
As a result of various experiments and investigations in order to investigate such a cause, the following has become clear.

【0031】1)通気阻害が発生した際の排ガスダスト内
壁には主としてZnO とCの混合物からなる多量の付着物
が観察される。 2)通気阻害は必ず排ガス温度が低い時期に起きる。 3)排ガス温度が低い場合には、還元性が高いと推定され
る炭材充てん層内であってもZn蒸気よりもZnO のほうが
安定している。 4)排ガス温度と排ガスの酸化度((CO2 +H2O)/(CO+CO2
+H2+H2O)) 、排ガス中のZnの存在形態 (Zn蒸気かZnO
) は図3に示すような状況にある。 5)炉頂排ガスのZn蒸気圧は電気炉ダストのZn含有量に応
じて変化するがこの発明において実施可能な操業範囲に
おいては、排ガス質量分析計による測定、または採取ガ
スの急速凝集で集めた凝集物の化学分析値と採取ガスか
ら計算推定される値から、0.01〜0.1 atm 程度である。
1) A large amount of deposits mainly composed of a mixture of ZnO and C are observed on the inner wall of the exhaust gas dust when the ventilation inhibition occurs. 2) Aeration inhibition always occurs when the exhaust gas temperature is low. 3) When the exhaust gas temperature is low, ZnO is more stable than Zn vapor even within the carbonaceous material packed bed, which is estimated to have high reducing properties. 4) Exhaust gas temperature and exhaust gas oxidation degree ((CO 2 + H 2 O) / (CO + CO 2
+ H 2 + H 2 O)), the form of Zn present in the exhaust gas (Zn vapor or ZnO
) Is in the situation shown in FIG. 5) The Zn vapor pressure of the furnace top exhaust gas changes according to the Zn content of the electric furnace dust, but in the operating range that can be implemented in the present invention, it was measured by an exhaust gas mass spectrometer or collected by rapid aggregation of the collected gas. It is about 0.01 to 0.1 atm based on the chemical analysis value of aggregates and the value estimated from the collected gas.

【0032】以上のことから、竪型溶融炉 (2段羽口を
有するもの)の操業において、炉頂の排ガスダクト内で
ZnO ダスト付着による通気阻害の操業トラブルを起こさ
ずに、竪型溶融炉を安定的に操業するには炉頂の排ガス
中におけるZnの存在形態をZn蒸気とする必要がある。
From the above, in the operation of a vertical melting furnace (having a two-stage tuyere), in the exhaust gas duct at the top of the furnace
In order to stably operate the vertical melting furnace without causing operational troubles due to aeration of ZnO dust, it is necessary to use Zn vapor as the Zn existence form in the exhaust gas at the furnace top.

【0033】ここに、図1に示した構成になる設備を用
いた操業においては、炉頂の排ガス温度をZn蒸気が安定
な条件に維持しようとしても二次燃焼ランス5のみでは
操業初期にそれを下回ることが懸念される。このため
に、図4に示すように排ガスダクト31, 32の少なくとも
一方にはダクト用二次燃焼バーナー33, 34を配置して、
排ガスを燃焼させる。
Here, in the operation using the equipment having the configuration shown in FIG. 1, even if the exhaust gas temperature at the furnace top is to be maintained under the condition that the Zn vapor is stable, the secondary combustion lance 5 alone is used in the initial operation. It is feared that it will fall below. For this purpose, as shown in FIG. 4, at least one of the exhaust gas ducts 31, 32 is provided with secondary combustion burners 33, 34 for ducts,
Burn exhaust gas.

