JPS61216243A - Cell - Google Patents

Cell

Info

Publication number
JPS61216243A
JPS61216243A JP60056618A JP5661885A JPS61216243A JP S61216243 A JPS61216243 A JP S61216243A JP 60056618 A JP60056618 A JP 60056618A JP 5661885 A JP5661885 A JP 5661885A JP S61216243 A JPS61216243 A JP S61216243A
Authority
JP
Japan
Prior art keywords
positive electrode
discharge voltage
energy density
composite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056618A
Other languages
Japanese (ja)
Inventor
Yuzuru Takahashi
譲 高橋
Yoshio Kawai
河合 義生
Akira Mori
晃 森
Naoto Sakurai
直人 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP60056618A priority Critical patent/JPS61216243A/en
Publication of JPS61216243A publication Critical patent/JPS61216243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a very high energy density per unit mass of the positive electrode of a cell, and a high discharge voltage, and to keep it at a high constant value for a long time, by making the positive electrode with a composite of carbonaceous materials adhere and deposit onto a porous electro-conductive carrier. CONSTITUTION:In an organic electrolyte cell consisting of a negative electrode composed of active material of light metals a separator impregnated with organic solvent solution of light metal salts and a positive electrode, the positive electrode is made with a composite of carbonaceous materials adhered and deposited on a porous electro- conductive carrier. There is no special restriction as to the carbonaceous materials to be used, and they are not necessarily pure, and so a carbonaceous material of which carbon content is higher than 90wt% and electro-conductivity is less than 10<6>OMEGAcm is practically used. By making the positive electrode with a composite of carbonaceous materials adhered and deposited on a porous electro-conductive carrier, a very high energy density per unit weight of the positive electrode and a high discharge voltage can be obtained, the high discharge voltage can be kept constant for a long time, and there is no problem concerning public nuisance and recovery of resource, and furthermore it is inexpensive.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はいわゆる有機電解質電池に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a so-called organic electrolyte battery.

さらに詳しく社軽金属を負極活物質とし、炭素系物質を
導電性多孔体に附着担持させた複合体を正極としたすぐ
れた特性を有する有機電解質電池に関する。
More specifically, the present invention relates to an organic electrolyte battery having excellent properties, in which a composite material in which a light metal is used as a negative electrode active material and a carbon-based material is attached and supported on a conductive porous material is used as a positive electrode.

〔従来の技術〕[Conventional technology]

最近、LSIあるいは超LSIに見られるようにエレク
トロニクスの発展は目ざましく、各種電子機器類の軽薄
短小化が図られている。これにともなって使用される電
源、特にコードレス用機器類の電源としての電池の需要
がますます増加しておシ、より高電圧、より高エネルギ
ー密度そしてより高い信頼性を有する電池の出現が所望
されつつある。
2. Description of the Related Art Recently, the development of electronics as seen in LSI or ultra-LSI has been remarkable, and efforts are being made to make various electronic devices lighter, thinner, and smaller. As a result, the demand for batteries as a power source, especially for cordless devices, is increasing, and it is desirable to develop batteries with higher voltage, higher energy density, and higher reliability. It is being done.

従来、高電圧かつ高エネルギー密度の電池として知られ
ているものに負極活物質としてリチウムを使用した各種
のリチウム電池がある。代表的なリチウム電池としては
、正極活物質に二酸化マンガン(MnO2)あるいはふ
つ化黒鉛を使用したリチウム電池などがあり、これらは
既に市販されている。
BACKGROUND ART Conventionally, various types of lithium batteries using lithium as a negative electrode active material are known as high voltage and high energy density batteries. Typical lithium batteries include those using manganese dioxide (MnO2) or graphite fluoride as the positive electrode active material, and these are already commercially available.

