JPS61216338A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61216338A
JPS61216338A JP60057111A JP5711185A JPS61216338A JP S61216338 A JPS61216338 A JP S61216338A JP 60057111 A JP60057111 A JP 60057111A JP 5711185 A JP5711185 A JP 5711185A JP S61216338 A JPS61216338 A JP S61216338A
Authority
JP
Japan
Prior art keywords
semiconductor device
wafer
semiconductor devices
state
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057111A
Other languages
Japanese (ja)
Inventor
Setsu Yamada
節 山田
Yasoo Harada
原田 八十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60057111A priority Critical patent/JPS61216338A/en
Publication of JPS61216338A publication Critical patent/JPS61216338A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Dicing (AREA)

Abstract

PURPOSE:To reduce the parasitic capacity of each semiconductor device and to improve the high-frequency characteristic thereof by a method wherein each semiconductor device in the state of a wafer is independently isolated from the state of a wafer. CONSTITUTION:These semiconductor devices are mutually coupled electrically through an impurity layer (2) in the state of a wafer respectively. The outer peripheral parts of each semiconductor device in this state of a wafer are diced up to reach a semi-insulative substrate (1), parts of the impurity layer (2) are deleted and each semiconductor device on the wafer is mutually isolated electrically. Then, measuring needles (19) and (19) are respectively abutted on each semiconductor device on the wafer and the electrical characteristic of each semiconductor device is measured. After this measuring ends, the semiconductor devices are again diced and each semiconductor device is made to independently isolate from the state of a wafer. There exists no isolating groove in the completed semiconductor devices. As a result, the parasitic capacity of each semiconductor device can be reduced.

Description

【発明の詳細な説明】 げ) 産業上の利用分野 本発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] g) Industrial application field The present invention relates to a method of manufacturing a semiconductor device.

←) 従来の技術 第2図は従来の製造方法によって製造された半導体装置
の上面図、’ms図は第2図におけるI・−■断面図で
ある。
←) Prior Art FIG. 2 is a top view of a semiconductor device manufactured by a conventional manufacturing method, and the 'ms diagram is a cross-sectional view taken along I--■ in FIG.

182図、1s3図において、(1)は半絶縁層として
のG&A11半絶縁性基板、(2)は半絶縁性基板(1
)の上にエピタキシャル成長された不純物層で、この不
純物層(2)は、n++低抵抗層(3)とn動作11(
4)とから成る。(5)は不純物層(2)の中央部を横
断して設けられたWllの分離溝、(6)は不純物層(
21の外周部に設けられて、この不純物層(2)を取シ
囲む′!I&2の分離溝である。この第1.$2の分離
溝(5)(6)は互いに連結されていて、夫々の下端部
は半絶縁性基板(1)にまで達している。すなわち、不
純物層(2)は。
In Figure 182 and Figure 1s3, (1) is a G&A11 semi-insulating substrate as a semi-insulating layer, (2) is a semi-insulating substrate (1
), this impurity layer (2) is an impurity layer epitaxially grown on top of the n++ low resistance layer (3) and the n operation 11 (
4). (5) is a Wll isolation groove provided across the center of the impurity layer (2), and (6) is the impurity layer (
21 and surrounding this impurity layer (2)! This is the separation groove for I&2. This first. The isolation grooves (5) and (6) of $2 are connected to each other, and the lower ends of each reach the semi-insulating substrate (1). That is, the impurity layer (2).

1s1.第2の分離溝(5)(6)K 、!、 ツテ、
181 ノ領域(7)と、1!82の領域(8)とに、
電気的に分離されている。
1s1. Second separation groove (5) (6) K,! , Tute,
181 area (7) and 1!82 area (8),
electrically isolated.

(9)は素子上面および第1.第2の分離溝(5)(6
)く形成されたポリイミド膜である。(llIfi第1
の領域(7)において、動作層(4)とりヨットキ接合
されたslのショットキ電極、111は第2の領域(8
)において。
(9) is the upper surface of the element and the first. Second separation groove (5) (6
) It is a polyimide film formed in a similar manner. (llIfi 1st
In the region (7), the active layer (4) and the Schottky electrode 111 of SL are connected to the Schottky electrode in the second region (8).
) in.