【0034】排ガスダクト31, 32内におけるダストの付
着はダクトの圧力損失の大きさを検出するか、ダクトに
設置した温度計の温度変化から検出するか、あるいはダ
クトの外表面温度を測定し、その温度変化から検出する
ことができる。また、ダストの付着している位置を特定
する必要がある場合にはダクトの長手方向に複数の圧力
計や差圧計p1〜p3を設けてダクトの内圧を測定するか、
あるいは温度計t1〜t4を複数設置しダクトの外表面温度
を測定すればよく、これによってでダクトへの付着物の
生成状況と位置が把握できる。
The adhesion of dust in the exhaust gas ducts 31, 32 is detected by detecting the magnitude of pressure loss in the duct, by detecting the temperature change of a thermometer installed in the duct, or by measuring the outer surface temperature of the duct. It can be detected from the temperature change. Also, if a plurality of pressure gauge or differential pressure gauges p 1 ~p 3 in the longitudinal direction of the duct is provided to measure the internal pressure of the duct when it is necessary to specify the position adhering dust,
Alternatively, a plurality of thermometers t 1 to t 4 may be installed and the outer surface temperature of the duct may be measured. With this, the generation state and position of the deposit on the duct can be grasped.

【0035】排ガスダクト31, 32における排ガスの二次
燃焼に際して該ダクト31, 32内に吹き込む酸素量または
空気量を調整し排ガスの温度と排ガスの酸化度を適切に
維持することによってダクト内におけるZnO の付着が回
避されることになるが、二次燃焼によって達成しなけれ
ばならない排ガス温度は、二次燃焼前の排ガス温度と排
ガス中のZn蒸気の分圧によって決まる上掲図3に示すよ
うな条件に従う。
ZnO in the exhaust gas ducts 31 and 32 is adjusted by adjusting the amount of oxygen or the amount of air blown into the ducts 31 and 32 during secondary combustion of the exhaust gas to appropriately maintain the temperature of the exhaust gas and the degree of oxidation of the exhaust gas. However, the exhaust gas temperature that must be achieved by secondary combustion is determined by the exhaust gas temperature before secondary combustion and the partial pressure of Zn vapor in the exhaust gas, as shown in Fig. 3 above. Follow the conditions.

【0036】図4においてはダクト31およびダクト32に
それぞれ二次燃焼バーナーを一本設けた場合について示
したが、二次燃焼バーナーの設置本数は操業状況 (Znの
付着状況) に応じて増減でき、とくに設置本数について
は限定されない。
Although FIG. 4 shows the case where one secondary combustion burner is provided in each of the duct 31 and the duct 32, the number of secondary combustion burners installed can be increased or decreased according to the operating condition (Zn adhesion condition). The number of installations is not particularly limited.

【0037】二次燃焼前の排ガスダクト31, 32内の排ガ
ス温度が例えば700 ℃で、排ガスの酸化度が10%、その
際の排ガス中のZn蒸気の分圧が0.1 atm である場合にお
いては、図3より明らかなように、二次燃焼により酸化
度が上昇する効果と排ガス温度が上昇する効果を勘案し
た場合に二次燃焼後における排ガス温度は1000℃以上と
なる。
When the temperature of the exhaust gas in the exhaust gas ducts 31, 32 before secondary combustion is, for example, 700 ° C., the degree of oxidation of the exhaust gas is 10%, and the partial pressure of Zn vapor in the exhaust gas at that time is 0.1 atm As is clear from FIG. 3, when the effect of increasing the degree of oxidation and the effect of increasing the exhaust gas temperature due to secondary combustion are taken into consideration, the exhaust gas temperature after secondary combustion is 1000 ° C. or higher.

【0038】竪型溶融炉1の出側における排ガスダクト
31, 32においてダスト付着状況や位置を検出し、その検
出情報に基づいて二次燃焼バーナーによる燃焼条件を調
整しつつZn蒸気が安定化するように排ガス温度やガスの
酸化度を調整するようにした場合、排ガスダクトでのZn
やZnO を主体とするダストの付着が抑制され、操業トラ
ブルや炉内耐火物の損傷を回避することが可能で、しか
もダスト中の亜鉛を安定かつ高濃度にして回収できるの
で再資源化にも極めて有利となる。なお、冷却槽14は湿
式冷却槽または乾式冷却槽のいずれでもよい。
Exhaust gas duct on the outlet side of the vertical melting furnace 1
The dust adhesion state and position are detected at 31, 32, and the exhaust gas temperature and the gas oxidation degree are adjusted so that the Zn vapor is stabilized while adjusting the combustion conditions by the secondary combustion burner based on the detection information. If the Zn in the exhaust gas duct
Adhesion of dust, mainly ZnO and ZnO, is suppressed, operation troubles and damage to refractories in the furnace can be avoided, and zinc in the dust can be recovered in a stable and high concentration for recycling. It will be extremely advantageous. The cooling tank 14 may be either a wet cooling tank or a dry cooling tank.

