JPS60145660A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60145660A
JPS60145660A JP296784A JP296784A JPS60145660A JP S60145660 A JPS60145660 A JP S60145660A JP 296784 A JP296784 A JP 296784A JP 296784 A JP296784 A JP 296784A JP S60145660 A JPS60145660 A JP S60145660A
Authority
JP
Japan
Prior art keywords
type
type layer
semiconductor layer
impurity concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP296784A
Other languages
Japanese (ja)
Inventor
Masanori Suzuki
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP296784A priority Critical patent/JPS60145660A/en
Publication of JPS60145660A publication Critical patent/JPS60145660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7432Asymmetrical thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To increase the yeild of products by obtaining n type layers with less defect by a method wherein the n type layer of the titled device of n<+>p-i-n-p<+> structure is formed by the diffusion method. CONSTITUTION:n<+> Type layers 6 are formed on both main surfaces by deeply diffusing the V-group element such as phosphorus to a low concentration n type (i type) semiconductor substrate 1, and the width of the i type layer 1 is adjusted by lapping removal by including one n<+> type layer 6. Then, a p type layer 2 is formed by diffusing the III-group element such as Ga. The surface part of the n<+> type layer 6 where the impurity concentration is high is removed by lapping, thus leaving an n type layer 6a; then, a p<+> type layer 4 is formed by diffusing the III-group element such as boron only to the surface part. n<+> Type layers 5 are formed by selective diffusion of the V-group element such as phosphorus only on the side of the p type layer 2 into a required pattern. Since the n<+>p-i-n-p<+> structure is formed only by the diffusion method, the manufacturing cost can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に係り、特にn”pi
np+構造を有する半導体装置の製造方法に関するもの
である。以下npxnpm造ゲートターンオフサイリス
タ(GTO)の製造方法を例にとって説明する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a semiconductor device having an np+ structure. A method for manufacturing an npxnpm gate turn-off thyristor (GTO) will be described below as an example.

〔従来技術〕[Prior art]

第1図A −Eは従来のエピタキシャル成長法によるn
”pinp+構造GTOの製造方法について、そのウェ
ーハ処理工程のみを説明するだめの主要段階における状
態を示す断面図である。
Figure 1 A-E shows n grown by conventional epitaxial growth method.
FIG. 2 is a cross-sectional view illustrating the main stages of the PINP+ structure GTO manufacturing method, but only the wafer processing steps thereof will be explained.

まず、第1図Aに示す不純物濃度が10 個/Cm3程
度の低濃度n形(1形)半導体基体(1)に第1図BK
示すようにガリウム(Ga)などの第■族元素を拡散さ
せてp形層(2)を両生面部に形成し、その内の一方の
主面部に形成されたp形層(2)を含めて、図示一点鎖
線のハツチングを施した部分をラッピング除去する。つ
いで、このラッピング除去した面に、第1図Cに示すよ
うに、エピタキシャル成長によって1018個/cm3
程度の不純物濃度をもつn形層(3)を形成する。この
時点での拡散プロファイルを第2図に示す。次に、第1
図りに示すように、ホウ素(B)などの第■族元素をn
形層(3)の側に拡散させて、表面濃度1020個/c
m3以上のp+形層(4)を形成し、ついで、第1図E
K示すように、す、ン(P)などの第V族元素をp形層
(2)側にのみ所要パターンに選択拡散させて表面濃度
1020個/ Q m ”以上のn 形層(5)を形成
する。
First, a low-concentration n-type (type 1) semiconductor substrate (1) with an impurity concentration of about 10 impurities/cm3 as shown in FIG.
As shown in the figure, a p-type layer (2) is formed on the amphiphilic surface by diffusing a Group Ⅰ element such as gallium (Ga), and the p-type layer (2) formed on one of the main surfaces is included. , the portion indicated by the dashed line shown in the figure is removed by wrapping. Next, as shown in FIG.
An n-type layer (3) having an impurity concentration of about 100% is formed. The diffusion profile at this point is shown in FIG. Next, the first
As shown in the diagram, group III elements such as boron (B) are
Diffused to the shape layer (3) side, surface concentration 1020 pieces/c
A p+ type layer (4) of m3 or more is formed, and then Fig. 1E
As shown in K, Group V elements such as P are selectively diffused into the required pattern only on the p-type layer (2) side to form an n-type layer (5) with a surface concentration of 1020 elements/Qm'' or more. form.