しかしながら、二酸化マンガン−リチウム電池は高電圧
を取得できるが、放電とともに電池電圧の急速な低下が
見られ、長期にわたって使用する際、例えば現在広く普
及している電子ウォッチ、電卓あるいはマイクロコンピ
ュータ−等のメモリバックアップ用として用いた場合に
は使用の途中から作動電圧が不足になシ易く信頼性が低
いという欠点が指摘され、さらに二酸化マンガン−リチ
ウム電池の廃棄などにつ、いて 、公害および資源回収
等の問題が懸念されている。
However, although manganese dioxide-lithium batteries can obtain high voltage, the battery voltage rapidly decreases as it discharges, and when used for a long period of time, it is difficult to use batteries such as electronic watches, calculators, or microcomputers that are currently widely used. When used for memory backup, it has been pointed out that the operating voltage tends to run out during use, resulting in low reliability.In addition, there are concerns about the disposal of manganese dioxide-lithium batteries, pollution and resource recovery, etc. There are concerns about this issue.

一方、ふり化黒鉛−リチウム電池は、二酸化マンガン−
リチウム電池に比べ一定の放電電圧を維持するという平
坦性は改善されてはいるが不十分であり、かつ放電電圧
が低く、高負荷時の放電特性が悪いなどの欠点を有して
いる。二酸化マンガン、ぶつ化黒鉛社ともに電気伝導度
が小さく、電気伝導度を大きくするためにさらに導電助
剤が添加されて正極剤が重くなるので、これ顛よる正極
側単位重量あたりのエネルギー密度の低下が′ある。ま
た二酸化マンガンを用いる場合には予め化学的な処理工
程を必要とし、またぶつ化黒鉛においては、黒鉛等をふ
っ素化する工程を必要とするため、いずれも高価な材料
となってしまうなどの欠点がある。
On the other hand, fluorinated graphite-lithium batteries are manganese dioxide-lithium batteries.
Although the flatness of maintaining a constant discharge voltage has been improved compared to lithium batteries, it is insufficient, and it also has drawbacks such as a low discharge voltage and poor discharge characteristics under high loads. Both manganese dioxide and Graphite Co., Ltd. have low electrical conductivity, and in order to increase the electrical conductivity, a conductive additive is added, making the positive electrode material heavier, which results in a decrease in the energy density per unit weight on the positive electrode side. There is. In addition, when using manganese dioxide, a chemical treatment process is required in advance, and when using fluorinated graphite, a process of fluorinating graphite etc. is required, so both are expensive materials. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記従来の各リチウム電池における問題点に着
目し、正極単位重量あたりのエネルギー密度が非常に高
く、放電電圧が高く、また長期にわたって高い一定放電
電圧を維持するな供せんとするものである。
The present invention focuses on the problems of each of the conventional lithium batteries, and aims to provide a positive electrode with a very high energy density per unit weight, a high discharge voltage, and a high constant discharge voltage that cannot be maintained for a long period of time. be.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは、従来のリチウム電池に代表される有機電
解質電池が有している諸欠点を解決すべく種々研究を重
ねた結果、驚くべきことに軽金属を負極活物質とし、炭
素系物質を導電性多孔体に附着担持させた複合体を正極
とした場合に、極めて高いエネルギー密度を有し、電池
特性にも優れ、そして安価でかつ簡単にリチウム電池が
得られることを見い出し、本発明を完成するにいたった
The inventors of the present invention have conducted various studies to solve the various drawbacks of organic electrolyte batteries, such as conventional lithium batteries, and have surprisingly found that light metals are used as negative electrode active materials, and carbon-based materials are used as negative electrode active materials. We have discovered that when a positive electrode is a composite supported on a conductive porous material, a lithium battery can be obtained which has extremely high energy density, excellent battery properties, and is inexpensive and easy, and has developed the present invention. It was completed.

すなわち、本発明は、軽金属を活物質とする負極、軽金
属塩の有機溶媒溶液を含浸させたセパレーターおよび正
極を使用した有機電解質電池において、正極が炭素系物
質を導電性多孔体に附着担持させた複合体であることを
特徴とする電池である。
That is, the present invention provides an organic electrolyte battery using a negative electrode containing a light metal as an active material, a separator impregnated with an organic solvent solution of a light metal salt, and a positive electrode, in which the positive electrode has a carbon-based material attached and supported on a conductive porous body. This battery is characterized by being a composite.