【0039】この発明においては、冷却槽14において排
ガス中に含まれる高亜鉛濃度含有ダストをスラリーダス
トとして回収するようにしたので、冷却槽14内での付着
やそれに伴う塊状化は抑制されるし、バクフィルターや
排出装置の損傷トラブルも回避でき、さらに、排ガスダ
クト内で排ガスを二次燃焼させることにより排ガスダク
トでのZnやZnO を主体とするダストの付着が抑制され、
操業トラブルや炉内耐火物の損傷を回避することが可能
で、いずれの場合もダスト中の亜鉛を安定かつ高濃度に
して回収できるので再資源化にも極めて有利となる。
In the present invention, since the high zinc concentration-containing dust contained in the exhaust gas is collected as the slurry dust in the cooling tank 14, the adhesion in the cooling tank 14 and the agglomeration associated therewith are suppressed. Also, it is possible to avoid troubles such as damage to the air filter and the exhaust device, and further, by secondary combustion of the exhaust gas in the exhaust gas duct, the adhesion of dust mainly composed of Zn and ZnO in the exhaust gas duct is suppressed,
It is possible to avoid operational troubles and damages to the refractory in the furnace. In any case, zinc in dust can be recovered in a stable and high concentration, which is extremely advantageous for recycling.

【0040】[0040]

【実施例】【Example】

実施例1 炉径が1.2 m、高さが8.0 m、羽口が上下で各3本を有
する溶融炉を備えた図1に示した設備を用い、送風量:
1650Nm3/hr、送風温度:900 ℃、富化酸素量:50〜200N
m3/hr 、ダストの吹込み量:600 〜800 kg/hr ( 配合
比:電気炉ダスト90%, 溶剤 (石灰石+硅石)10 %) の
もとで、電気炉ダスト(T.Fe :28.4 %,Zn:29.9%, C
r:0.27%, Pb:2.05%,Cd :0.04%, SiO2:2.91%, A
l2O3 :1.55,CaO:1.23%, MgO :0.38%, MnO :2.36
%, Na2O:1.53, K2O :0.81%) の処理を行い、その際
の操業状況について調査した。その結果を試験条件とと
もに表1に示す。
Example 1 Using the equipment shown in FIG. 1 equipped with a melting furnace having a furnace diameter of 1.2 m, a height of 8.0 m, and three tuyeres at the top and bottom, the air flow rate was:
1650Nm 3 / hr, blast temperature: 900 ℃, enriched oxygen amount: 50-200N
m 3 / hr, blowing amount of dust: 600 to 800 kg / hr (mixing ratio: electric arc furnace dust 90%, solvent (limestone + Keiseki) 10%) under an electric arc furnace dust (T.Fe: 28.4 %, Zn: 29.9%, C
r: 0.27%, Pb: 2.05%, Cd: 0.04%, SiO 2 : 2.91%, A
l 2 O 3 : 1.55, CaO: 1.23%, MgO: 0.38%, MnO: 2.36
%, Na 2 O: 1.53, K 2 O: 0.81%), and the operation status at that time was investigated. The results are shown in Table 1 together with the test conditions.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より明らかなように、この発明に従っ
て電気炉ダストを処理した場合には冷却槽以降における
トラブルの発生は全くなく、高い濃度のZnダストを回収
することができた。
As is clear from Table 1, when the electric furnace dust was treated in accordance with the present invention, no trouble occurred in the cooling tank and thereafter, and high concentration Zn dust could be recovered.

