JPS6121716A - Continuous operation of adsorbing apparatus - Google Patents

Continuous operation of adsorbing apparatus

Info

Publication number
JPS6121716A
JPS6121716A JP59145006A JP14500684A JPS6121716A JP S6121716 A JPS6121716 A JP S6121716A JP 59145006 A JP59145006 A JP 59145006A JP 14500684 A JP14500684 A JP 14500684A JP S6121716 A JPS6121716 A JP S6121716A
Authority
JP
Japan
Prior art keywords
adsorbing
adsorption
integrated value
vessel
adsorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59145006A
Other languages
Japanese (ja)
Inventor
Ryuichi Fukusato
福里 隆一
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59145006A priority Critical patent/JPS6121716A/en
Publication of JPS6121716A publication Critical patent/JPS6121716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enhance the efficiency of adsorbing treatment, in a method for the continuous operation of an adsorbing apparatus, by providing a densitometer to the stock gas supply port communicated with an adsorbing vessel to calculate the introduction integrated value of an adsorbing component and changing over an adsorbing process to a desorbing process when said integrated value reaches a predetermined value. CONSTITUTION:An adsorbing component densitometer 3 and a flow meter 4 are attached to a stock gas supply line L1 and the measured values are sent to an integrating operator 5 to continuously calculate the introduction integrated value of the adsorbing component supplied to an adsorbing vessel 1a. When the introduction integrated value reaches preset change-over point adsorbing capacity, a signal is sent to a control apparatus 6 and the change-over of the stock gas supply line is performed by the opening and closing of solenoid valves V1-V8 while adsorbing treatment by an adsorbing vessel 1b after a desorbing process is started and regeneration gas is sent to the adsorbing vessel 1a from a regeneration gas line L3 to allow said adsorbing vessel 1a to enter a regeneration process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数基の吸着器を併設し、少なくとも一基の
吸着器では吸着処理を、また他方の吸着器では脱着処理
を夫々併りして行ない、適、宜吸着工程と脱着工程の切
換へを行なう吸着装置の連続運転方法において、各吸着
器毎の吸着能力を最大限有効に生かし高レベルの吸着処
理効率を得ることのでき−る連続運転方法に関するも♀
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method in which a plurality of adsorbers are installed together, at least one adsorber performs adsorption processing, and the other adsorber performs desorption processing. In a method of continuous operation of an adsorption device, in which the adsorption process is carried out as necessary and the adsorption process and desorption process are switched as appropriate, it is possible to obtain a high level of adsorption treatment efficiency by making the best use of the adsorption capacity of each adsorption device. Continuous operation method
It is.

〔従来の技術〕[Conventional technology]