本発明で使用される炭素系物質には特に制限はなく、ま
た純品である必要はなく、実用上、炭素含有率が90w
t%以上、好ましくは95wt4以上でちゃ、かつ電気
伝導度が100硼以下、好ましくは10〜10 Ω鑞の
炭素系物質が使用される。
There are no particular restrictions on the carbon-based material used in the present invention, and it does not need to be a pure product.
A carbon-based material is used that has an electrical conductivity of 100 Ω or less, preferably 10 to 10 Ω, and has an electrical conductivity of 100 Ω or less, preferably 95 wt 4 or more.

炭素系物質の代表例としてカーボンブラックおよび活性
炭素などがある。実用上、前者が好ましい。
Representative examples of carbon-based materials include carbon black and activated carbon. Practically speaking, the former is preferred.

本発明に使用されるカーボンブラックはごく一般に入手
可能ガもので、その原料、製法に何ら制限はないが、実
用的な代表例としてケッチェンブラック、アセチレンブ
ラック、ファーネスブラック、サーマルブラック、ラン
プブラックおよびチャンネルブラック等をあげることが
できる。これらのうち好ましいカーボンブラックとして
ケッチェンブラック、アセチレンブラックおよびファー
ネスブラックなどをあげることができる。これらのうち
比較的高価ではあるが、電池特性がすぐれていることが
らケッチンブラックが好ましく、一方、電池特性は従来
品程度ではあるが比較的安価であることからアセチレン
ブラック、ファーネスブラックも好マシい。これらのカ
ーボンブラックは一種類または二種類以上混合して用い
ることもできる。これらのカーボンブラックは粉状、粒
状、塊状のいずれでも使用できるが、これらのうち好ま
しくは粉状、粒状が使用される。また、カーボンブラッ
クとして、はソ球状のカーボンブラック粒子が集合して
鎖状構造を形成した一次集合体、この−次集合体が集合
して形成された二次集合体、この二次集合体がさらに集
合して形成された三次集合体のような高次集合体(二次
集合体以後の集合体 以下同様)を使用することができ
る。これらのうち−次集合体が好ましい。なお、モ吾高
次集合体はたとえば超音波処理などによって集合を解除
して一次集合体として使用することが好ましい。
The carbon black used in the present invention is commonly available, and there are no restrictions on its raw materials or manufacturing method, but typical practical examples include Ketjen black, acetylene black, furnace black, thermal black, lamp black, and Channel black etc. can be mentioned. Among these, preferred carbon blacks include Ketjen black, acetylene black, and furnace black. Among these, Kettin black is preferable because it has excellent battery characteristics, although it is relatively expensive.On the other hand, acetylene black and furnace black are also preferable because they are relatively inexpensive, although the battery characteristics are comparable to conventional products. . These carbon blacks can be used alone or in combination of two or more. These carbon blacks can be used in the form of powder, granules, or lumps, but among these, powders and granules are preferably used. In addition, carbon black includes a primary aggregate formed by aggregation of spherical carbon black particles to form a chain structure, a secondary aggregate formed by aggregation of these -order aggregates, and a secondary aggregate formed by this secondary aggregate. Higher-order aggregates such as tertiary aggregates formed by further aggregation (second-order aggregates and subsequent aggregates, hereinafter the same) can be used. Among these, -order aggregates are preferred. It is preferable that the Mogo higher-order aggregate is deaggregated by, for example, ultrasonic treatment and used as a primary aggregate.

超音波処理は、カーボンブラックの高次集合体を常法の
ように有機溶媒などの分散媒に分散させた懸濁液に超音
波を照射して行なわれる。
The ultrasonic treatment is carried out by irradiating a suspension of high-order aggregates of carbon black in a dispersion medium such as an organic solvent with ultrasonic waves in a conventional manner.

このときの有機溶媒としては特に制限はないが、たとえ
ば、脂肪族炭化水素、芳香族炭化水素、ハロゲン化物、
エステル、ケトン、ラクトン、アルコールなどをあげる
ことができるが低沸点の有機溶媒が好適に使用される。
The organic solvent at this time is not particularly limited, but examples include aliphatic hydrocarbons, aromatic hydrocarbons, halides,
Examples include esters, ketones, lactones, alcohols, etc., but organic solvents with low boiling points are preferably used.

