JPS61216873A - Method for controlling welding of electric welded pipe - Google Patents

Method for controlling welding of electric welded pipe

Info

Publication number
JPS61216873A
JPS61216873A JP5899785A JP5899785A JPS61216873A JP S61216873 A JPS61216873 A JP S61216873A JP 5899785 A JP5899785 A JP 5899785A JP 5899785 A JP5899785 A JP 5899785A JP S61216873 A JPS61216873 A JP S61216873A
Authority
JP
Japan
Prior art keywords
welding
current
arc
welded pipe
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5899785A
Other languages
Japanese (ja)
Inventor
Makoto Ashihara
芦原 信
Eiji Yoshikawa
吉川 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5899785A priority Critical patent/JPS61216873A/en
Publication of JPS61216873A publication Critical patent/JPS61216873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the cold junction defect of an electric welded pipe and to execute satisfactory welding by controlling the welding current value of the electric welded pipe in such a manner that said current value attains a reference current value and that the temp. at the welding point attains a reference temp. value. CONSTITUTION:The welding current is controlled 12 to the reference value by the detected welding current value 15 for welding of the electric welded pipe P and the temp. 5 detected at the welding point is subjected to current control 12 so as to attain the reference temp. The corresponding correction current value is subjected to addition control 12 to the reference current value by a detected arc 6 in the stage of arc generation. The generation of the cold junction defect in the electric welded pipe P is surely prevented by the above- mentioned welding current control and the weld zone is satisfactorily welded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電縫管の溶接に際してVシェープ部に生ずるア
ークに起因する溶接欠陥を防止する自動溶接制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic welding control method for preventing welding defects caused by arcs generated in V-shaped portions during welding of electric resistance welded pipes.

〔従来技術〕[Prior art]

第3図は電縫管の一般的な製造過程を示す模式的平面図
であり、両側縁部が相対向するようフォーミングローラ
にて断面C形に湾曲成形されたストリップSはワークコ
イル1を経てその両側縁部を加熱されつつスクイズロー
ル2に向いスクイズロール2にて側圧を加えられ、溶融
状態となった両側縁部同士を溶接(02点)せしめて管
Pを製造するようになっている。
FIG. 3 is a schematic plan view showing the general manufacturing process of electric resistance welded pipes. A strip S is formed into a C-shaped cross section by a forming roller so that both side edges thereof face each other. The tube P is manufactured by applying side pressure to the squeeze roll 2 while heating its both side edges, and welding the molten side edges together (point 02). .

ところでこのようにして製造される電縫管のシーム部に
は種々の要因による溶接欠陥が形成されるが、その一つ
として断面C型に湾曲成形されたストリップSがワーク
コイル1を経てその両側縁部を加熱されつつスクイズロ
ール2に向う過程で両側縁部が平面視でV形(Vシェー
プ部gいう)に漸近せしめられてスクイズロール2に至
る直前で熔融状態となって相互に溶融する(シーム収束
点01という)が、この過程で両側縁部間に発生するア
ークに起因する冷接欠陥がある。アークはワークコイル
1を通過した後、溶接点02に至る間のいずれでも発生
するが、特に溶接欠陥に結びつく可能性の高いのはシー
ム収束点0】よりも前のVシェープ部で発生するアーク
であり、この部分でアークが生ずると溶接電流がアーク
短絡部分に分流するため溶接部に流れる電流が減少し、
入熱不足となってアーク発生位置から溶接点に至る部分
に冷接欠陥が生じ、またアーク痕のためアーク発生箇所
が溶接不良となる。
By the way, welding defects are formed in the seam portion of the electric resistance welded tube manufactured in this way due to various factors. One of these is that the strip S, which is curved to have a C-shaped cross section, In the process of moving towards the squeeze roll 2 while the edges are heated, both side edges asymptotically approach a V-shape (referred to as a V-shape part g) in plan view, and just before reaching the squeeze roll 2, they become molten and melt into each other. There is a cold welding defect (referred to as seam convergence point 01) caused by an arc generated between both side edges during this process. Arcs occur at any time after passing through work coil 1 and before reaching welding point 02, but arcs that occur at the V-shaped portion before seam convergence point 0 are particularly likely to lead to welding defects. When an arc occurs in this part, the welding current is shunted to the arc short circuit part, so the current flowing to the weld part decreases.
Insufficient heat input causes cold welding defects in the area from the arc generation location to the welding point, and arc scars cause welding defects at the arc generation location.