ガス等の流体中に含まれるある種の成分(1種又は2種
以上)を除去する方法として吸着法があり、代表的な吸
着処理装置の基本的な構成を例示すれば第3図に示す通
シである。即ち第3図においてjaslbは吸着器を示
し、原料ガス供給ラインL□から供給される原料ガスは
、パルプvl(又はvt)から一方の吸着器1a(′又
はlb)へ送られて吸着処理を受け、処理を終えたガス
はパルプVS(又t−tvt )から精製ガスラインL
1を経て抜き出される。この吸着処理工程と併行して他
方の吸着器xb(又はla)では脱着処理が行なわれる
。即ち再生ガスは再生ガスラインLsからパルプVa(
又はVS)を通して吸着器1b(又はla)へ供給され
、前回の吸着工程で吸着された成分を脱着した後、バル
ブV、(又はV、)から再生ガス排出ラインL4を経て
排出される。そシテハルプv1〜v8を適宜切換えるこ
とによって、吸着器1a、1bによる吸着と脱着を繰シ
返し、装置全体としては吸着と脱着を連続的に行なう様
にしている。この場合、吸着工程から脱着工程への切換
え時期は、各吸着器が破過点に達する時期に呼応して行
なうのが最善であると思われる。しかし現在性なわれて
いるのは、原料ガス中の吸着成分濃度と単位時間・当た
シの原料ガス供給量に応じて、各吸着器が破過点に到達
するまでの時間を予め設定しておき、各バルブV1〜v
8を電磁弁としタイマー2によシ前記切換えが自動的に
行なわれる様に構成している。
Adsorption is a method for removing certain components (one or more) contained in fluids such as gas, and the basic configuration of a typical adsorption treatment device is shown in Figure 3. It is common knowledge. That is, in FIG. 3, jaslb indicates an adsorber, and the raw material gas supplied from the raw material gas supply line L□ is sent from the pulp vl (or vt) to one of the adsorbers 1a (' or lb) for adsorption treatment. The gas that has been received and processed is sent from the pulp VS (also t-tvt) to the purified gas line L.
1 and then extracted. In parallel with this adsorption process, a desorption process is performed in the other adsorber xb (or la). That is, the regeneration gas is supplied from the regeneration gas line Ls to the pulp Va(
or VS) to the adsorber 1b (or la), and after desorbing the components adsorbed in the previous adsorption step, it is discharged from the valve V, (or V,) via the regeneration gas discharge line L4. By appropriately switching the outputs v1 to v8, adsorption and desorption by the adsorbers 1a and 1b are repeated, so that the entire apparatus continuously performs adsorption and desorption. In this case, it seems best to switch from the adsorption step to the desorption step in accordance with the time when each adsorber reaches its breakthrough point. However, what is currently available is that the time required for each adsorber to reach its breakthrough point is set in advance, depending on the concentration of adsorbed components in the raw material gas, unit time, and the amount of raw material gas supplied per unit time. Then, each valve V1~v
Reference numeral 8 is a solenoid valve, and the timer 2 is configured to automatically perform the above-mentioned switching.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の様な電磁弁とタイマーによる切換え運転法は一見
極めて合理的である様に思われるが、次の様な欠点があ
る為個々の吸着器の有する処理能力を十分に生かしきっ
ているとは言い難い。即ち第3図の方法では、1サイク
ル毎の吸着処理時間が一定に保たれているが、これに対
し原料ガス中の吸着成分濃度は必ずしも一定ではない為
、吸着器が破過点に到達する所望時間には相当の幅があ
る。そしてこの破過点到達所要時間が前記設定時間よル
も短くなる様々ことがあると、吸着処理の末期に訃ける
吸着成分除去効果が急激に低下し、精製の目的を達成す
ることができなくなる。従ってこの様な問題の発生を回
避するタイマー作動時間を安全圏内に設定することが考
えられ、例えば原料ガス中の吸着成分濃度がピーク値に
なるときを基準にして算出した破過点到達所要時間を設
定時間としている。その結果実際の操業では各吸着器は
相当の吸着能力を残している段階で脱着工程に切換えら
れておシ過度の安全率を見越した切換え運転になってい
る為、吸着材の吸着能力を有効に活用し得ているとは言
い難い。
At first glance, the switching operation method using a solenoid valve and timer as described above seems to be extremely rational, but it has the following drawbacks, so it is difficult to make full use of the processing capacity of each adsorber. It's hard to say. In other words, in the method shown in Figure 3, the adsorption processing time for each cycle is kept constant, but on the other hand, the concentration of adsorbed components in the raw gas is not necessarily constant, so the adsorber reaches the breakthrough point. There is considerable variation in the desired time. If the time required to reach this breakthrough point becomes shorter than the set time, the effect of removing adsorbed components that die at the end of the adsorption process will decrease rapidly, making it impossible to achieve the purpose of purification. . Therefore, it is possible to set the timer operating time within a safe range to avoid such problems, for example, the time required to reach the breakthrough point calculated based on the time when the adsorbed component concentration in the raw material gas reaches its peak value. is the set time. As a result, in actual operation, each adsorber is switched to the desorption process when it still has a considerable adsorption capacity, and the switching operation takes into account an excessive safety factor, so the adsorption capacity of the adsorbent is effectively utilized. It is difficult to say that it is being utilized effectively.