【0043】ちなみに、この試験操業において溶融炉で
得られたメタルの組成は90〜93%のFe、1〜2%のSi、
4.0 〜4.3 %のC、0.8 〜1.2 %のMn、0.6 〜0.9 %の
Crを含む銑鉄であり、スラグについては24〜27%のSi
O2、16〜24% Al2O3、22〜25%のCaO 、2.3 〜2.6 のMg
O 、5.7 〜6.8 のMnO 、0.01%以下のCdを含む組成のも
のであった。
Incidentally, the composition of the metal obtained in the melting furnace in this test operation was 90 to 93% Fe, 1 to 2% Si,
4.0-4.3% C, 0.8-1.2% Mn, 0.6-0.9%
Pig iron containing Cr, with 24-27% Si for slag
O 2, 16~24% Al 2 O 3, 22~25% of CaO, 2.3 to 2.6 of the Mg
The composition was O 2, 5.7 to 6.8 MnO 2, and 0.01% or less of Cd.

【0044】実施例2 炉径が1.2 m, 高さ8.0 m,羽口が上下段で各3本備え
た図4に示した竪型溶融炉を用いて下記の条件の下で電
気炉ダストの処理を行いその際の操業状況について調査
した。調査結果を試験条件とともに表2に示す。
Example 2 Using the vertical melting furnace shown in FIG. 4 having a furnace diameter of 1.2 m, a height of 8.0 m, and three tuyeres in the upper and lower stages, the electric furnace dust of After processing, the operation status at that time was investigated. The survey results are shown in Table 2 together with the test conditions.

【0045】条件 1)送風条件 送風量:1650Nm3/hr 送風温度:900 ℃ 富化酸素量:50〜100 Nm3/hr 2)粉体吹き込み条件 配合比:電気炉ダスト 90 % (組成は実施例1と同じ) 溶剤 (石灰石+硅石) 10% 吹き込み量:650 〜750 kg/hr[0045] Condition 1) blowing condition air volume: 1650 nm 3 / hr blast temperature: 900 ° C.-enriched oxygen amount: 50~100 Nm 3 / hr 2) Powder blowing conditions blending ratio: electric arc furnace dust 90% (composition embodiment Same as Example 1) Solvent (limestone + silica stone) 10% Injection rate: 650-750 kg / hr

【0046】[0046]

【表2】 [Table 2]

【0047】表2より明らかなように、この発明に従っ
て電気炉ダストを処理した場合には排ガスダクトにおけ
るトラブルの発生は全くなく、高い濃度のZnダストを回
収するとこができた。
As is clear from Table 2, when the electric furnace dust was treated according to the present invention, no trouble occurred in the exhaust gas duct, and it was possible to recover a high concentration of Zn dust.

【0048】そして、この実施例において得られたメタ
ル組成は90〜93%のFe、1〜2%のSi、4.0 〜4.3 %の
C、0.8 〜1.2 のMn、0.6 〜0.9 %のCrを含む銑鉄であ
り、スラグについては24〜27%のSiO2、16〜24%の Al2
O3、22〜25%のCaO 、2.3 〜2.6 %のMgO 、5.7 〜6.8
%のMnO 、0.01%以下のCdを含む組成であった。
The metal composition obtained in this example contains 90 to 93% Fe, 1 to 2% Si, 4.0 to 4.3% C, 0.8 to 1.2 Mn, and 0.6 to 0.9% Cr. Pig iron, for slag 24-27% SiO 2 , 16-24% Al 2
O 3, 22~25% of CaO, 2.3 ~2.6% of MgO, 5.7 ~6.8
% MnO 2 and 0.01% or less Cd.

【0049】[0049]

【発明の効果】以上説明したようにこの発明によれば、
粉状の電気炉ダストをそのまま処理でき、かつ、Znダス
トと溶銑の分離回収が単一の竪型溶融炉で処理できるの
で処理コストを最低限に抑えるできる。また、電気炉ダ
ストから高効率でZnを回収することが可能であり資源の
有効利用を図ることができる。
As described above, according to the present invention,
The powdery electric furnace dust can be processed as it is, and the separation and recovery of Zn dust and hot metal can be processed in a single vertical melting furnace, so the processing cost can be minimized. Further, Zn can be recovered from the electric furnace dust with high efficiency, and resources can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施するのに用いて好適な設備の構
成を示した図である。
FIG. 1 is a diagram showing a configuration of equipment suitable for carrying out the present invention.