動作層(4)とりヨットキ接合された第2のνぢットキ
電極である。この′lI&1.$2のりヨツト電極α〔
al)のショットキ接合径は、8102膜0によって決
定されている。u3はl’g1のシぢットキ電極(1G
を取シ囲んで、1P11の領域(7)の低抵抗層(3)
とオーミック接合された第1のオーミック電極、(14
1は第2のショットキ電極αυを取り囲んで、!82の
領域(8)の低抵抗層(3)とショットキ接合された第
2のオーミック電極である。ttSは第1のオーミック
電極α3と第2のショットキ電極aカとを連結する$1
のリード電極、 (161は第2のオーミック電極(1
41と第1のショットキ電極α〔とを連結する第2のリ
ード電極である。以上の構成から明らかなように、1s
1の領域(7)にはiJlのダイオード(17)が設け
られていて。
The active layer (4) is a second ν-Jet electrode which is joined to the active layer (4). This 'I&1. $2 Glue Yotsuto Electrode α [
The Schottky junction diameter of al) is determined by the 8102 film 0. u3 is l'g1's seat electrode (1G
1P11 region (7) surrounding the low resistance layer (3)
a first ohmic electrode, (14
1 surrounds the second Schottky electrode αυ, ! This is a second ohmic electrode that is Schottky-junctioned with the low resistance layer (3) in the region (8) of 82. ttS is $1 that connects the first ohmic electrode α3 and the second Schottky electrode a
lead electrode (161 is the second ohmic electrode (1
41 and the first Schottky electrode [alpha]. As is clear from the above configuration, 1s
A diode (17) of iJl is provided in the region (7) of No.1.

第2の領域(8)には第2のダイオード顛が設けられて
いる。そして、第1.第2のダイオード任?)(lυは
Ml、′s2のリード電極α9顛によって、互いに逆並
列に接続されている。
A second diode frame is provided in the second region (8). And the first. Second diode? ) (lυ are connected in antiparallel to each other by the lead electrode α9 of Ml and 's2.

第4図はウェハ状態における′II&2図、第3図の半
導体装置の上面図、第5図、第6図はlll114図以
降の製造工程図である。
FIG. 4 is a top view of the semiconductor device shown in FIG.

9J4図において、半絶縁性クエへ上には、第2図、第
3図の半導体装置が、基盤目状に規則正しく多数形成さ
れている。なお、第4図に至るまでの製造工程について
は1例えば特開昭59−161836号公報等に詳しく
記載されているので。
In FIG. 9J4, a large number of the semiconductor devices shown in FIGS. 2 and 3 are regularly formed in the shape of a substrate above the semi-insulating square. The manufacturing process up to FIG. 4 is described in detail in, for example, Japanese Unexamined Patent Publication No. 59-161836.

以下の説明では省略する。It will be omitted in the following explanation.

ところで、第4図のウェハ状態において1個々の半導体
装置は第2の分離溝(6)Kよって、互いに電気的に分
離されている。そこで、まず、第4図において、第5図
に示すように第1.第2のリード電極n5tteに測定
針a9(IIを当接させて1個々の半導体装置の特性を
測定する。
By the way, in the wafer state of FIG. 4, the individual semiconductor devices are electrically isolated from each other by the second isolation groove (6)K. Therefore, first, in FIG. 4, as shown in FIG. The characteristics of each semiconductor device are measured by bringing the measuring needle a9 (II) into contact with the second lead electrode n5tte.

そして、この測定が終わると1次に、$6図に示すよう
に、グイリングを行って個々の半導体装置を独立に分離
して%j12図、第3図の半導体装置を得る。
When this measurement is completed, first, as shown in Figure $6, the individual semiconductor devices are independently separated by gilling to obtain the semiconductor devices shown in Figures %j12 and 3.