このため従来にあっては溶接点の温度を測定し、測定温
度を予め定めた基準温度と比較し、その偏差を解消すべ
く高周波電源を制御する方法(特開昭57〜79084
号)、或いは溶接電流を測定し、この測定電流を予め定
めた基準電流と比較し、その偏差を解消すべく高周波電
源を制御する方法(特開昭55−109582号)等が
提案されている。
For this reason, the conventional method is to measure the temperature at the welding point, compare the measured temperature with a predetermined reference temperature, and control the high frequency power source to eliminate the deviation (Japanese Patent Laid-Open No. 57-79084).
(No. 55-109582), or a method of measuring the welding current, comparing the measured current with a predetermined reference current, and controlling a high-frequency power source to eliminate the deviation has been proposed. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上述した如き従来の溶接制御方法にあっては前
者の場合はアーク発生時間は極めて短いため(10m5
ec程度)応答速度の遅い温度調節では時間の遅れが大
きいという問題があった。また後者にあっては基準電流
をストリップの厚さ、送り速度、インビーダ劣化等に基
づいて設定変更する必要があるが、この変更調節が極め
て難しいこと、並びにこの溶接電流一定制御のもとでは
Vシェープ部で短絡が発生した場合、これによって溶接
電流が瞬間的に増大する結果、これを検出した溶接電流
一定制御系が機能して溶接電流の増大を抑制し、これに
伴って溶接点電流が一層低減されて入熱不足が拡大して
しまうという問題があった。
By the way, in the conventional welding control method as mentioned above, in the former case, the arc generation time is extremely short (10m5
ec) Temperature control with a slow response speed has the problem of a large time delay. In addition, in the latter case, it is necessary to change the setting of the reference current based on the strip thickness, feed rate, invider deterioration, etc., but this change adjustment is extremely difficult, and under this constant welding current control, V When a short circuit occurs in the shape part, the welding current increases instantaneously, and the welding current constant control system detects this and functions to suppress the increase in welding current, thereby increasing the welding point current. There was a problem in that the heat input was further reduced and the insufficient heat input was expanded.

第4図(イ)、(ロ)は■シェープ部で短絡が発生した
場合における電流一定制御を行っていない場合〔第4図
(イ)〕と、電流一定制御を行っている場合〔第4図(
ロ)〕との熔溶接電流溶接点電流及びアーク電流の変化
を示す波形図であり、いずれも横軸に時間を、また縦軸
に電流をとって示しである。先ず電流一定制御を行って
いない場合、電流一定制御を行っている場合のいずれも
Vシェープ部でアークが発生していないときは溶接電流
(実線で示す) 1sy1は全て溶接点を経て流れるこ
ととなり、溶接点電流(破線で示す)i−2は略溶接電
流i1Jと等しい値となる。ところがVシェープ部でア
ークが発生すると、アーク電流ia、即ち短絡電流の結
果、溶接電流i。1が増大し、また溶接点電流iw2は
減少するが、第4図(イ)に示す如く溶接電流の制御を
行っていないときは溶接電流iw1.溶接点電流f11
2ともにアーク電流iaに応じた波形の変化を示すが、
電流一定制御を通用すると第4図(ロ)に示す如く溶接
電流商1の増大が抑制される結果、アーク電流iaが低
減するが溶接点電流iw2も同時に低下して、入熱不足
が一層大きくなり、冷接欠陥が助長されることとなるの
である。
Figures 4 (a) and (b) show the case where constant current control is not performed when a short circuit occurs in the shape section [Fig. 4 (a)] and the case where constant current control is performed [Fig. 4 figure(
FIG. 2 is a waveform diagram showing changes in welding current, welding point current, and arc current with (b)]; both are shown with time on the horizontal axis and current on the vertical axis. First of all, when no arc is generated in the V-shaped part, whether constant current control is not performed or constant current control is performed, the welding current (shown by the solid line) 1sy1 will all flow through the welding point. , the welding point current (indicated by a broken line) i-2 has a value approximately equal to the welding current i1J. However, when an arc occurs in the V-shape section, the welding current i as a result of the arc current ia, that is, the short circuit current. 1 increases, and the welding point current iw2 decreases, but as shown in FIG. 4(a), when the welding current is not controlled, the welding current iw1. Welding point current f11
Both of them show a change in waveform depending on the arc current ia, but
When constant current control is applied, the increase in welding current quotient 1 is suppressed as shown in Figure 4 (b), and as a result, arc current ia is reduced, but welding point current iw2 is also reduced at the same time, resulting in an even greater heat input deficiency. As a result, cold welding defects are promoted.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる事情に謳みなされたものであって、その
目的とするところは溶接点の温度一定制御、溶接電流一
定制御を、前者はメジャーループにて、また後者はマイ
ナーループにて同時的に行うこととすると共に、マイナ
ーループにおいて用いる基準電流値に対し、アーク検出
信号に相応した補正を施し、電流一定制御に伴うアーク
発生時の溶接点電流の低下を防止し、アーク発生に伴う
冷接欠陥を除去し、管品質の向上を図れるようにした電
縫管の溶PiI制御方法を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to simultaneously control the temperature at a welding point to a constant level and the welding current to a constant level, the former in a major loop, and the latter in a minor loop. In addition, the reference current value used in the minor loop is corrected in accordance with the arc detection signal to prevent the welding point current from decreasing when arcing occurs due to constant current control, and to reduce the cooling caused by arcing. An object of the present invention is to provide a method for controlling welding PiI of an electric resistance welded pipe, which eliminates contact defects and improves the quality of the pipe.