このn pinp 構造のGTOは、順方向オン鴫圧を
上昇させることなく、半導体素子内部の阻止電圧を上昇
させるために考え出されたものである。そして、順方向
オン電圧は第1図Eの1形層(1)の幅によってほぼ決
定されてしまうので、その幅をできるだけ狭くして、順
方向オン電圧を低下させる必要がある。第1図Bの段階
で、一点鎖線ハツチング部をラッピング除去するのはこ
のためである。
This n pinp structure GTO was devised to increase the blocking voltage inside the semiconductor element without increasing the forward ON voltage. Since the forward ON voltage is almost determined by the width of the type 1 layer (1) in FIG. 1E, it is necessary to make the width as narrow as possible to lower the forward ON voltage. This is why the hatched portion shown by the dashed dotted line is removed by wrapping at the stage shown in FIG. 1B.

しかし、このi形層(1)の幅を狭くしていくと、高電
圧印加時忙空乏層が広がって、これが相対する接合まで
延びてバンチスルー現象を起こし、これによって、阻止
電圧が大きくとれなくなる。従って、との空乏層の広が
りをくい止めるために1形層(1)よりも不純物濃度の
高いn形層(3)を設けたわけである。実際の設計では
n形層(3)に大きな電界がかかると、あらたになだれ
破壊により阻止電圧が下がるので、i形層(1)の幅を
適度に調節する必要があり、またエピタキシャル成長に
よってつくられるn形層(3)の不純物濃度はこの層に
さらにp+形層(4)をつくるためにほぼ10 個/a
m 程度におさえられる。
However, when the width of this i-type layer (1) is narrowed, the busy depletion layer expands when a high voltage is applied, and this extends to the opposing junction, causing a bunch-through phenomenon, which increases the blocking voltage. It disappears. Therefore, in order to prevent the depletion layer from spreading, the n-type layer (3) having a higher impurity concentration than the 1-type layer (1) is provided. In actual design, if a large electric field is applied to the n-type layer (3), the blocking voltage will drop due to new avalanche breakdown, so it is necessary to adjust the width of the i-type layer (1) appropriately, and the width of the i-type layer (1) must be adjusted appropriately. The impurity concentration of the n-type layer (3) is approximately 10 impurities/a in order to further form the p+-type layer (4) in this layer.
It can be kept to about m.

しかし、エピタキシャル成長法によってn形層(3)を
つくる従来の方法には、いくつかの欠点がある。まず第
一に、GTO等の電力用半導体素子では、エピタキシャ
ル成長によってつくるn形1i(3)の膜厚はかなり厚
くなる。そのため、n形層(3)K欠陥が入りやすくな
り、製造上製品の歩留りを下げることになる。また、エ
ピタキシャル成長装置が必要となり、製品価格を上昇さ
せることにもなる。
However, the conventional method of producing the n-type layer (3) by epitaxial growth has several drawbacks. First of all, in a power semiconductor device such as a GTO, the thickness of the n-type 1i(3) formed by epitaxial growth is considerably thick. Therefore, K defects are likely to occur in the n-type layer (3), which lowers the yield of the product in manufacturing. Furthermore, an epitaxial growth apparatus is required, which also increases the product price.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ため釦なされたもので、n”pinp+構造半導体装置
のn形層を拡散法により形成することで、欠陥の少ない
n形層を得て、製品の歩留りを上げ、また、拡散装置の
みで製造が行なわれるので、製品価格上および製造の簡
便さの上から非常に有利となる半導体装置の製造方法を
提供するものである。
This invention was developed in order to eliminate the drawbacks of the conventional devices as described above, and it is possible to obtain an n-type layer with fewer defects by forming the n-type layer of an n''pinp+ structure semiconductor device by a diffusion method. The present invention provides a method for manufacturing a semiconductor device which increases the yield of the product and is extremely advantageous in terms of product cost and manufacturing simplicity since manufacturing is performed using only a diffusion device.

