JPS6110276A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS6110276A
JPS6110276A JP13163384A JP13163384A JPS6110276A JP S6110276 A JPS6110276 A JP S6110276A JP 13163384 A JP13163384 A JP 13163384A JP 13163384 A JP13163384 A JP 13163384A JP S6110276 A JPS6110276 A JP S6110276A
Authority
JP
Japan
Prior art keywords
layer
buffer layer
oxide film
gate
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13163384A
Other languages
Japanese (ja)
Other versions
JPH0669093B2 (en
Inventor
Yasuhide Hayashi
林 泰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP13163384A priority Critical patent/JPH0669093B2/en
Publication of JPS6110276A publication Critical patent/JPS6110276A/en
Publication of JPH0669093B2 publication Critical patent/JPH0669093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To contrive the reduction in number of the manufacturing process and the improvement of manufacturing yield by a method wherein a buffer layer that covers crystal defects generating in a gate layer channel is formed collectively with the gate layer by diffusing impurities through a thin oxide film in order to form the former layer in manufacture of a semiconductor element having a buried gate. CONSTITUTION:After formation of an oxide film, the window of the part corresponding to patterns of a P2<++> layer and a P2<+> buffer layer is bored in a P1N1P2 structure by a photo resist process. Next, a thinner oxide film than the oxide film formed in the former process is formed by reoxidation. Then, the window of the part corresponding to the P2<++> layer pattern is bored by a photo resist process, and the P2<+> buffer layer and the P2<++> layer are formed at the same time by selective diffusion of boron with the patterns of the two layers. Since the P2<+> buffer layer is formed by boron diffusion through a thin oxide film in such a manner, one time boron diffusion is sufficient.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は埋込みゲート1−有する半導体素子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device having a buried gate 1.

(従来の技術) 近年、装置の高効率化、小型化の要求から転流回路を必
要とする従来のサイリスタに代って自己消弧能力を持つ
半導体が注目されている。そのうち、ゲートターンオフ
サイリスタ(以下GTOと称する)は高耐圧化及び大電
流化が他の半導体に較べて容易であシ、実用化も進展し
ている。
(Prior Art) In recent years, due to demands for higher efficiency and smaller size of devices, semiconductors with self-extinguishing ability have been attracting attention in place of conventional thyristors that require commutation circuits. Among these, gate turn-off thyristors (hereinafter referred to as GTO) can easily be made to have a high breakdown voltage and a large current compared to other semiconductors, and their practical use is progressing.

ところで、GTOはそのゲート構造から表面ゲートGT
Oと埋込みゲートGTOとに分けられる。
By the way, GTO has a surface gate GT due to its gate structure.
It is divided into a buried gate GTO and a buried gate GTO.

表面ゲー)GTOは入シ組んだ形状のゲート電極が素子
表面に露出している構造にな)、埋込みゲートGTOで
はゲートとして用いるPL%濃度拡散層(埋込みゲート
)をエピタキシャル成長によってPペース層中に埋込ま
れた第3図に示す構造になる。図中、Gはゲート電極、
Kはカソード電極、A(はアノード電極、P2はペース
層、P2−はエピタキシャル成長層、P2++は埋込み
ゲート層である。
Surface gate) GTO has a structure in which an intricately shaped gate electrode is exposed on the element surface), while buried gate GTO has a PL% concentration diffusion layer (buried gate) used as a gate in the P space layer by epitaxial growth. The embedded structure shown in FIG. 3 is obtained. In the figure, G is a gate electrode,
K is a cathode electrode, A( is an anode electrode, P2 is a space layer, P2- is an epitaxial growth layer, and P2++ is a buried gate layer.

この埋込みゲー)GTOは、表面ゲー)GTOに較べて
カソード・エミッタ接合のブレークダウン電圧を大きく
でき、ターンオフ時に大きな逆電圧をカソード・エミッ
タ接合に印加してターンオフ特性の向上を図ることがで
きる。また、ターンオフ特性改善を図るのにゲート構造
を微細化することは、表面ゲー)GTOでは表面凹凸加
工技術や信頼性にlllj題を侵すのに対し、埋込みゲ
ートG゛Cθで(1,極めて容易となる。
This embedded GTO can have a higher breakdown voltage at the cathode-emitter junction than the surface GTO, and can improve turn-off characteristics by applying a large reverse voltage to the cathode-emitter junction at turn-off. In addition, miniaturizing the gate structure to improve the turn-off characteristics is extremely easy to achieve with buried gate G゛Cθ (1, becomes.

ところで、埋込みゲー)GTOでは、ゲートとして使う
P2++拡教珊の不純物濃度を大きく、またシート抵抗
を小さくして埋込みゲートの抵抗を低くするとターンオ
フ特性が向上する。これはよシ大きなゲート電流を引き
出せることによるoしかし、埋込みゲー、トの抵抗を著
しく低減した場合には第4図に示すようにチャネル内に
結晶欠陥Cd5fが発生する。これらの欠陥はP2ベー
ス中の少数キャリアのライフタイムを短かくするためタ
ーンオフ特性を悪化させ九夛、素子内及び素子間での特
性のバラツキの原因となる。また、チャネル幅をある範
囲より小さくするとターンオフ特性が急激に悪化するこ
とからこれらの欠陥はチャネルの微細化が容易であると
いう埋込みゲートGToの特徴を損なうことになってし
まう0このような結晶欠陥による種々の悪影響を取シ除
くために、第5図に示すようなゲート構造のものを本角
出願人は既に提案している(%願昭59−66873号
)。この構造は、従来の埋込みゲート構造に加えて、結
晶欠陥発生領域をアノード側から県て覆−隠すようにP
2+バッファ層を設けたものである。P24°バッファ
層はP2++層に較べて不純物濃度が低く、またシート
抵抗が大きいため、P2  バッファ層に起因する結晶
欠陥の発生を無視できる。これにより、チャネル部は全
て有効に動作し、素子内、素子間の特性均一性も大幅に
改善されT、いる。また、従来に較べてターンオフ特性
を損うことなくチャネル幅を減少できるため、ターンメ
ツ%性向上のための素子設計自由度が大幅に拡大される
By the way, in a buried gate (GTO), the turn-off characteristics are improved by increasing the impurity concentration of the P2++ expansion coral used as the gate and lowering the resistance of the buried gate by decreasing the sheet resistance. This is because a large gate current can be drawn out. However, if the resistance of the buried gate is significantly reduced, crystal defects Cd5f will occur in the channel as shown in FIG. These defects shorten the lifetime of minority carriers in the P2 base, thereby deteriorating the turn-off characteristics and causing variations in characteristics within and between devices. In addition, if the channel width is made smaller than a certain range, the turn-off characteristics will deteriorate rapidly, so these defects will impair the characteristic of buried gate GTo, which is that the channel can be easily miniaturized. In order to eliminate the various adverse effects caused by this, the applicant of the present invention has already proposed a gate structure as shown in FIG. 5 (Patent Application No. 59-66873). In addition to the conventional buried gate structure, this structure uses a P
2+ buffer layer is provided. Since the P24° buffer layer has a lower impurity concentration and a higher sheet resistance than the P2++ layer, the occurrence of crystal defects caused by the P2 buffer layer can be ignored. As a result, all the channel parts operate effectively, and the uniformity of characteristics within and between elements is greatly improved. Furthermore, since the channel width can be reduced without impairing the turn-off characteristics compared to the conventional method, the degree of freedom in element design for improving turn-off characteristics is greatly expanded.

(発明が解決しようとする問題点) P2+バッファ層を設ける構造のGTOは、その素子製
造プロセスとしてP2+バッファ層形成に酸化工程、フ
ォトレジスト工程、拡散工程、ドライブイン工程などを
新九に必要とする。このような工程追加は、従来構造の
GT OK較べてコストアップや製造歩留り低下を招く
問題があった。
(Problems to be Solved by the Invention) A GTO with a structure in which a P2+ buffer layer is provided requires an oxidation process, a photoresist process, a diffusion process, a drive-in process, etc. to form the P2+ buffer layer as part of the device manufacturing process. do. Such additional steps have the problem of increasing costs and lowering the manufacturing yield compared to GT OK having a conventional structure.

(問題点を解決するための手段と作用)本発明は、一度
の不純物拡散でゲート層とバッファ層を同時形成する製
造方法であって、n形シリコ/基板両面からP形不純物
を拡散してPNP構造とし、両面醸化後にフォトレジス
ト工程によりゲート層及びバッファ層のパターンに窓明
けし、再識化により瞑厚の薄−酸化膜を形成し、フォト
レジスト工程によりゲート層パターン部分を窓明けし、
ゲート層及びバッファ層の相当部分に選択的に不純物を
菖儂度に拡散することでゲート層を1IIj接拡散で形
成し、バッファ層は薄い酸化膜を通した拡散で同時形成
する。
(Means and effects for solving the problems) The present invention is a manufacturing method for simultaneously forming a gate layer and a buffer layer by one-time impurity diffusion. A PNP structure is formed, and after double-sided cultivation, a window is opened in the pattern of the gate layer and buffer layer using a photoresist process, a thin oxide film of medium thickness is formed through reconsideration, and a window is opened in the gate layer pattern part using a photoresist process. death,
The gate layer is formed by 1IIj tangential diffusion by selectively and uniformly diffusing impurities into corresponding portions of the gate layer and buffer layer, and the buffer layer is simultaneously formed by diffusion through a thin oxide film.

(実#1例) 本発明の一実tla例を従来製法と共に説明する。(Actual #1 example) A practical example of the present invention will be explained together with a conventional manufacturing method.

第2図は埋込みゲートGTOICP2+バッファ層を設
ける場合の従来方法を示す。同図(A)に示すようにn
形シリコン基板の両面からガリウムを拡散してPINI
P2構造のものを得、(b)に示すように両面に酸化@
5to2  を形成後フォトレジスト工程を1経てP2
   層ハターンに選択的にホウ素を拡散してP2  
層を形成する。次に、(C)に示すように、再び酸化@
5i02  を形成し、フォトレジスト工程を経てP2
+バッファ層パター7に選択的にホウ素を拡散してP2
+バッファ層を形成する。次に、(d)に示すよりに、
酸化膜を形成しフォトレジスト工程によりエビタキシャ
ル成長させる部分の酸化膜を剥離し、(e)に示すよう
にエピタキシャル成長によりP2+1層、P2+バッフ
ァ層を埋込むp2−/ie形成する。
FIG. 2 shows a conventional method for providing a buried gate GTOICP2+buffer layer. As shown in the same figure (A), n
PINI is created by diffusing gallium from both sides of a shaped silicon substrate.
A P2 structure was obtained and oxidized on both sides as shown in (b).
After forming 5to2, a photoresist process is performed and then P2 is formed.
Selectively diffuse boron into the layer pattern to form P2
form a layer. Next, as shown in (C), oxidation @
5i02 is formed and P2 is formed through a photoresist process.
+ Selectively diffuse boron into the buffer layer pattern 7 to form P2
+ Form a buffer layer. Next, as shown in (d),
An oxide film is formed, and the oxide film in the portion to be epitaxially grown is removed by a photoresist process, and a p2-/ie layer is formed by epitaxial growth to bury a P2+1 layer and a P2+ buffer layer, as shown in FIG.

このように、P2  層での結晶欠陥の影響を取除くた
めのP2+バッファ層金形成するためには、P2+1層
形成の工程後にこの工程と同じにP2  バッファ層形
成の工程を必要としでいた。これに対して、本実施例に
なる第1図の工程は第2図(b)。
As described above, in order to form a P2+ buffer layer to eliminate the influence of crystal defects in the P2 layer, a step of forming a P2 buffer layer is required after the step of forming a P2+1 layer. On the other hand, the process shown in FIG. 1 in this embodiment is shown in FIG. 2(b).

(c)に示す工程に代えるものである。This is an alternative to the step shown in (c).

第1図(A)ではPINIP2構造のものに対し一〇酸
化111810zの形成後、フォトレジスト工程により
P2++層及びP2+バッファ層のパターンに相当する
部分の窓明けをする、次に、(b)に示すように再酸化
により工8i (a)で形成した酸化膜よ)も薄膜の酸
化膜[:5iOz〕を形成する。次に(e)に示すよう
にフォトレジスト工程によF) P2++層パターン相
当部分を窓明けし、(d)に示すようにp?++層及び
P2  バッファ層のパイ(−ンで選択的にホウ素を拡
散してP2+バッファ層及びP22重層を同時に形成す
る。
In FIG. 1(A), after forming 111810z oxide for the PINIP2 structure, a photoresist process is used to open windows in the portions corresponding to the patterns of the P2++ layer and P2+ buffer layer, and then in FIG. 1(b). As shown, the oxide film formed in step 8i (a) also forms a thin oxide film [:5iOz] by reoxidation. Next, as shown in (e), a window is opened in the portion corresponding to the P2++ layer pattern by a photoresist process, and as shown in (d), a window is opened in the portion corresponding to the P2++ layer pattern. A P2+ buffer layer and a P22 overlayer are simultaneously formed by selectively diffusing boron with pins in the ++ layer and the P2 buffer layer.

このように、本実施例では薄い酸化膜を通してホウ素を
拡散して■)2+バッファ層を形成するため、従来工程
(第2図す、c)での2回のホウ素拡散に対して1回の
ホウ素拡散で済むことになる。
In this way, in this example, boron is diffused through a thin oxide film to form the 2+ buffer layer, so one diffusion of boron is performed in contrast to the two times of boron diffusion in the conventional process (Fig. 2, c). Boron diffusion will suffice.

なお、博り酸化膜(stOz)の厚さは、ポウ素拡散条
件やP2+バッファ層の表面濃度と拡散深さから決定さ
れる。具体的にはホウ素を1240’C1時間の除熱、
徐冷条件によって拡散する場合、P2+1層のシート抵
抗t;f、 o、 6Ω/口 となり、また膜厚0.5
μmの酸化膜[5iOz]をホウ素が貫通することによ
り形成されるP2+バッファ層のシート抵抗は15Ω/
D が得られた。この場合、拡散深としてBNを用いた
。、また、P2+バッファ層からチャネル内に侵入する
結晶欠陥は十分少なく極めて良好な%性を示すことが確
認された。
Note that the thickness of the rough oxide film (stOz) is determined from the boron diffusion conditions, the surface concentration of the P2+ buffer layer, and the diffusion depth. Specifically, heat was removed from boron at 1240'C for 1 hour.
In the case of diffusion under slow cooling conditions, the sheet resistance of the P2+1 layer is t; f, o, 6Ω/mouth, and the film thickness is 0.5
The sheet resistance of the P2+ buffer layer formed by boron penetrating the μm oxide film [5iOz] is 15Ω/
D was obtained. In this case, BN was used as the diffusion depth. Furthermore, it was confirmed that the number of crystal defects entering the channel from the P2+ buffer layer was sufficiently small and exhibited an extremely good percent property.

なお、本発明は単に塘込みグー)GTOだけでなく、埋
込みゲートを有する他の半導体素子の製造方法に適用し
て結晶欠陥の影響を取除いた素子を製造することができ
る。
It should be noted that the present invention can be applied not only to a simple GTO but also to a method of manufacturing other semiconductor devices having buried gates to manufacture devices in which the influence of crystal defects has been removed.

(発明の効果) 本発明によれば、埋込みゲートを有する半導体素子の製
造に、ゲート層チャネル間に発生する結凸欠陥を覆いか
くすバッファ層を形成するのに、不純物拡散を薄い酸化
膜を通してゲート層形成時に一括形成する丸め、製造工
程数の低減及び歩留シ向上に効果がある。
(Effects of the Invention) According to the present invention, when manufacturing a semiconductor device having a buried gate, impurity diffusion is carried out through a thin oxide film to form a buffer layer that covers and hides convex defects occurring between gate layer channels. Rounding that is formed at once during layer formation is effective in reducing the number of manufacturing steps and improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部製造工程図、第2
図は従来の要部製造工程図、第3図は埋込みゲートを有
するGTO構造図、第4図は第3図における結晶欠陥C
dafを示す極部構造図、第5図はバッファ層を有する
極部構造図である。 A・・・アノード電極、K・・・カソード電極、G・・
・ゲート電極、P2   ・・・埋込みゲート層、P2
−・・・エピタキシャル成長層、P2・・・ベース層、
5i02・・・酸化膜、[EiiO21・・・薄い酸化
膜。 第2図 id2
Figure 1 is a manufacturing process diagram of the main parts showing one embodiment of the present invention, Figure 2
The figure is a diagram of the conventional main part manufacturing process, Figure 3 is a GTO structure diagram with a buried gate, and Figure 4 is the crystal defect C in Figure 3.
FIG. 5 is a diagram showing the structure of an extreme part showing daf, and FIG. 5 is a diagram of the structure of an extreme part having a buffer layer. A... Anode electrode, K... Cathode electrode, G...
・Gate electrode, P2 ... Embedded gate layer, P2
-...Epitaxial growth layer, P2...Base layer,
5i02...Oxide film, [EiiO21...Thin oxide film. Figure 2 id2

Claims (1)

【特許請求の範囲】[Claims] ベース層に高不純物濃度の埋込みゲート層及び該ゲート
層のチャネル部に侵入する結晶欠陥の発生領域を覆い隠
す低不純物濃度のバッファ層を有する半導体素子におい
て、ベース層の酸化膜を前記ゲート層及びバッファ層の
パターンに窓明けし、この後再酸化により形成した膜厚
の薄い酸化膜に前記バッファ層のパターンに従つた窓明
けをし、前記ゲート層及びバツファ層のパターン部分に
選択的に高濃度の不純物を拡散させることを特徴とする
半導体素子の製造方法。
In a semiconductor device having a buried gate layer with a high impurity concentration in the base layer and a buffer layer with a low impurity concentration that covers a region where crystal defects that invade the channel portion of the gate layer occur, the oxide film of the base layer is A window is formed in the pattern of the buffer layer, and then a window is formed in the thin oxide film formed by re-oxidation according to the pattern of the buffer layer, and the pattern portions of the gate layer and buffer layer are selectively etched. A method for manufacturing a semiconductor device characterized by diffusing impurities at a high concentration.
JP13163384A 1984-06-26 1984-06-26 Method for manufacturing semiconductor device Expired - Lifetime JPH0669093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13163384A JPH0669093B2 (en) 1984-06-26 1984-06-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13163384A JPH0669093B2 (en) 1984-06-26 1984-06-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6110276A true JPS6110276A (en) 1986-01-17
JPH0669093B2 JPH0669093B2 (en) 1994-08-31

Family

ID=15062610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13163384A Expired - Lifetime JPH0669093B2 (en) 1984-06-26 1984-06-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0669093B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063334A (en) * 1989-07-24 1991-11-05 Canon Kabushiki Kaisha Orthogonal two-axis moving apparatus
US5198736A (en) * 1990-11-15 1993-03-30 Canon Kabushiki Kaisha Orthogonal two-axis moving apparatus
JPH06226660A (en) * 1993-01-27 1994-08-16 Kosen Sewing Mach Shokai:Kk X-y robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552249B2 (en) * 2009-03-27 2014-07-16 新電元工業株式会社 3-terminal thyristor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063334A (en) * 1989-07-24 1991-11-05 Canon Kabushiki Kaisha Orthogonal two-axis moving apparatus
US5198736A (en) * 1990-11-15 1993-03-30 Canon Kabushiki Kaisha Orthogonal two-axis moving apparatus
JPH06226660A (en) * 1993-01-27 1994-08-16 Kosen Sewing Mach Shokai:Kk X-y robot

Also Published As

Publication number Publication date
JPH0669093B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JPH05160407A (en) Vertical insulating gate type semiconductor device and manufacture thereof
US5654226A (en) Wafer bonding for power devices
JPH0521706A (en) Semiconductor device and its manufacture
JPH1140815A (en) Semiconductor device and manufacture thereof
CA1154543A (en) Mesh gate v-mos power fet
JPS6110276A (en) Manufacture of semiconductor element
JPH0481345B2 (en)
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
CN116613214A (en) Metal oxide semiconductor field effect transistor and manufacturing method thereof
JPS60211877A (en) Method of producing semiconductor device
JPH0350771A (en) Semiconductor device
EP0268472A2 (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
JPWO2019224913A1 (en) Semiconductor device
JPS60145660A (en) Manufacture of semiconductor device
JPS62272571A (en) Semiconductor device
JPS63236366A (en) Vertical field-effect transistor
JPH01258473A (en) Manufacture of conductivity modulation type mosfet
JPH0256967A (en) Manufacture of electrostatic induction body device
JPH01103864A (en) Semiconductor device
JPH06151884A (en) Semiconductor device and its manufacture
JPH04242976A (en) Manufacture of thyristor
JPH06224290A (en) Manufacture of semiconductor device
JPS6345867A (en) Semiconductor device and manufacture thereof
JPH02234453A (en) Manufacture of semiconductor device
JP2002289854A (en) Manufacturing method for silicon carbide semiconductor device