本発明に係る電縫管の溶接制御方法は、電縫管の電縫溶
接過程で、溶接点の温度を検出してこれを予め定めた基
準温度に一致せしめるべく制御する温度一定制御をメジ
ャーループにて、またVシェープ部への溶接電流を検出
し、これを予め定めた基準電流に一致せしめるべく制御
する溶接電流一定制御をマイナーループで行うと共に、
前記Vシェープ部でのアークの発生を検出し、当該アー
クの電流に相応した補正電流をマイナーループにおける
前記基準電流に加算することを特徴とする。
The welding control method for an ERW pipe according to the present invention detects the temperature of a welding point during the ERW welding process of an ERW pipe, and performs constant temperature control in a major loop to control the temperature to match a predetermined reference temperature. In addition, the welding current to the V-shaped part is detected, and constant welding current control is performed in a minor loop to make it match a predetermined reference current.
The present invention is characterized in that occurrence of an arc in the V-shape portion is detected, and a correction current corresponding to the current of the arc is added to the reference current in the minor loop.

〔実施例〕〔Example〕

以下本発明をその実施状態を示す図面に基づき具体的に
説明する。
The present invention will be specifically described below based on drawings showing its implementation state.

第1図は本発明の実施状態を示す模式図であり、図中S
はストリップ、1はワークコイル、2はスクイズロール
、Pは管を示している。ストリップSば図示しないフォ
ーミングローラにて両側縁部が相対向するよう断面C形
に湾曲された後、ワ−クコイル1を経、スクイズロール
2に向うが、この過程ではワークコイル1によってスト
リップSの両側縁部に生起された溶接電流はそのエツジ
部に沿って流れることとなり、ストリップSは溶接電流
によってエツジ部を加熱され、且つスクイズロール2側
に向けてその両側縁を漸近されつつ(Vシェープ部■)
移動し、シーム収束点o1にて両側縁が接合され、更に
溶接点02にて相互に溶接されるようになっている。
FIG. 1 is a schematic diagram showing the implementation state of the present invention, and in the figure S
indicates a strip, 1 indicates a work coil, 2 indicates a squeeze roll, and P indicates a tube. The strip S is curved into a C-shaped cross section by a forming roller (not shown) so that both side edges thereof face each other, and then passes through a work coil 1 to a squeeze roll 2. In this process, the work coil 1 The welding current generated at both side edges flows along the edges, and the edges of the strip S are heated by the welding current, and the both side edges are asymptotic toward the squeeze roll 2 side (V-shaped). Part ■)
The two side edges are joined at the seam convergence point o1, and further welded to each other at the welding point 02.