(ハ)発明が解決しようとする問題点 従来の製造方法では、ウェハ状態において個々の半導体
装置を電気的に互いに分離する第2の分離溝(6)が必
要であった。ところが、半導体装置の完成時点において
、第2の分離溝(6)が、第2図。
(c) Problems to be Solved by the Invention In the conventional manufacturing method, a second isolation trench (6) is required to electrically isolate individual semiconductor devices from each other in a wafer state. However, at the time of completion of the semiconductor device, the second separation groove (6) is not formed as shown in FIG.

第3図に示すように、半導体装置に含まれていると、こ
の@2の分離溝(6)で余分な寄生容量が生成されて、
半導体装置の高周波特性に悪影響を与えていた。
As shown in FIG. 3, when included in a semiconductor device, extra parasitic capacitance is generated in this @2 isolation trench (6).
This had an adverse effect on the high frequency characteristics of semiconductor devices.

に)問題点を解決するための手段 本発明は前述の問題点に鑑みてなされたものであって、
その要旨とするところは。
B) Means for solving the problems The present invention has been made in view of the above-mentioned problems.
What is the gist of it?

半絶縁層と、この半絶縁層の上に形成された不純物層と
を含む複数の半導体装置を1個々の半導体装置間に電気
的な素子分離を行わずにウェハ状態で形成する工程と、
前記各半導体装置の外周部における前記不純物層を前記
半絶縁層に達するまで削除して、前記各半導体装置の電
気的な素子分離を行う工程と、前記各半導体装置の電気
的な測定を行う工程と、前記各半導体装置をウェハ状態
から独立に分離する工程と、′1に含むことを特徴とす
る半導体装置の製造方法である。
forming a plurality of semiconductor devices including a semi-insulating layer and an impurity layer formed on the semi-insulating layer in a wafer state without performing electrical element isolation between each semiconductor device;
removing the impurity layer in the outer periphery of each semiconductor device until it reaches the semi-insulating layer to electrically isolate the semiconductor devices; and electrically measuring each semiconductor device. and a step of independently separating each of the semiconductor devices from a wafer state.

(ホ)作 用 ウェハ状態において1個々の半導体装置を他の半導体装
置から電気的に分離する分離溝が不要となる。よって、
完成された半導体装置においで。
(E) Function: There is no need for isolation trenches that electrically isolate one semiconductor device from another semiconductor device in a working wafer state. Therefore,
At the completed semiconductor device.

前記分離溝が存在しないので、寄生容量が低減する。Since the isolation trench does not exist, parasitic capacitance is reduced.

(へ)実施例 !J1図は本発明の一実施例によって製造された半導体
装置の上面図、第7図は第1図における■−■断面図で
ある。
(to) Examples! FIG. J1 is a top view of a semiconductor device manufactured according to an embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along the line -■ in FIG.

131図、第7図において、IJ2図、183図と同一
部分には同一符号が付されているので、これらの部分に
ついては説明を省略する。ll!1図、′li&7図の
半導体装置が、!82図、第3図の半導体装置と異なる
ところは、不純物1111(2)t−取り囲むIJ&2
の分離溝(6)が設けられていないところである。すな
わち、第1,1jI2の領域())(8)は、第1の分
離溝(5)のみによって、電気的に分離されている。
In FIG. 131 and FIG. 7, the same parts as in FIG. IJ2 and FIG. ll! The semiconductor devices in Figure 1, 'li & Figure 7 are! The difference from the semiconductor devices in FIGS. 82 and 3 is that the impurity 1111(2)t-surrounding IJ&2
This is where the separation groove (6) is not provided. That is, the first and 1jI2 regions ()) (8) are electrically isolated only by the first isolation groove (5).

第8図はウェハ状態における第’1因、l’$7図の半
導体装置の上面図、第9図ないし第11図は第8図以降
の製造工程図である。なお、第8図に至るまでの製造工
程については省略する。
FIG. 8 is a top view of the semiconductor device shown in FIG. Note that the manufacturing steps up to FIG. 8 will be omitted.

第1図、第7因の半導体装置の大きさは、具体的には、
長辺が360匹m、短辺が260μm5高さが100淋
mである。そして1分離溝(5)の幅は8#mであって
、′s8図のウェハ状態において。
Specifically, the size of the semiconductor device of the seventh factor in FIG. 1 is as follows:
The long side is 360 m, the short side is 260 μm, and the height is 100 m. The width of the one-separation groove (5) is 8 #m, in the wafer state shown in Figure 's8.