〔発明の実施例〕[Embodiments of the invention]

第3図A −Eはこの発明の一実施例であるnpinp
構造G’[’Oの製造方法について、拡散工程のみを説
明するためにその主要段階における状態を示す断面図で
ある。
Figures 3A to 3E show npinp which is an embodiment of this invention.
FIG. 2 is a cross-sectional view showing the state at the main stages of the method for manufacturing structure G'['O, in order to explain only the diffusion process.

まず、第3図Aに示す不純物濃度が1014個/cm3
程度の低濃度n形(i形)半導体基体(1)に第3図B
に示すようにリン(P)などの第V族元素を深く拡散さ
せn+形層(6)を両生面部に形成し、その内の一方の
主面部に形成されたn+形層(6)を含めて、図示一点
鎖線のハツチングを施した部分をラッピング除去して、
i形層(1)の幅を調整する。つづいて第3図CK示す
ように、上記ラッピング除去した面のみからC)aなど
の第■族元素を拡散させてp形層(2)を形成する。こ
の時点での拡散プロファイルを第4図に示す。次に、n
+形層(6)の表面部にp+形層を形成する必要がある
が、n+形層(6)の表面不純物濃度が高すぎては形成
が困難であるので、第3図Cに一点鎖線のハツチングを
施して示したその表面部をラッピング除去する。第4図
にもこのラッピング除去する部分を一点鎖線ハッチング
を施して示しである。このようなラッピング除去によっ
てn形層(6a)を残し、その表面不純物濃度は101
8個/am 程度以下にする。次に、第3図りに示すよ
うに1このn形層(6a)の表面部のみにホウ素(B)
などの第■族元索を拡散させて、p+形層(4)を形成
する。ついで、第3図Eに示すように、Pなどの第V族
元素をp形層(2)側にのみ所要パターンに選択拡散さ
せてn+形層(5)を形成して、この実施例の拡散工程
は完了する。
First, the impurity concentration shown in Figure 3A is 1014 particles/cm3.
Figure 3B on a low concentration n-type (i-type) semiconductor substrate (1)
As shown in Figure 2, a group V element such as phosphorus (P) is deeply diffused to form an n+ type layer (6) on the amphiphilic surface, including the n+ type layer (6) formed on one of the main surfaces. Then, remove the wrapping from the hatched part shown in the dashed line.
Adjust the width of the i-shaped layer (1). Subsequently, as shown in FIG. 3CK, a p-type layer (2) is formed by diffusing a Group Ⅰ element such as C)a only from the surface which has been removed by lapping. The diffusion profile at this point is shown in FIG. Next, n
Although it is necessary to form a p+ type layer on the surface of the + type layer (6), it is difficult to form it if the surface impurity concentration of the n+ type layer (6) is too high. The surface area shown by the hatching is removed by lapping. In FIG. 4, the portion to be removed by wrapping is shown hatched with a dashed dotted line. This lapping removal leaves an n-type layer (6a) with a surface impurity concentration of 101
Keep it to about 8 pieces/am or less. Next, as shown in the third diagram, boron (B) is applied only to the surface of this n-type layer (6a).
A p+ type layer (4) is formed by diffusing group Ⅰ elements such as. Next, as shown in FIG. 3E, a group V element such as P is selectively diffused into a desired pattern only on the p-type layer (2) side to form an n+-type layer (5). The diffusion process is complete.

この実施例の方法の第1図で説明した従来方法と異なる
点け、n+形層(6)を拡散法でつくること、及び第3
図Cに示したように、 n+形層(6)にさらにp+形
層(4)をつくるためにn+形層(6)の表面部をラッ
ピング除去して、表面不純物濃度を1000個/cm3
程度のn形層(6a)にすることの2点である。
The method of this embodiment differs from the conventional method explained in FIG.
As shown in Figure C, in order to further create a p+ type layer (4) on the n+ type layer (6), the surface portion of the n+ type layer (6) is removed by lapping, and the surface impurity concentration is reduced to 1000 impurities/cm3.
There are two points: to make the n-type layer (6a) to a certain degree.