本発明はこうした状況のもとで、吸着材の有する吸着能
力を最大限有効に活用し、吸着処理効率を大幅に高める
仁とのできる連続運転方法を提供しようとするものであ
る。
Under these circumstances, the present invention aims to provide a continuous operation method that makes the most effective use of the adsorption capacity of the adsorbent and significantly increases the efficiency of adsorption treatment.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、前記第3図にも示した様に複数基の吸着器を
併設し、少なくとも1基の吸着器では吸着処理を行なう
と共に、他の吸着器では脱着を行ない、適宜吸着工程と
脱着工程の切換・えを行なう吸着装置の連続運転方法に
おいて、各吸着器毎に前記切換点吸着容量を予め設定し
ておき、各吸着器への被処理流体(原料ガス)供給ライ
ンに、該流体中の吸着成分濃度測定器を設けて該吸着成
分の濃度を測定しつつ該吸着成分の導入量積算値を算出
し、該積算値が予め設定しておいた前記切換点吸着容量
に到達した段階で、吸着工程と脱着工程の切換えを行な
うところに要旨を有するものである。
In the present invention, as shown in FIG. 3, a plurality of adsorbers are installed together, and at least one adsorber performs adsorption processing, while the other adsorbers perform desorption, and the adsorption process and desorption process are performed as appropriate. In a method for continuous operation of an adsorption device that performs process switching, the switching point adsorption capacity is set in advance for each adsorption device, and the fluid to be treated (raw material gas) supply line to each adsorption device is A step in which an adsorbed component concentration measuring device is installed in the inside of the container to measure the concentration of the adsorbed component and an integrated value of the introduced amount of the adsorbed component is calculated, and the integrated value reaches the preset switching point adsorption capacity. The gist of this method is to switch between the adsorption process and the desorption process.

〔作用〕[Effect]

本発明で杜、併設された複数基の吸着器の各吸着容量(
即ち破過点)を予め求めておいて、各破過点未満で所定
の安全率を見越した実質の飽和吸着容量を切換点吸着容
量として予め設定しておき、−勇名吸着器への被処理流
体C原料ガス)供給2インには、該流体中の吸着成分濃
度測定器を設けて該吸着成分濃度を測定すると共に、例
えば流量計によって流体供給量を併行的に測定して吸着
成分の導入量積算値を算出し、この積算値が予め設定し
ておいた前記切換点吸着容量に到達した段階で吸着工程
から脱着工程への切換えを行なうものである。即ちこの
運転方法では、原料ガス中の吸着成分濃度や原料ガス流
量が変動した場合でも、各吸着器へ供給される吸着成分
の導入量積算値自体を正確に把握しておくことができる
ので、吸着工程から脱着工程への切換時期を正確に知る
ことができる。従って各吸着器の前記切換点吸着容量を
破過点直前の吸着容量に設定しておいた場合でも、切換
時期が遅れて吸着効率が低下する様な恐れがなく、各吸
着器の吸着能力を最大限に発揮させることができる。尚
この運転方法の具体的な構成については後記実施例で詳
細に説明するが、吸着器の構造や併設数、配管構造、バ
ルブ付設位置等を任意に変更し得ることは勿論のこと、
吸着器内へ充填される吸着材の種類も吸着成分のS類に
応じて適宜選択して決定すればよい。
In the present invention, each adsorption capacity (
In other words, the actual saturated adsorption capacity (that is, the breakthrough point) is determined in advance, and the actual saturated adsorption capacity that takes into account a predetermined safety factor below each breakthrough point is set in advance as the switching point adsorption capacity. A device for measuring the concentration of adsorbed components in the fluid is installed in the processing fluid C raw material gas) supply 2-in to measure the concentration of the adsorbed components, and at the same time measure the fluid supply amount using a flowmeter, for example, to measure the amount of adsorbed components. The integrated value of the introduced amount is calculated, and when this integrated value reaches the preset switching point adsorption capacity, the adsorption process is switched to the desorption process. In other words, with this operating method, even if the adsorbed component concentration in the raw material gas or the raw material gas flow rate fluctuates, the integrated value of the introduced amount of adsorbed components supplied to each adsorber can be accurately grasped. It is possible to accurately know when to switch from the adsorption process to the desorption process. Therefore, even if the switching point adsorption capacity of each adsorber is set to the adsorption capacity just before the breakthrough point, there is no risk that the switching timing will be delayed and the adsorption efficiency will decrease, and the adsorption capacity of each adsorber can be adjusted. You can make the most of it. The specific configuration of this operating method will be explained in detail in Examples below, but it goes without saying that the structure of the adsorbers, the number of adsorbers, the piping structure, the position of the valves, etc. can be changed as desired.
The type of adsorbent to be filled into the adsorber may be appropriately selected and determined depending on the type S of the adsorbed component.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す概略説明図であシ、吸着
器1a、1bや電磁バルブV、〜v8の配置及び配管等
の基本的な構成は第3図の例と実質的に変わらない。但
し本例では原料ガス供給ラインL1の適所に吸着成分濃
度測定器3及び流量計4を取)付けて吸着成分濃度と原
料ガス流量を連続的に測定し、これを積算値演算器5へ
送シ、吸着器1a(又はlb)へ供給される吸着成分の
導入積算値を連続的に把握し得る様に構成している。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the present invention, and the basic configuration of the adsorbers 1a, 1b, the arrangement of electromagnetic valves V, ~v8, piping, etc. is substantially the same as the example of FIG. 3. does not change. However, in this example, an adsorbed component concentration measuring device 3 and a flow meter 4 are installed at appropriate locations on the raw material gas supply line L1 to continuously measure the adsorbed component concentration and raw material gas flow rate, and send these to the integrated value calculator 5. The system is configured so that the integrated value of introduced adsorbed components supplied to the adsorber 1a (or lb) can be continuously determined.