【図2】従来の電気炉ダストの処理設備の構成を示した
図である。
FIG. 2 is a diagram showing a configuration of a conventional electric furnace dust processing facility.

【図3】排ガス温度と排ガスの酸化度との関係を示した
図である。
FIG. 3 is a diagram showing a relationship between exhaust gas temperature and exhaust gas oxidation degree.

【図4】この発明を実施するのに用いて好適な設備の他
の構成を示した図である。
FIG. 4 is a diagram showing another configuration of equipment suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 竪型溶融炉 1u 上段羽口 1s 下段羽口 2 炭材用ホッパー 3 充てん層 4 粉体吹き込み装置 5 二次燃焼ランス 6 出銑口 7 出銑口 8 サイクロン 9 ホッパー 10 ダスト輸送装置 11 バルブ 12 ダスト排出ポッパー 13 バルブ 14 冷却槽 15 水スプレー手段 16 スラリー液 17 レベル計 18 流量調節弁 19a スラリーポンプ 19b スラリーポンプ 20 脱水機 21 スラリー輸送装置 22 容器 23 沈殿槽 24 処理水 25 処理水ポンプ 26 排ガスダクト 27 排ガスダクト 28 二次燃焼バーナー 29 二次燃焼バーナー 30 溶融炉 31 冷却槽 32 バグフィルター 33 輸送装置 34a バルブ 34b バルブ p1〜p3 圧力計 t1〜t4 温度計1 Vertical melting furnace 1u Upper stage tuyeres 1s Lower stage tuyeres 2 Carbon material hopper 3 Packing layer 4 Powder blowing device 5 Secondary combustion lance 6 Tapping port 7 Tapping port 8 Cyclone 9 Hopper 10 Dust transporting device 11 Valve 12 Dust discharge popper 13 Valve 14 Cooling tank 15 Water spraying means 16 Slurry liquid 17 Level meter 18 Flow control valve 19a Slurry pump 19b Slurry pump 20 Dehydrator 21 Slurry transportation device 22 Container 23 Settling tank 24 Treated water 25 Treated water pump 26 Exhaust gas duct 27 exhaust gas duct 28 the secondary combustion burner 29 secondary combustion burner 30 melting furnace 31 cooling bath 32 bag filter 33 transporter 34a valve 34b valve p 1 ~p 3 manometer t 1 ~t 4 thermometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板谷 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 藤井 徹也 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Itaya, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Institute, Kawasaki Steel Co., Ltd. (72) Tetsuya Fujii 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素系固体還元剤の充てん層を備えた上
下2段の羽口を有する竪型溶融炉を用いて電気炉ダスト
を処理するに当たり、 竪型溶融炉の少なくとも上段羽口から粉状の電気炉ダス
トを吹込み、該電気炉ダスト中に含まれる亜鉛分を還
元、蒸発させ、該竪型溶融炉の出側にて、まず、低亜鉛
濃度含有ダストを回収し、次いで水スプレーを施して高
亜鉛濃度含有ダストをスラリーダストとして回収するこ
とを特徴とする電気炉ダストの処理方法。
1. When treating electric furnace dust with a vertical melting furnace having two upper and lower tuyeres equipped with a carbon-based solid reducing agent-packed layer, powder is obtained from at least the upper tuyeres of the vertical melting furnace. -Shaped electric furnace dust is blown in to reduce and evaporate the zinc content contained in the electric furnace dust. At the exit side of the vertical melting furnace, first, the low zinc concentration-containing dust is recovered, and then water spray is applied. A method for treating electric furnace dust, characterized in that the dust containing high zinc concentration is recovered as slurry dust by applying the above.
【請求項2】 脱水後のスラリー濃度が50〜80%である
請求項1記載の方法。
2. The method according to claim 1, wherein the slurry concentration after dehydration is 50 to 80%.
【請求項3】 水スプレーを施す前の段階で排ガスを二
次燃焼させる請求項1または2記載の方法。
3. The method according to claim 1 or 2, wherein the exhaust gas is secondarily combusted before the water spray is applied.
JP24174995A 1995-03-31 1995-09-20 Electric furnace dust treatment method Expired - Fee Related JP3336167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24174995A JP3336167B2 (en) 1995-03-31 1995-09-20 Electric furnace dust treatment method
TW085114418A TW369567B (en) 1995-09-20 1996-11-22 Method of treating zinc-containing substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7519995 1995-03-31
JP7-75199 1995-03-31
JP24174995A JP3336167B2 (en) 1995-03-31 1995-09-20 Electric furnace dust treatment method