隣り合う分離溝(5)(5)・・・の間には、20活W
の間隔があけられている。
Between adjacent separation grooves (5) (5)..., 20 active W
are spaced apart.

第8図のウェハ状態において、各半導体装置は不純物層
(2)ヲ通じて互いに電気的に連結されている。そこで
、まず、fi9図に示すように、ウェハ状態における各
半導体装置の外周部を、半絶縁性基板(1)に達するま
でダイシングして、この部分の不純物層(2)t−削除
する。そして1次にウェハを超純水で水洗いして、ゴミ
等を取シ除き、クエへ上の各半導体装置を互いに電気的
に分離する。このとき、ダイシングの幅は30.cjm
で行った。
In the wafer state of FIG. 8, the semiconductor devices are electrically connected to each other through the impurity layer (2). Therefore, first, as shown in FIG. fi9, the outer peripheral portion of each semiconductor device in a wafer state is diced until it reaches the semi-insulating substrate (1), and the impurity layer (2) t- is removed from this portion. First, the wafer is washed with ultrapure water to remove dust and the like, and the semiconductor devices on the wafer are electrically isolated from each other. At this time, the width of dicing is 30. cjm
I went there.

次に、第10図に示すように、ウェハ上の半導体装置に
測定針(L9alを当接させて、半導体装置の電気的特
性を測定する。この測定が終わると、第11図に示すよ
うに、189図のダイシング部分と同じ部分を再びダイ
シングして、各半導体装alt−クエ八かへ分離させ、
$1図、第7図の半導体装Itを得る。
Next, as shown in FIG. 10, the measuring needle (L9al) is brought into contact with the semiconductor device on the wafer to measure the electrical characteristics of the semiconductor device. When this measurement is completed, as shown in FIG. , Dice the same part as the dicing part in FIG. 189 again and separate it into eight semiconductor devices alt-que.
The semiconductor device It shown in FIG. 1 and FIG. 7 is obtained.

(ト)  発明の効果 本発明によれば、ウェハ状態における各半導体装置を互
いに電気的に分離する分離溝が不要となる。したがって
、完成された個々の半導体装置に前記分離溝が含まれる
ことがないので、寄生容量の低減が実現されて、半導体
装置の高周波特性を向上させることができる。
(G) Effects of the Invention According to the present invention, there is no need for separation grooves for electrically separating semiconductor devices in a wafer state from each other. Therefore, since the isolation trench is not included in each completed semiconductor device, the parasitic capacitance can be reduced and the high frequency characteristics of the semiconductor device can be improved.

そして、前記分離溝を設ける必要がないので。Also, there is no need to provide the separation groove.

半導体装置の小型化を実現し得ると共に、ウニ八面積を
最大限に有効利用することができる。
The size of the semiconductor device can be reduced, and the area can be utilized to the maximum extent possible.

【図面の簡単な説明】[Brief explanation of drawings]

s1図は本発明の一実施例によって製造された半導体装
置の上面図、第2図は従来の製造方法によって製造され
た半導体装置の上面図、′@3図は第2図におけるI−
■断面囚、第4図ないしs6図は第2図、第3図の半導
体装置の製造工程図。 第7図は第1図における■−■断面図、918図ないし
第11図は!1図、第7図の半導体装置の製造工程図で
ある。 (1)・・半絶縁性基板(半絶縁層) 、 +23・・
・不純物層、(3)・・・低抵抗層、(4)・・・動作
層。
Figure s1 is a top view of a semiconductor device manufactured by an embodiment of the present invention, Figure 2 is a top view of a semiconductor device manufactured by a conventional manufacturing method, and Figure '@3 is a top view of a semiconductor device manufactured by an embodiment of the present invention.
②Cross sections, Figures 4 to s6 are manufacturing process diagrams of the semiconductor devices shown in Figures 2 and 3. Figure 7 is a sectional view taken along ■-■ in Figure 1, and Figures 918 to 11 are! FIG. 7 is a manufacturing process diagram of the semiconductor device shown in FIGS. 1 and 7; (1)...Semi-insulating substrate (semi-insulating layer), +23...
- Impurity layer, (3)...low resistance layer, (4)...operating layer.