一方操業開始の準備段階では、吸着器1a、lb内に充
填される吸着材の種類や充填量に応じて予め破過点を求
め、該破過点未満の任意の値(望ましくは破過点直前の
値)を切換点吸着容量として予め設定しておく。そして
前記積算演算器5によって求められる吸着成分の導入積
算値(例えば第2図のグラフにおける斜線領域の面積)
が上記切換点吸着容量に到達すると、その信号を制御装
置6へ送シ、電磁バルブv1〜v8の開・閉によって原
料ガス供給ラインの切換えを行ない、脱着工程を終えた
吸着器1bによる吸着処理が開始される。
On the other hand, in the preparation stage for starting operation, the breakthrough point is determined in advance according to the type and amount of adsorbent filled in the adsorbers 1a and 1b, and any value below the breakthrough point (preferably the breakthrough point The previous value) is set in advance as the switching point adsorption capacity. Then, the introduced integrated value of adsorbed components determined by the integration calculator 5 (for example, the area of the shaded area in the graph of FIG. 2)
When the adsorption capacity reaches the switching point, the signal is sent to the control device 6, the raw material gas supply line is switched by opening and closing the electromagnetic valves v1 to v8, and the adsorption process is performed by the adsorber 1b which has completed the desorption process. is started.

また切換点吸着容量に到達した吸着器1aには再生ガス
ラインL、から再生ガスが送シ込まれ、再生処理が併行
して行なわれる。この操作を自動的に繰シ返すことによ
って、吸着処理と脱着処理を連続的に行なうものである
Further, regeneration gas is fed from the regeneration gas line L to the adsorber 1a that has reached the switching point adsorption capacity, and regeneration processing is performed in parallel. By automatically repeating this operation, adsorption processing and desorption processing are performed continuously.

ととるで吸着成分の導入量積算値は前述の如く連続的に
測定するのが理想であるが、場合によっては間欠的に測
定することも可能である。この場合は最新の測定値の数
点から補間法によって経時変化の関数を求め、これを外
挿することによって連続的な導入量積算値を算出すれば
よい。また吸吸着材の種類によってれ、吸・脱着の繰シ
返し回数が増えるにつれて吸着能力が低下し、破過点に
おける吸着容量が低下することがあるが、こうした場合
でも吸着材の種類や操業条件に応じてその低下傾向を予
め確認しておくことができるので、その低下傾向を予め
積算演算器5に入力しておいて切換時期を順次早める様
に設定することによって容易に対処することができる。
Ideally, the integrated value of the introduced amount of the adsorbed component should be measured continuously as described above, but depending on the case, it is also possible to measure it intermittently. In this case, a function of change over time may be obtained by interpolation from several of the latest measured values, and a continuous integrated value of the introduced amount may be calculated by extrapolating this. Also, depending on the type of adsorbent, the adsorption capacity may decrease as the number of repetitions of adsorption and desorption increases, and the adsorption capacity at the breakthrough point may decrease. Since it is possible to confirm the downward trend in advance according to the change, it is possible to easily deal with the downward trend by inputting the downward trend into the integration calculator 5 in advance and setting the switching timing to be advanced one by one. .