溶接点02の情報にはこれを含むその周辺のストリップ
S及び管Pの幅方向(直径方向)の全体を視野とする対
物レンズを備えた光ファイバ製のライトガイド4aの一
端が配設され、またVシェープ部V上方にはワークコイ
ル1を通過した位置からシーム収束点o1直前迄の間の
Vシェープ部V・を視野(破線で囲われた矩形部分)と
する対物レンズを備えた光ファイバ製のライトガイド4
bの一端が配設されている。
Information on the welding point 02 includes one end of an optical fiber light guide 4a equipped with an objective lens that has a field of view of the entire strip S and the pipe P in the width direction (diameter direction) around the welding point 02, Further, above the V-shaped portion V, there is an optical fiber equipped with an objective lens whose visual field is the V-shaped portion V from the position passing through the work coil 1 to just before the seam convergence point o1 (the rectangular portion surrounded by a broken line). light guide 4 made by
One end of b is arranged.

ライトガイド4aの他端はメジャーループMjの一部を
構成する溶接点温度検出器5に連結されており、該溶接
点温度検出器5は入力される溶接点0゜及びその周辺の
画像信号に基づいて溶接点02の温度を算出し、これを
減算器8に出力するようになっている。
The other end of the light guide 4a is connected to a welding point temperature detector 5 constituting a part of the measuring loop Mj, and the welding point temperature detector 5 receives the input image signal of the welding point 0° and its surroundings. Based on this, the temperature of the welding point 02 is calculated and outputted to the subtractor 8.

一部ライトガイド4bの他端はマイナーループMnの一
部を構成するアーク検出器6に連結されており、アーク
検出器6は入力されるVシェープ部V及びその周辺の画
像信号を先ず光電管(図示せず)にて光強度に応じた電
気信号に変換してバイパスフィルタに出力し、アークに
基づく信号のみを選択し、アークの光強度に応じた信号
を増幅器7にて増幅し、加算器10へ出力するようにな
っている。
The other end of the partial light guide 4b is connected to an arc detector 6 constituting a part of the minor loop Mn. (not shown) converts it into an electrical signal according to the light intensity and outputs it to the bypass filter, selects only the signal based on the arc, amplifies the signal according to the light intensity of the arc with the amplifier 7, and outputs it to the bypass filter. It is designed to output to 10.

第2図(イ)はアーク検出器における光電管の出力を、
また第2図(ロ)は同じ(バイパスフィルタの出力を示
すグラフであって、いずれも横軸に時間をとって示しで
ある。第2図(イ)に示すグラフから明らかなようにV
シェープ部にアークが生じていない正常状態下では光電
管からの出力は略5v程度で一定しているが、アークが
発生すると略10+wsecの間にわたってパルス状の
出力が発せられる。このような光電管出力は第2図(ロ
)に示ス如くバイパスフィルタに通されると、アークが
発生した時間に対応してアークの光強度に応じた電気信
号が出力され、この信号が前述した如く増幅器7を経て
加算器lOへ出力されることとなる。
Figure 2 (a) shows the output of the phototube in the arc detector,
Also, Fig. 2 (B) is a graph showing the output of the same bypass filter, and in both cases, time is plotted on the horizontal axis.As is clear from the graph shown in Fig. 2 (A), V
Under normal conditions with no arc occurring in the shape portion, the output from the phototube is constant at about 5V, but when an arc occurs, a pulse-like output is emitted for about 10+wsec. When such a photocell output is passed through a bypass filter as shown in Figure 2 (b), an electrical signal corresponding to the light intensity of the arc is output corresponding to the time when the arc occurs, and this signal is used as described above. As described above, the signal is outputted to the adder 10 via the amplifier 7.

溶接点o2の設定温度は、予め管の寸法諸元、製管条件
等に基づいて定められて減算器8に入力せしめられてお
り、減算器8において前記設定温度と溶接点温度検出器
5から人力される溶接点02の測定温度との温度偏差Δ
tが算出され、温度制御器9へ出力される。
The set temperature of the welding point o2 is determined in advance based on the dimensions of the pipe, pipe manufacturing conditions, etc., and input into the subtractor 8. Temperature deviation Δ from the manually measured temperature at welding point 02
t is calculated and output to the temperature controller 9.