Claims (1)

【特許請求の範囲】[Claims] (1)半絶縁層と、この半絶縁層の上に形成された不純
物層とを含む複数の半導体装置を、個々の半導体装置間
に電気的な素子分離を行わずにウェハ状態で形成する工
程と、前記各半導体装置の外周部における前記不純物層
を前記半絶縁層に達するまで削除して、前記各半導体装
置の電気的な素子分離を行う工程と、前記各半導体装置
の電気的な測定を行う工程と、前記各半導体装置をウェ
ハ状態から独立に分離する工程と、を含むことを特徴と
する半導体装置の製造方法。
(1) A process of forming a plurality of semiconductor devices including a semi-insulating layer and an impurity layer formed on the semi-insulating layer in a wafer state without electrically separating the semiconductor devices between the individual semiconductor devices. a step of removing the impurity layer in the outer periphery of each of the semiconductor devices until it reaches the semi-insulating layer to electrically isolate the semiconductor devices; and performing electrical measurements of each of the semiconductor devices. 1. A method for manufacturing a semiconductor device, comprising: a step of performing a wafer, and a step of independently separating each of the semiconductor devices from a wafer state.
JP60057111A 1985-03-20 1985-03-20 Manufacture of semiconductor device Pending JPS61216338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057111A JPS61216338A (en) 1985-03-20 1985-03-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057111A JPS61216338A (en) 1985-03-20 1985-03-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61216338A true JPS61216338A (en) 1986-09-26

Family

ID=13046409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057111A Pending JPS61216338A (en) 1985-03-20 1985-03-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61216338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822755A (en) * 1988-04-25 1989-04-18 Xerox Corporation Method of fabricating large area semiconductor arrays
US4966862A (en) * 1989-08-28 1990-10-30 Cree Research, Inc. Method of production of light emitting diodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822755A (en) * 1988-04-25 1989-04-18 Xerox Corporation Method of fabricating large area semiconductor arrays
US4966862A (en) * 1989-08-28 1990-10-30 Cree Research, Inc. Method of production of light emitting diodes

Similar Documents

Publication Publication Date Title
US5000817A (en) Batch method of making miniature structures assembled in wafer form
JP4306162B2 (en) Semiconductor device and manufacturing method thereof
EP0965141B1 (en) Method of providing a gettering scheme in the manufacture of silicon-on-insulator (soi) integrated circuits
JPS584814B2 (en) semiconductor equipment
JPS61216338A (en) Manufacture of semiconductor device
JPH0645618A (en) Manufacture of semiconductor device
JPH06164015A (en) Magnetic sensor
US4963971A (en) Symmetrical power semiconductor device and method of fabrication
JPS5917544B2 (en) semiconductor integrated circuit
JP2749147B2 (en) Manufacturing method of dielectric isolation substrate
US9741713B1 (en) Parasitic lateral bipolar transistor with improved ideality and leakage currents
JPH08130241A (en) Semiconductor integrated circuit device and its manufacture
JPS62130537A (en) Method of separating elements of integrated circuit
JPS60145660A (en) Manufacture of semiconductor device
JPH0450747B2 (en)
JPH06260660A (en) Semiconductor distortion sensor
JPH08181330A (en) Manufacture of semiconductor sensor
JPS59186340A (en) Manufacture of complementary type dielectric isolation substrate
JPS6126238B2 (en)
JP2757872B2 (en) Semiconductor device and manufacturing method thereof
JP3376666B2 (en) Method for manufacturing semiconductor device
JP2606414B2 (en) Method for manufacturing semiconductor device
JPH02268452A (en) Manufacture of high withstand voltage semiconductor device
JPH07226392A (en) Semiconductor substance subjected to electrochemical etching
JPH10284748A (en) Manufacture of semiconductor radiation detector