更に第2図の例は2基の吸着器1a11bを切換使用す
るもので、原料ガスはその全量が一方の吸着器1a(又
はlb)へ送給される構成となっているから、吸着i1
a。
Furthermore, in the example shown in FIG. 2, two adsorbers 1a11b are used selectively, and the entire amount of raw material gas is sent to one adsorber 1a (or lb), so the adsorption i1
a.

1bへの分岐前の原料ガス供給ラインL、に濃度計3及
び流量計4を設けたが、例えば3基以上の吸着器を併設
し原料ガスを分岐して2基以上の吸着器へ同時に供給す
る様な設備である場合は、各各の吸着器への原料ガス供
給ライン(分岐後のもの)に夫々濃度計及び流量計を併
設しておく必要がある。また複数の被吸着成分を含む原
料ガスを処理する場合は、夫々の吸着成分の導入量積算
値を上記の方法で求め、吸着力の最も弱い被吸着成分の
導入量積算値が該当する切換点吸着容量に到達した段階
で切換えを行なう様にすればよい。
A concentration meter 3 and a flow meter 4 are installed in the raw material gas supply line L before branching to 1b, but for example, if three or more adsorbers are installed together, the raw material gas is branched and supplied to two or more adsorbers at the same time. If the equipment is such that the raw material gas supply line (after branching) to each adsorber, it is necessary to install a concentration meter and a flow meter, respectively. In addition, when processing a raw material gas containing multiple adsorbed components, calculate the integrated amount of introduced amount of each adsorbed component using the above method, and select the switching point corresponding to the integrated amount of introduced amount of the adsorbed component with the weakest adsorption power. The switching may be performed when the adsorption capacity is reached.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるが、要は被吸着成分の導
入量積算値を連続的に把握しながら、各吸着器の吸着容
量が破過点未満の段階で切換える方法であるから、原料
ガス中の被吸着成分濃度や原料ガス流量が変動した場合
でも切換時期が遅れる様な事態を生ずることがない。従
って吸着処理不足のガスが精製ガス中に混入して純度を
低下させる様な恐れは完全に無くなる。しかも前記切換
点吸着容量を当該吸着材の有する最大の吸着容量に設定
しておくことができるので、吸着処理能力を最大限有効
に活用し処理効率を高めることができる。
The present invention is constructed as described above, but the key point is to continuously grasp the integrated value of the introduced amount of adsorbed components and to switch when the adsorption capacity of each adsorber is below the breakthrough point. Even if the concentration of the adsorbed component in the raw material gas or the flow rate of the raw material gas fluctuates, the switching timing will not be delayed. Therefore, there is no possibility that gas that has not been adsorbed sufficiently will mix into the purified gas and reduce its purity. Furthermore, since the switching point adsorption capacity can be set to the maximum adsorption capacity of the adsorbent, the adsorption processing capacity can be utilized as effectively as possible and the processing efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略説明図、第2図は吸
着成分の導入量積算値の測定例を示すグラフ、第3図は
従来例を示す概略説明図である。 ’1a*1b・・−吸着器   2・・・タイマー3・
・・濃度測定器   4−・・流量計5・・・積算演算
器   6・−・制御装置■1〜■、・・・電磁バルブ
FIG. 1 is a schematic explanatory diagram showing an embodiment of the present invention, FIG. 2 is a graph showing an example of measurement of the integrated value of introduced amounts of adsorbed components, and FIG. 3 is a schematic explanatory diagram showing a conventional example. '1a*1b...-adsorber 2...timer 3.
...Concentration measuring device 4--Flowmeter 5... Integration calculator 6--Control device ■1~■, ... Solenoid valve

Claims (1)