温度制御器9は入力てされた温度偏差Δtを解消するに
必要な高周波電源13に対する制御信号を算出し、これ
を加算器10へ出力する。加算器10は入力された制御
信号と前述したアーク検出器6より入力される第2図(
ロ)に示す如きアークの強さに応じたアーク検出信号と
を加算し、第2図(ハ)に示す如き電流指令信号を減算
器11へ出力する。
The temperature controller 9 calculates a control signal for the high frequency power supply 13 necessary to eliminate the input temperature deviation Δt, and outputs this to the adder 10. The adder 10 receives the input control signal and the input from the arc detector 6 as shown in FIG.
The current command signal shown in FIG. 2(c) is outputted to the subtracter 11 by adding the arc detection signal corresponding to the strength of the arc as shown in FIG. 2(c).

減算器11においては溶接電流検出器16から入力され
る溶接電流(実施例ではワークコイル電流)と、電流指
令信号との電流偏差を算出し、溶接電流制御器12へ出
力する。
The subtracter 11 calculates the current deviation between the welding current (work coil current in the embodiment) input from the welding current detector 16 and the current command signal, and outputs it to the welding current controller 12.

溶接電流制御器12は電流偏差を解消するに必要な制御
信号を演算し、高周波電源13へ出力する。
Welding current controller 12 calculates a control signal necessary to eliminate current deviation and outputs it to high frequency power source 13.

高周波電源13においては制御信号に応じた電圧が設定
され、出カドランス14を介してワークコイル1に所定
の電流を通流し、ストリップSの■シェープ部溶接点o
2に所要の電流を通流せしめることとなる。
In the high frequency power supply 13, a voltage is set according to the control signal, and a predetermined current is passed through the work coil 1 through the output transformer 14, and the welding point o of the strip S is
The required current is made to flow through 2.

第2図(ニ)に出カドランス14からワークコイルlへ
の電圧信号に基づいて溶接電流検出器15が演算した溶
接電流の波形図であり、この波形図から明らかな如く、
アーク発生にタイミングを合せて溶接電流1111がア
ークの強さに相応する分の補正量が加算された状態とな
るため、溶接点02における電流低下分が補償され溶接
点02の冷接欠陥の発生を確実に防止し得ることとなる
FIG. 2(d) is a waveform diagram of the welding current calculated by the welding current detector 15 based on the voltage signal from the output transformer 14 to the work coil l, and as is clear from this waveform diagram,
Since the welding current 1111 is in a state in which a correction amount corresponding to the strength of the arc is added at the timing of arc generation, the current drop at welding point 02 is compensated for and a cold welding defect occurs at welding point 02. This means that this can be reliably prevented.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、溶接点に対する温度
一定制御、並びに溶接電流一定制御を夫々メジャールー
プ、マイナーループにて同時的に行うこととしたから、
夫々を単独に行う場合に比較して応答性に優れることは
勿論、基準電流設定変更の難しさも解消され、更に基準
電流にはアークの強さに相応した補正を加えることとし
ているため、アーク発注時における溶接点電流の低下分
を補償することが出来て冷接欠陥を確実に防止し得るな
ど本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, constant temperature control and constant welding current control for the welding point are performed simultaneously in the major loop and minor loop, respectively.
Not only does it have better responsiveness than when each is done individually, but it also eliminates the difficulty of changing the reference current setting, and since the reference current is corrected according to the strength of the arc, it is easier to place orders for arcs. The present invention has excellent effects such as being able to compensate for the decrease in the welding point current during the welding process and reliably preventing cold welding defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態をその制御系と共に示す
ブロック図、第2図(イ)、(ロ)。 (ハ)、(ニ)は制御内容を示す波形図、第3図は電縫
管の電縫溶接部における電流の流れを示す説明図、第4
図(イ)、(ロ)は溶接電流、溶接点電流、アーク電流
の説明図である。 1・・・ワークコイル 2・・・スクイズロール4a、
4b・・・ライトガイド 5・・・溶接点温度検出器6
・・・アーク検出器 7・・・増幅器 8・・・減算器
9・・・温度制御器 lO・・・加算器 11・・・減
算器12・・・溶接電流制御器 13・・・高周波電源
14・・・出カドランス 15・・・溶接電流検出器S
・・・ストリップ P・・・管 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫4粒暑し響1#Lz“ζ′
いロキ (イン 箪 媚裟灸曙りfI7yLシz−一る田1 (ロ) 4 図
FIG. 1 is a block diagram showing the implementation state of the method of the present invention together with its control system, and FIGS. 2(a) and (b). (C) and (D) are waveform diagrams showing the control contents, Figure 3 is an explanatory diagram showing the flow of current in the ERW welding part of the ERW pipe, and Figure 4
Figures (a) and (b) are explanatory diagrams of welding current, welding point current, and arc current. 1... Work coil 2... Squeeze roll 4a,
4b...Light guide 5...Welding point temperature detector 6
...Arc detector 7...Amplifier 8...Subtractor 9...Temperature controller lO...Adder 11...Subtractor 12...Welding current controller 13...High frequency power supply 14... Output Lance 15... Welding current detector S
...Strip P...Pipe Patent Applicant: Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney: Noboru Kono 4-grain Heat Resistance Hibiki 1#Lz“ζ′
Iloki (in-temple moxibustion dawn fI7yLshiz-ichiruta 1 (b) 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、電縫管の電縫溶接過程で、溶接点の温度を検出して
これを予め定めた基準温度に一致せしめるべく制御する
温度一定制御をメジャーループにて、またVシェープ部
への溶接電流を検出し、これを予め定めた基準電流に一
致せしめるべく制御する溶接電流一定制御をマイナール
ープで行うと共に、前記Vシェープ部でのアークの発生
を検出し、当該アークの電流に相応した補正電流をマイ
ナーループにおける前記基準電流に加算することを特徴
とする電縫管の溶接制御方法。
1. During the ERW welding process of ERW pipes, the temperature at the welding point is detected and controlled to match the predetermined reference temperature using a measure loop, and the welding current to the V-shaped part is controlled. Welding current constant control is performed in a minor loop to match the welding current to a predetermined reference current, and the occurrence of an arc in the V-shaped portion is detected, and a correction current corresponding to the current of the arc is detected. A welding control method for an electric resistance welded pipe, characterized in that the current is added to the reference current in a minor loop.
JP5899785A 1985-03-23 1985-03-23 Method for controlling welding of electric welded pipe Pending JPS61216873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5899785A JPS61216873A (en) 1985-03-23 1985-03-23 Method for controlling welding of electric welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5899785A JPS61216873A (en) 1985-03-23 1985-03-23 Method for controlling welding of electric welded pipe

Publications (1)

Publication Number Publication Date
JPS61216873A true JPS61216873A (en) 1986-09-26

Family

ID=13100492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5899785A Pending JPS61216873A (en) 1985-03-23 1985-03-23 Method for controlling welding of electric welded pipe

Country Status (1)

Country Link
JP (1) JPS61216873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166103A (en) * 2014-03-04 2015-09-24 Jfeスチール株式会社 Manufacturing method for electric resistance welded steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166103A (en) * 2014-03-04 2015-09-24 Jfeスチール株式会社 Manufacturing method for electric resistance welded steel pipe

Similar Documents

Publication Publication Date Title
JPS60247475A (en) Method for controlling welding by image processing
JPH06285655A (en) Method and equipment for welding
JPH0615447A (en) Manufacture of welded tube
JPS61216873A (en) Method for controlling welding of electric welded pipe
JPH0866771A (en) Build up welding method in narrow gap butt welding of fixed tube
JP4151777B2 (en) Hot wire welding method and apparatus
JPH0550240A (en) Automatic welding device and its welding condition control method
JPH04182075A (en) Method for heat treating weld zone
JPS5816774A (en) Controlling method for welding
JP3166507B2 (en) Narrow butt welding method for fixed pipe
JP3166511B2 (en) Narrow butt welding method for fixed pipe
JP2666647B2 (en) Manufacturing method of welded pipe
JPH06155059A (en) Welding method in automatic pipe-making machine
JPS62234677A (en) Method for controlling welding heat input of electric resistance welded tube
JPH02229680A (en) Welding state judging system
JPH07290261A (en) Welding method in automatic tube making machine
JPS58151963A (en) Automatic all-position arc welding machine
SU1641546A1 (en) Method for control of flash-butt resistance welding
SU1009664A1 (en) Method of automatic control of electric arc welding process
JP3166509B2 (en) Narrow butt welding method for fixed pipe
JPH04220171A (en) Travel controller for arc welding torch
SU724294A1 (en) Method of monitoring and automatic control of high-frequency welding process
JPS59191568A (en) Plasma welding method
JP3166508B2 (en) Narrow butt welding method for fixed pipe
SU863249A1 (en) Method of regulating the thermal duty of high-frequency welding of straight-seam pipes