超音波処理の条件は、カーボンブラックがその嘉央集合
体特有の鎖状構造が破壊されるとと々く一次集合体を保
持しうるような条件であれば特に制限はなく、 ヤ陥カーボンブラックの種類などによって異り一概に特
定しえないが、通常はたとえば20゜000サイクル以
上、好ましくrjz、oo。
The conditions for ultrasonication are not particularly limited as long as the carbon black can maintain its primary aggregate as soon as the chain structure peculiar to its Kao aggregates is destroyed. Although it cannot be specified unconditionally as it varies depending on the type, it is usually, for example, 20°,000 cycles or more, preferably rjz, oo.

〜28,000サイクル程度の超音波によって鎖状構造
が破壊されるまで超音波処理されたカーボンブラックは
一次集合体に比して電導度が小さくなる。なお、カーボ
ンブラックの鎖状構造の有無は光学顕微鏡乃至は電子顕
微鏡により確認することができる。
Carbon black treated with ultrasonic waves for about 28,000 cycles until the chain structure is destroyed has a lower electrical conductivity than the primary aggregate. Note that the presence or absence of a chain structure of carbon black can be confirmed using an optical microscope or an electron microscope.

また、これらのカーボンブラックは、必要に応じ使用に
先立って、たとえば加熱、洗浄などの物理的処理または
たとえば酸、アルカリなどによる化学的処理によって性
質を改善してから。
Further, the properties of these carbon blacks are improved, if necessary, by physical treatment such as heating and washing, or chemical treatment with acid, alkali, etc., before use.

使用することもできる。You can also use

カーボンブラックの大きさには特に制限はないが、実用
上、平均粒子径が10〜5oooX程度、好ましくは2
00〜2000X、または比表面積(窒素吸着法による
一以下同様)が5〜2000m’/g程度、好ましくは
50〜15oom/gのものが使用される。
There is no particular restriction on the size of carbon black, but for practical purposes, the average particle size is about 10 to 5 oooX, preferably 2
00 to 2000X, or a specific surface area (same as 1 or less by nitrogen adsorption method) of about 5 to 2000 m'/g, preferably 50 to 15 oom/g.

また、本発明に使用される活性炭素には特に制限はない
が、たとえば実用上平均粒子径5〜200μm1好まし
くは20〜1Q OBmsまたは比表面積500m/、
9以上、好ましくは比表面積500〜4000rIt/
9の大きさの活性炭素が使用される。また活性炭素は粉
状、粒状あるいは破砕状のものから選ばれるが、粉状の
ものが好ましい。
Furthermore, there are no particular limitations on the activated carbon used in the present invention;
9 or more, preferably specific surface area 500 to 4000 rIt/
9 size activated carbon is used. The activated carbon may be selected from powder, granules, or crushed forms, with powder forms being preferred.

炭素系物質として、カーボンブラックおよび活性炭素の
ほかに木炭、石炭、黒鉛およびコークスなども使用する
ことができる。
In addition to carbon black and activated carbon, charcoal, coal, graphite, and coke can also be used as carbon-based materials.

また、本発明に使用される導電性多孔体としては、たと
えば金属繊維、金属メッキ繊維、炭素繊維、炭素複合繊
維、金属蒸着繊維、金属含有合成繊維などの導電性材料
で作られた板状の多孔体である。多孔体の形態は実用土
、通常はたとえば網、織布および不織布ならびに紙など
であるが、必ずしもこれらに限定されるものではない。
In addition, the conductive porous body used in the present invention may be a plate-shaped material made of a conductive material such as metal fiber, metal-plated fiber, carbon fiber, carbon composite fiber, metal-deposited fiber, or metal-containing synthetic fiber. It is a porous body. The form of the porous body is a practical soil, usually, for example, a net, a woven or non-woven fabric, and paper, but is not necessarily limited thereto.