【特許請求の範囲】[Claims] 複数基の吸着器を併設し、少なくとも1基の吸着器では
吸着処理を行なうと共に、他の吸着器では脱着を行ない
、適宜吸着工程と脱着工程の切換えを行なう吸着装置の
連続運転方法において、各吸着器毎に前記切換点吸着容
量を予め設定しておき、各吸着器への被処理流体供給ラ
インに、該流体中の吸着成分濃度測定器を設けて該吸着
成分の濃度を測定しつつ該吸着成分の導入量積算値を算
出し、該積算値が予め設定しておいた前記切換点吸着容
量に到達した段階で吸着工程と脱着工程の切換えを行な
うことを特徴とする吸着装置の連続運転方法。
In a method for continuous operation of an adsorption device in which multiple adsorption devices are installed together, at least one adsorption device performs adsorption processing, the other adsorption devices perform desorption, and the adsorption process and desorption process are switched as appropriate. The switching point adsorption capacity is set in advance for each adsorber, and a device for measuring the concentration of adsorbed components in the fluid is installed in the fluid supply line to each adsorber to measure the concentration of the adsorbed components. Continuous operation of an adsorption device, characterized in that the integrated value of the introduced amount of adsorbed components is calculated, and when the integrated value reaches the preset switching point adsorption capacity, switching between the adsorption process and the desorption process is performed. Method.
JP59145006A 1984-07-11 1984-07-11 Continuous operation of adsorbing apparatus Pending JPS6121716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145006A JPS6121716A (en) 1984-07-11 1984-07-11 Continuous operation of adsorbing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145006A JPS6121716A (en) 1984-07-11 1984-07-11 Continuous operation of adsorbing apparatus

Publications (1)

Publication Number Publication Date
JPS6121716A true JPS6121716A (en) 1986-01-30

Family

ID=15375268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145006A Pending JPS6121716A (en) 1984-07-11 1984-07-11 Continuous operation of adsorbing apparatus

Country Status (1)

Country Link
JP (1) JPS6121716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524231A (en) * 2009-04-20 2012-10-11 エクソンモービル アップストリーム リサーチ カンパニー Cryogenic system for removing acid gas from hydrocarbon gas stream and method for removing acid gas
JP2014113594A (en) * 2014-03-10 2014-06-26 Shinko Air Water Cryoplant Ltd Pre-treatment device for air separation apparatus and pre-treatment method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524231A (en) * 2009-04-20 2012-10-11 エクソンモービル アップストリーム リサーチ カンパニー Cryogenic system for removing acid gas from hydrocarbon gas stream and method for removing acid gas
JP2014113594A (en) * 2014-03-10 2014-06-26 Shinko Air Water Cryoplant Ltd Pre-treatment device for air separation apparatus and pre-treatment method therefor

Similar Documents

Publication Publication Date Title
US4194890A (en) Pressure swing adsorption process and system for gas separation
KR960010366B1 (en) Method of choromatographic separation
EP0458350B1 (en) Improved control of pressure swing adsorption operations
CA1239593A (en) Pressure swing adsorption process for supplying oxygen under variable demand conditions
JPH0318482B2 (en)
JPH07745A (en) Gas separation
GB2245845A (en) Apparatus and method for sorbing components from a gas
JPS6121716A (en) Continuous operation of adsorbing apparatus
EP0086435A1 (en) Process for operating a pressure swing adsorption plant operating cyclically
KR880003662A (en) Continuous removal of sulfur from fuel gas
JPH0247251B2 (en)
JPS643003A (en) Process for producing high-purity nitrogen by pressure-swing adsorption and apparatus therefor
CN211561924U (en) Simulated moving bed separation device with dilute solution of raffinate as supplementary eluent
JP2003190950A (en) Changeover method for ion exchange tank and water treatment apparatus
EP0359503B1 (en) A method of adsorption
GB1593540A (en) Pressure swing adsorption process and system for gas separation
SU614811A1 (en) Plant for conducting adsorbtion processes
JPS5547203A (en) Separating method for oxygen in air
JPS5597206A (en) Adsorption-separator
JPS60193520A (en) Turn down controlling method by pressure fluctuation adsorption method
JPS54138868A (en) Mixed gas separating and refining apparatus
JPS61178014A (en) Constant air amount pressure equalizing method of adsorbing device
JPH0514208Y2 (en)
JPS5345038A (en) Apparatus for controlling of cooling brine
SU1054775A1 (en) Chromatograph for determining concentration of dissolved gas