n形層(6)を拡散法によって形成する点はPなどの第
V族元素を拡散装置で、ドライブ時間を長くして、深く
拡散させればよい。また、n形層(6a)の表面不純物
濃度を1018個/cm3程度に押えるためKは、広が
シ抵抗測定装置などによって、第3図Cの状態のウェー
ハの拡散プロファイルを測定し、表面不純物濃度がその
所望値になるまでn+形層(6)をラッピングすればよ
い。
The n-type layer (6) can be formed by a diffusion method by using a diffusion device to deeply diffuse a group V element such as P by increasing the drive time. In addition, in order to suppress the surface impurity concentration of the n-type layer (6a) to about 1018 particles/cm3, K measures the diffusion profile of the wafer in the state shown in Figure 3C using a diffusion resistance measuring device, and determines the surface impurity concentration. The n+ layer (6) may be lapped until the concentration is at its desired value.

次に、第2図と第4図とを比較して判るように、n形層
の拡散プロファイルがかなり異なる点である。従来例に
おけるエピタキシャル成長法によってつくられるn形層
(3)の1形層(1)側の不純物濃度の傾斜は急峻で、
その後のp+形層(4)、n+形層(5)の形成のため
の拡散過程において多少緩慢になるが、実施例における
拡散法によって形成されるn形層(6a)のn形層(1
)側の不純物濃度の傾斜の方が更にゆるやかである。し
かしながら、n形層(6a)とn形層(1)との境界か
らn形層(6a)とp+形層(4)との接合までの不純
物濃度がその後の拡散工程を考慮しても3桁から4桁は
ど異なり、n形層(6a)の厚さを適切に選べばバンチ
スルー現象に対しては問題はないと考えられる。逆に、
なだれ破壊電圧は不純物濃度に対して減少関数となるの
で、高電圧印加時にn形層(6a)まで空乏層が広がっ
た場合、n形層(6a)の1形層(1)側の不純物濃度
の傾斜がゆるやかな方が、不純物濃度に添ってあまυ急
激には電位傾度が変化しないので、阻止電圧を上昇させ
得るという点で有利である。従って、n形層(6a)を
拡散法で形成したことによるプロファイル罠もとすく問
題もないことが判る。
Next, as can be seen by comparing FIG. 2 and FIG. 4, the diffusion profiles of the n-type layer are quite different. The slope of the impurity concentration on the 1-type layer (1) side of the n-type layer (3) formed by the epitaxial growth method in the conventional example is steep;
Although the subsequent diffusion process for forming the p+ type layer (4) and the n+ type layer (5) is somewhat slow, the n-type layer (1) of the n-type layer (6a) formed by the diffusion method in the example is
The slope of the impurity concentration on the ) side is even gentler. However, even considering the subsequent diffusion process, the impurity concentration from the boundary between the n-type layer (6a) and the n-type layer (1) to the junction between the n-type layer (6a) and the p+-type layer (4) is 3. There is a difference of 4 orders of magnitude, and if the thickness of the n-type layer (6a) is appropriately selected, there will be no problem with the bunch-through phenomenon. vice versa,
Since the avalanche breakdown voltage is a decreasing function with respect to the impurity concentration, if the depletion layer spreads to the n-type layer (6a) when a high voltage is applied, the impurity concentration on the type 1 layer (1) side of the n-type layer (6a) will decrease. A gentler slope is advantageous in that the blocking voltage can be increased because the potential gradient does not change as sharply as the impurity concentration increases. Therefore, it can be seen that the profile trap caused by forming the n-type layer (6a) by the diffusion method is eliminated and there is no problem.

なお、上記実施例では逆阻止n”pinp+構造GTO
の製造方法について説明したが、陽極短絡形n”pin
p構造G’i’O1その他のn+pinp+構造サイリ
スクは勿論n”pinp+構造を有する牛導体装置一般
の製造方法にこの発明は適用できる。
In addition, in the above embodiment, the reverse blocking n"pinp+ structure GTO
We have explained the manufacturing method for the anode short-circuit type n”pin
The present invention is applicable not only to the p-structure G'i'O1 and other n+pinp+ structure silicon risks, but also to the manufacturing method of general conductor devices having the n''pinp+ structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1この発明では拡散方法のみでn”
pinp+構造を形成するので、欠陥の少ないn形層が
得られ、製造原価の低減と製品歩留りの向上とが期待で
きる。
As explained above, 1 In this invention, only the diffusion method is used
Since a pinp+ structure is formed, an n-type layer with few defects can be obtained, and a reduction in manufacturing costs and an improvement in product yield can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はn+pinp+構造GTOの従来の製造方法に
ついてそのウェーハ処理工程のみを説明するためKその
主要段階における状態を示す断面図、第2図は第1図C
の段階におけるウェーハの拡散プロファイルを示す図、
第3図はこの発明の一実施例についてそのウェーハ処理
工程のみを説明するためにその主要段階における状態を
示す断面図、第4図は第3図Cの段階におけるウェーハ
の拡散プロファイルを示す図である。 図において、(1)は1形牛導体ウェーハ、(2)はp
形半導体層、(4)はP+形牛導体層、(5)はn+形
半導体層(第 の工程で形成) 、(6)はn+形半導
体層(第2の工程で形成)、(6a)はn形半導体層で
ある。 なお、図中同一符号は同一または相当部分を示す。 代理人大岩増雄
Figure 1 is a cross-sectional view showing the state at the main stages of the conventional manufacturing method of n+pinp+ structure GTO to explain only the wafer processing process, and Figure 2 is the same as Figure 1
Diagram showing the diffusion profile of the wafer at the stage of
FIG. 3 is a sectional view showing the main stages of an embodiment of the present invention in order to explain only the wafer processing process, and FIG. 4 is a diagram showing the diffusion profile of the wafer at the stage of FIG. 3C. be. In the figure, (1) is type 1 conductor wafer, (2) is p
(4) is a P+ type semiconductor layer, (5) is an n+ type semiconductor layer (formed in the second step), (6) is an n+ type semiconductor layer (formed in the second step), (6a) is an n-type semiconductor layer. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] (1)不純物濃度の低いn形(i形という。)の半導体
ウェーハの両生面から第V族元素を深く拡散させて不純
物濃度の高いn形(n+形という。)半導体層を形成し
n+in+構造とする第1の工程、このn+in+構造
の半専体つエーノ1の一方の主面部の上記n+形半導体
層とこれにつづくi影領域の一部をラッピング除去して
in+構造とする第2の工程、このin+構造の半導体
ウェーハのi影領域側主面のみに第m族元素を拡散させ
て上記i影領域と上記n+形半導体層との中間程度の不
純物濃度を有するp形半導体層を形成しpin+構造と
する第3の工程、このpin+構造の半導体ウェーへの
上記n+形半導体層の表面部をラッピング除去して表面
不純物濃度が上記p形半導体層の表面不純物濃度と同程
度のn形半導体層を残してpin構造とする第4の工程
、このpin構造の半導体ウェーハの上記n形半導体層
側主面のみに第m族元素を拡散させて不純物濃度の高い
p+形半導体層を形成してpinp+構造とする第5の
工程、およびとのpinp+構造の半導体ウェーハの上
記p形半導体層側主面のみに第V族元素を拡散させてn
+形半導体層を形成しn”pinp”構造とする第6の
工程を備えた半導体装置の製造方法。
(1) Group V elements are deeply diffused from the ambidextrous surface of an n-type (referred to as i-type) semiconductor wafer with a low impurity concentration to form an n-type (referred to as n+ type) semiconductor layer with a high impurity concentration to form an n+in+ structure. The first step is to remove the n+ type semiconductor layer on one main surface of the semi-dedicated tube 1 having the n+in+ structure and a part of the i shadow region following this by lapping to form the in+ structure. Step: Diffusing group m elements only on the main surface on the i-shaded region side of the in+ structure semiconductor wafer to form a p-type semiconductor layer having an impurity concentration intermediate between the i-shade region and the n+-type semiconductor layer. In the third step, the surface of the n+ type semiconductor layer on the pin+ structure semiconductor wafer is removed by lapping to form an n type semiconductor wafer with a surface impurity concentration similar to that of the p type semiconductor layer. The fourth step is to leave the semiconductor layer and form a pin structure, in which group m elements are diffused only on the main surface on the n-type semiconductor layer side of the pin-structured semiconductor wafer to form a p+ type semiconductor layer with a high impurity concentration. a fifth step of forming a pinp+ structure with the semiconductor wafer, and diffusing a group V element only on the main surface on the p-type semiconductor layer side of the semiconductor wafer having the pinp+ structure with the n
A method for manufacturing a semiconductor device, comprising a sixth step of forming a +-type semiconductor layer to form an n"pinp" structure.
JP296784A 1984-01-09 1984-01-09 Manufacture of semiconductor device Pending JPS60145660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP296784A JPS60145660A (en) 1984-01-09 1984-01-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP296784A JPS60145660A (en) 1984-01-09 1984-01-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60145660A true JPS60145660A (en) 1985-08-01

Family

ID=11544138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP296784A Pending JPS60145660A (en) 1984-01-09 1984-01-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60145660A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109363A (en) * 1985-11-08 1987-05-20 Fuji Electric Co Ltd Gto thyristor
EP1017093A1 (en) * 1998-12-29 2000-07-05 ABB Semiconductors AG Power semiconductor device and process for manufacturing it
WO2002003469A1 (en) * 2000-07-04 2002-01-10 Abb Schweiz Ag Power semiconductor component and method for producing the same
EP0969501B1 (en) * 1998-07-02 2005-10-19 SEMIKRON Elektronik GmbH &amp; Co. KG Method of making power semiconductor components
WO2012136848A1 (en) * 2011-04-06 2012-10-11 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913322A (en) * 1982-07-15 1984-01-24 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913322A (en) * 1982-07-15 1984-01-24 Hitachi Ltd Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109363A (en) * 1985-11-08 1987-05-20 Fuji Electric Co Ltd Gto thyristor
EP0969501B1 (en) * 1998-07-02 2005-10-19 SEMIKRON Elektronik GmbH &amp; Co. KG Method of making power semiconductor components
EP1017093A1 (en) * 1998-12-29 2000-07-05 ABB Semiconductors AG Power semiconductor device and process for manufacturing it
KR100653147B1 (en) * 1998-12-29 2006-12-01 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 Semiconductor element and method of manufacture
WO2002003469A1 (en) * 2000-07-04 2002-01-10 Abb Schweiz Ag Power semiconductor component and method for producing the same
JP2004503090A (en) * 2000-07-04 2004-01-29 アーベーベー シュヴァイツ アクチェンゲゼルシャフト Semiconductor component and manufacturing method thereof
US6825110B2 (en) 2000-07-04 2004-11-30 Abb Schweiz Ag Method for fabricating semiconductor component with an optimized thickness
WO2012136848A1 (en) * 2011-04-06 2012-10-11 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
US9006041B2 (en) 2011-04-06 2015-04-14 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device

Similar Documents

Publication Publication Date Title
US3930300A (en) Junction field effect transistor
DE102014108279A1 (en) SEMICONDUCTOR DEVICE WITH RECOMBINATION CENTERS AND MANUFACTURING METHOD
US3538401A (en) Drift field thyristor
US3975752A (en) Junction field effect transistor
US5654226A (en) Wafer bonding for power devices
EP0214485B1 (en) Asymmetric thyristor and method of making the same
JPS60145660A (en) Manufacture of semiconductor device
US4796073A (en) Front-surface N+ gettering techniques for reducing noise in integrated circuits
WO2019196700A1 (en) Manufacturing method for terminal structure of silicon carbide power device
EP0756760B1 (en) Semiconductor device with guard ring and process for its production
US3551221A (en) Method of manufacturing a semiconductor integrated circuit
US3874956A (en) Method for making a semiconductor switching device
JPH0543192B2 (en)
JPS6110276A (en) Manufacture of semiconductor element
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPS6085563A (en) Manufacture of gate turnoff thyristor
KR940005706B1 (en) Method of making semiconductor device using ion implantation
JPS59200464A (en) Manufacture of bipolar semiconductor device
JPH0821553B2 (en) Multiple spreading method
JPH07135315A (en) Semiconductor device
JPS6223177A (en) Manufacture of semiconductor device
JPS61229361A (en) Negative resistance bipolar transistor
JPS59115565A (en) Manufacture of semiconductor integrated circuit
JPH02268452A (en) Manufacture of high withstand voltage semiconductor device
JPS60187063A (en) Semiconductor device