Publications (2)

Publication Number Publication Date
JPH08325646A true JPH08325646A (en) 1996-12-10
JP3336167B2 JP3336167B2 (en) 2002-10-21

Family

ID=26416357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24174995A Expired - Fee Related JP3336167B2 (en) 1995-03-31 1995-09-20 Electric furnace dust treatment method

Country Status (1)

Country Link
JP (1) JP3336167B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400415B1 (en) * 1999-06-11 2003-10-01 주식회사 포스코 HIGH Zn SLUDGE CAKE PRODUCING DEVICE OF BLAST FURNACE THICKENER
JP2007009240A (en) * 2005-06-28 2007-01-18 Kobe Steel Ltd Method for reusing converter dust
JP2014051684A (en) * 2012-09-04 2014-03-20 Jfe Steel Corp Method of detecting dust deposit, and detection device of the same
KR101525190B1 (en) * 2013-11-06 2015-06-03 주식회사 포스코 METHOD FOR REMOVING EXTRANEOUS MATTER IN IN GAS DUCT OF melting FURNACE
CN111876607A (en) * 2020-07-07 2020-11-03 江苏科技大学 Leaching, enriching and separating process for iron and chromium elements in electric furnace dust

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400415B1 (en) * 1999-06-11 2003-10-01 주식회사 포스코 HIGH Zn SLUDGE CAKE PRODUCING DEVICE OF BLAST FURNACE THICKENER
JP2007009240A (en) * 2005-06-28 2007-01-18 Kobe Steel Ltd Method for reusing converter dust
JP2014051684A (en) * 2012-09-04 2014-03-20 Jfe Steel Corp Method of detecting dust deposit, and detection device of the same
KR101525190B1 (en) * 2013-11-06 2015-06-03 주식회사 포스코 METHOD FOR REMOVING EXTRANEOUS MATTER IN IN GAS DUCT OF melting FURNACE
CN111876607A (en) * 2020-07-07 2020-11-03 江苏科技大学 Leaching, enriching and separating process for iron and chromium elements in electric furnace dust
CN111876607B (en) * 2020-07-07 2022-02-11 江苏科技大学 Leaching, enriching and separating process for iron and chromium elements in electric furnace dust

Also Published As

Publication number Publication date
JP3336167B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US2894831A (en) Process of fluidized bed reduction of iron ore followed by electric furnace melting
US4045214A (en) Method for producing steel
KR20030055357A (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
US5540751A (en) Method for recovering zinc from zinc containing dust
KR20150010997A (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
US6372011B1 (en) Method for producing an iron melt using iron-containing residual smelting plant materials
CN102016080A (en) Process for production of direct-reduced iron
JPH08325646A (en) Treatment of dust of electric furnace
US4255185A (en) Processes and apparatus for reducing and subsequently pelletizing moist fine-grained ore
EP0832988B1 (en) Method of treating zinc-containing substance and apparatus therefor
KR100205090B1 (en) Treatment method of zinc-contained dust and its apparatus
JPH0429732B2 (en)
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
KR100276346B1 (en) A method for reducing the fine iron ore utilizing the device of fluidized bed type
JP2002047507A (en) Method for producing molten iron and apparatus for producing molten iron
JPH11189832A (en) Treatment of zinc-containing powdery material
Hemeon Air Pollution Problems of the Steel Industry Technical Coordinating Committee T-6 Steel Report: Dust Problems in Blast Furnace Operation
JP2000336417A (en) Method for setting tuyere
JPS6296624A (en) Copper making method
JPH09310128A (en) Treatment of sludge containing oil
US1414353A (en) Recovery of potassium values from fumes
JP2003013128A (en) Metal refining furnace
JPH11131117A (en) Smelting reduction process for vertical cupola and blast furnace
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees