JPS63236366A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPS63236366A
JPS63236366A JP62068814A JP6881487A JPS63236366A JP S63236366 A JPS63236366 A JP S63236366A JP 62068814 A JP62068814 A JP 62068814A JP 6881487 A JP6881487 A JP 6881487A JP S63236366 A JPS63236366 A JP S63236366A
Authority
JP
Japan
Prior art keywords
thickness
mum
substrate
effect transistor
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62068814A
Other languages
Japanese (ja)
Inventor
Isao Yoshida
功 吉田
Shigeo Otaka
成雄 大高
Masatoshi Morikawa
正敏 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62068814A priority Critical patent/JPS63236366A/en
Publication of JPS63236366A publication Critical patent/JPS63236366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive a reduction in series resistance and a reduction in heat resistance by a method wherein the thickness of the semiconductor substrate of a vertical power MOSFET is made thinner than that of an active region. CONSTITUTION:The thickness of an N-type high-impurity concentration substrate 1 of a vertical power MOSFET and the thickness of a low-impurity concentration drain region 2 having an N-type epitaxial layer are respectively formed in 3 mum and 8 mum. The thicknesses of P-type base regions 3 and N-type source regions 4 are respectively formed in 2 mum and 0.5 mum. Moreover, the thicknesses of gate oxide films 5, poly Si gate electrodes 6 and protective insulating films 7 are respectively formed in 20 nm, 0.3 mum and 0.6 mum and a source electrode 8 consists of an Al film of a thickness of 3 mum. Moreover, a drain electrode 9 is formed in a thickness of 2 mum. That is, the thickness of the substrate 1 is formed thinner compared to that of the drain region 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、縦形構造を有する電界効果トランジスタに係
り、特に低損失化に好適な電界効果トランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor having a vertical structure, and particularly to a field effect transistor suitable for reducing loss.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭57−421°64号に記載のよ
うに、縦形MO8FETを構成する低濃度ドレイン領域
となるエピタキシャル層底部の不純物濃度をその上部よ
りも大きくするなどして、低損失化を図っていた。しか
し、該エピタキシャル層の基板となる高濃度ドレイン領
域に関しては、低損失化についての配慮がなかった。
Conventional devices achieve low loss by making the impurity concentration at the bottom of the epitaxial layer, which becomes the low concentration drain region of the vertical MO8FET, higher than that at the top, as described in JP-A No. 57-421°64. He was trying to make the world a better place. However, with regard to the highly doped drain region that serves as the substrate of the epitaxial layer, no consideration has been given to reducing loss.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、高濃度ドレイン基板の低損失化につい
ては配慮されておらず、縦形MO3FETの超低損失化
を図るうえで問題があった。
The above-mentioned conventional technology does not take into account the reduction in loss of the highly doped drain substrate, and there is a problem in achieving ultra-low loss in the vertical MO3FET.

本発明の目的は、上記縦形MO8FIETの損失を低減
することである。
An object of the present invention is to reduce the loss of the vertical MO8FIET.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、縦形’MO3FETの高濃度ドレイン基板
をエツチングにより薄くすることにより、達成される。
The above object is achieved by thinning the highly doped drain substrate of the vertical MO3FET by etching.

〔作用〕[Effect]

縦形MO3FETの高濃度ドレイン基板を薄くすること
により、該MO3FETのオン抵抗を低減することがで
きる。また、半導体基板が薄くなったことで、半導体部
分の熱抵抗が低減でき、素子の電力容量を向上すること
ができる。
By making the highly doped drain substrate of the vertical MO3FET thinner, the on-resistance of the MO3FET can be reduced. Furthermore, since the semiconductor substrate is made thinner, the thermal resistance of the semiconductor portion can be reduced, and the power capacity of the element can be improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、大電力用の縦形パワーMO3FET主要部の断面
構造図である。1はn形高不純物濃度基板で、不純物濃
度が5X10180−3、厚さが3μmである。2はn
形エピタキシャル層を有する低不純物濃度ドレイン領域
で、不純物濃度が6×10180−8、厚さが8μmで
ある。3はp形ベース領域で、表面不純物濃度が4 X
 1017am−’、深さが2μmである。4はn形ソ
ース領域で、表面不純物濃度が3 X 10 ”cxs
−”、深さが0.5 μmである。5はゲート酸化膜で
厚さが、20nm、6は多結晶シリコンのゲート電極で
、厚さが0.3μmである。7は保護絶縁膜で厚さが0
.6μmである。8はソース電極で厚さ3μmのアルミ
ニウムより成っている。9はドレイン電極で厚さが2μ
mである1本実施例によれば、n形高不純物濃度基板1
の厚さが、低濃度ドレイン領域2の厚さに比べて薄いこ
とが特徴となっている。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a cross-sectional structural diagram of the main part of a vertical power MO3FET for high power. 1 is an n-type high impurity concentration substrate with an impurity concentration of 5×10180-3 and a thickness of 3 μm. 2 is n
The low impurity concentration drain region has a type epitaxial layer, the impurity concentration is 6×10180−8, and the thickness is 8 μm. 3 is a p-type base region with a surface impurity concentration of 4
1017 am-', and the depth is 2 μm. 4 is an n-type source region with a surface impurity concentration of 3×10”cxs
-", the depth is 0.5 μm. 5 is a gate oxide film with a thickness of 20 nm, 6 is a polycrystalline silicon gate electrode with a thickness of 0.3 μm. 7 is a protective insulating film. Thickness is 0
.. It is 6 μm. Reference numeral 8 denotes a source electrode made of aluminum with a thickness of 3 μm. 9 is the drain electrode with a thickness of 2μ
According to this embodiment, the n-type high impurity concentration substrate 1
It is characterized in that its thickness is thinner than that of the low concentration drain region 2.

本実施例では、5m角のパワーMO5FETを製作した
。その結果、ドレイン耐圧60Vドレイン電流30A、
オン抵抗6mΩのパワーMO5FETが得られた。これ
らの特性は、従来構造のものに比べて、オン抵抗が約1
0%低減できている。
In this example, a 5 m square power MO5FET was manufactured. As a result, drain breakdown voltage is 60V, drain current is 30A,
A power MO5FET with an on-resistance of 6 mΩ was obtained. These characteristics mean that the on-resistance is approximately 1% higher than that of the conventional structure.
It has been reduced by 0%.

第2図は、本発明の他の実施例で、製造工程の一部を示
す図である。(a)が基板エツチング前のパワーMO3
FETの断面構造図、(b)が基板領域1を厚さ3μm
、ウェーハ厚さ約117μmにエツチングした図である
。このように、パワーMO3FETとしてソース電極を
形成後、基板をエツチングした。しかる後、基板裏面よ
りイオン打込み10を行い、結晶欠陥層によるライフタ
イムキラー11を導入した。イオン打込み条件は、イオ
ン種ヘリウム、エネルギ3 M e V、打込み景lX
101”Ql−”である。イオン打込み後、水素中で、
350℃、30分間の熱処理を行った。
FIG. 2 is a diagram showing a part of the manufacturing process in another embodiment of the present invention. (a) is the power MO3 before substrate etching
Cross-sectional structure diagram of FET, (b) shows substrate region 1 with a thickness of 3 μm.
, which is etched to a wafer thickness of approximately 117 μm. After forming the source electrode of the power MO3FET in this manner, the substrate was etched. Thereafter, ion implantation 10 was performed from the back side of the substrate to introduce a lifetime killer 11 formed by a crystal defect layer. The ion implantation conditions were: ion species helium, energy 3M e V, implantation direction 1X.
101"Ql-". After ion implantation, in hydrogen,
Heat treatment was performed at 350°C for 30 minutes.

本実施例では、基板を薄くエツチングしているので、裏
面より均一にライフタイムキラーが導入できる。その結
果1表面チャネル領域に影響を与えないで、基板ダイオ
ードの逆方向回復時間を低減できるという利点が生ずる
。本実施例の基板ダイオードの逆方向回復時間は、0.
2μS であり、イオン打込み前の1.2μs に比べ
、格段に低減できた。
In this embodiment, since the substrate is etched thinly, the lifetime killer can be uniformly introduced from the back side. As a result, an advantage arises in that the reverse recovery time of the substrate diode can be reduced without affecting the first surface channel region. The reverse recovery time of the substrate diode of this example is 0.
The time required was 2 μS, which was significantly reduced compared to 1.2 μs before ion implantation.

次に、本発明の他の実施例を第3図を用いて説明する。Next, another embodiment of the present invention will be described using FIG.

基板を薄くエツチングした縦形パワーMO3FETを熱
伝導の良い12の銅基板に接着する。
A vertical power MO3FET whose substrate is thinly etched is bonded to 12 copper substrates with good thermal conductivity.

半導体基板の厚さは全体で10μmである。従って、電
力印加による発熱部が放熱基板12に近いので従来の基
板D2ooμmの場合に比べて、熱抵抗を約30%低減
できた。
The total thickness of the semiconductor substrate is 10 μm. Therefore, since the heat generating part due to power application is close to the heat dissipation substrate 12, the thermal resistance can be reduced by about 30% compared to the case of the conventional substrate D2ooμm.

第4図は、基板を薄くエツチングした縦形パワーMO3
FETをフェースダウンさせて放熱基板12に接着する
構造としたものである。この場合、ソース電極13を銅
電極とし、放熱基板12との接着性の向上を図った6図
に示すような半導体基板14を放熱基板12ではさみ込
む構造にすることで、電界効果トランジスタの活性部以
外の直列抵抗が低減でき、その結果、オン抵抗の極めて
小さいパワーMO5FETが製作できた。
Figure 4 shows a vertical power MO3 with thinly etched substrate.
The structure is such that the FET is bonded face down to the heat dissipation substrate 12. In this case, the source electrode 13 is made of a copper electrode, and the semiconductor substrate 14 is sandwiched between the heat dissipation substrates 12 as shown in FIG. As a result, we were able to manufacture a power MO5FET with extremely low on-resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、縦形パワーMOSFETの半導体基板
が能動領域の厚さよりも薄くできるので直列抵抗の低減
、熱抵抗の低減に効果がある。
According to the present invention, the semiconductor substrate of the vertical power MOSFET can be made thinner than the thickness of the active region, which is effective in reducing series resistance and thermal resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦形電界効果トランジスタ
の断面構造図、第2図は本発明の他の実施例の縦形電界
効果トランジスタの製法を示す新面構造図、第3,4図
は本発明の他の実施例を示す縦形電界効果トランジスタ
の断面構造図である。 1・・・高濃度半導体基板、2・・・低濃度ドレイン領
域。 3・・・ベース領域、4・・・ソース領域、5・・・ゲ
ート酸化膜、6・・・ゲート電極、7・・・保護絶R膜
、8・・ソース電極、9・・・ドレイン電極、1o・・
・イオンビーム、11・・・ライフタイムキラー、12
・・・放熱基板、第 2図 (b)
FIG. 1 is a cross-sectional structural diagram of a vertical field effect transistor according to an embodiment of the present invention, FIG. 2 is a new structural diagram showing a manufacturing method of a vertical field effect transistor according to another embodiment of the present invention, and FIGS. 3 and 4 FIG. 2 is a cross-sectional structural diagram of a vertical field effect transistor showing another embodiment of the present invention. 1...High concentration semiconductor substrate, 2...Low concentration drain region. 3... Base region, 4... Source region, 5... Gate oxide film, 6... Gate electrode, 7... Protective isolation film, 8... Source electrode, 9... Drain electrode , 1o...
・Ion beam, 11...Lifetime killer, 12
...Heat dissipation board, Figure 2 (b)

Claims (1)

【特許請求の範囲】 1、主電流通路が、半導体基板の表面から深さ方向に存
在する電界効果トランジスタにおいて、該基板の高濃度
不純物領域の厚さが、該基板の表面側に位置する低濃度
不純物領域の厚さよりも小となることを特徴とする縦形
電界効果トランジスタ。 2、特許請求の範囲第1項において、電界効果トランジ
スタを構成する半導体基板が、それよりも熱伝導率の良
い他の金属基板に接着されていることを特徴とする縦形
電界効果トランジスタ。
[Claims] 1. In a field effect transistor in which the main current path exists in the depth direction from the surface of the semiconductor substrate, the thickness of the high concentration impurity region of the substrate is greater than the thickness of the high concentration impurity region located on the surface side of the substrate. A vertical field effect transistor characterized in that the thickness is smaller than the thickness of a concentrated impurity region. 2. A vertical field effect transistor according to claim 1, wherein the semiconductor substrate constituting the field effect transistor is bonded to another metal substrate having a higher thermal conductivity than the semiconductor substrate.
JP62068814A 1987-03-25 1987-03-25 Vertical field-effect transistor Pending JPS63236366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068814A JPS63236366A (en) 1987-03-25 1987-03-25 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068814A JPS63236366A (en) 1987-03-25 1987-03-25 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63236366A true JPS63236366A (en) 1988-10-03

Family

ID=13384561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068814A Pending JPS63236366A (en) 1987-03-25 1987-03-25 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63236366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032880A (en) * 1989-05-23 1991-07-16 Kabushiki Kaisha Toshiba Semiconductor device having an interposing layer between an electrode and a connection electrode
JP2000269234A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032880A (en) * 1989-05-23 1991-07-16 Kabushiki Kaisha Toshiba Semiconductor device having an interposing layer between an electrode and a connection electrode
JP2000269234A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5521409A (en) Structure of power mosfets, including termination structures
JP3158973B2 (en) Silicon carbide vertical FET
KR20100084525A (en) Semiconductor device with (110)-oriented silicon
JP2984478B2 (en) Conductivity modulation type semiconductor device and method of manufacturing the same
JPS598375A (en) Insulated gate field-effect transistor
JPS60249367A (en) Insulation gate transistor
TW201947766A (en) High electron mobility transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JPH04152536A (en) Manufacture of mis semiconductor device
JPS598374A (en) Insulated gate field-effect transistor
JP3357804B2 (en) Semiconductor device and manufacturing method thereof
JP2805590B2 (en) Method for manufacturing semiconductor device
JP2003197633A (en) Manufacturing method for semiconductor device
JPS63236366A (en) Vertical field-effect transistor
JPH02119184A (en) Insulated gate semiconductor device and its manufacture
JPH0350771A (en) Semiconductor device
JPS63166273A (en) Vertical semiconductor device
KR970004079A (en) Semiconductor device and manufacturing method
JPH0379035A (en) Mos transistor and manufacture thereof
JP2000223708A (en) Semiconductor device
JPH0669093B2 (en) Method for manufacturing semiconductor device
JP3031282B2 (en) Semiconductor device
JPH1051010A (en) Manufacture of semiconductor device
JPS6346776A (en) Manufacture of thin film transistor
JPS6394686A (en) Manufacture of silicon thin film transistor