導電性多孔体の材料である金属として、通常は、白金、
金、チタン、ニッケルおよびステンレスなどが好適に使
用される。導電性多孔体は軽量で、かつ高導電性のもの
が好ましく、たとえば炭素繊維で作られた多孔体は軽量
で高導電性であることから好ましい。また、本発明の導
電性多孔体の孔径は炭素系物質の大きさよシも大きくな
ければならない。
The metal that is the material of the conductive porous body is usually platinum,
Gold, titanium, nickel and stainless steel are preferably used. The conductive porous body is preferably lightweight and highly conductive. For example, a porous body made of carbon fiber is preferred because it is lightweight and highly conductive. Further, the pore diameter of the conductive porous body of the present invention must be larger than the size of the carbon-based material.

導電性多孔体の重量は、用いられる炭素系物質の重量の
1/10〜10倍、好ましくは115〜5倍である。
The weight of the conductive porous body is 1/10 to 10 times, preferably 115 to 5 times, the weight of the carbon-based material used.

また、導電性多孔体の厚さは、材質、所望される電池容
量および電池の面積などによって異なり一概に特定され
ないが、実用上、通常は0゜05〜5011翼、好まし
くは0.05〜2011m。
Furthermore, the thickness of the conductive porous body varies depending on the material, desired battery capacity, battery area, etc., and cannot be unconditionally specified; .

特に好ましくは0.1〜5111程度とされる。Particularly preferably, it is about 0.1 to 5111.

本発明における複合体は炭素系物質を導電性多孔体に附
着担持させた物であるが、炭素系物質を導電性多孔体に
附着担持させる方法としてはそれ自体公知の方法が採ら
れる。すなわち、例えば、0)有機溶媒に炭素系物質を
分散させた懸濁液を導電性多孔体の片面より吸引しなが
ら均一に流し込んだのち乾燥する方法、(C4炭素系物
質を有機溶媒で混練して泥状物とし、これを導電性多孔
体上にのせロールにより圧入したのち乾燥する方法、Q
う導電性多孔体に炭素系物質を乾燥状態でそのま\、ま
たは接着剤を使用して担持させる方法およびに)モノマ
ーと炭素系物質との混合物を導電性多孔体に付着させて
から七ツマ−を重合させる方法などがあり、これらのう
ち、実用上(イ)および(旬がそれぞれ好ましいが、こ
れらの方法に制限されるものではない。
The composite according to the present invention is a material in which a carbon-based material is attached and supported on a conductive porous body, and a method known per se can be used as a method for adhering and supporting the carbon-based substance on a conductive porous body. That is, for example, 0) a method in which a suspension of a carbon-based material dispersed in an organic solvent is uniformly poured into one side of a conductive porous material while being sucked, and then dried; Q
(2) A method of supporting a carbon-based material on a conductive porous material as it is in a dry state or using an adhesive; There are methods of polymerizing -, among which methods (a) and (b) are preferred for practical purposes, but the method is not limited to these methods.

本発明における正極以外の部材、たとえば負極活物質で
ある軽金属、軽金属塩の有機溶媒溶液およびセパレータ
ーなどは、従来の有機電解質電池における部材と異なる
処はない。
In the present invention, members other than the positive electrode, such as the light metal as the negative electrode active material, the organic solvent solution of the light metal salt, and the separator, are the same as those in conventional organic electrolyte batteries.

すなわち、負極活物質である軽金属には特に制限はない
が、たとえばリチウム、ナトリウム、カリウム、マグネ
シウム、バリウムおよびアルミニウムなどが好適に使用
されるが、就中、リチウムが最も好ましい。負極活物質
である軽金属は板状であればよく、実用上、通常は、た
とえば軽金属箔、軽金属板および軽金属繊維の網などが
使用され、その厚さは通常は1〜5000μm程度、好
ましくは20〜2000μmとされる。
That is, the light metal that is the negative electrode active material is not particularly limited, but for example, lithium, sodium, potassium, magnesium, barium, and aluminum are preferably used, and among them, lithium is most preferred. The light metal that is the negative electrode active material may be in the form of a plate, and in practice, light metal foil, light metal plate, light metal fiber mesh, etc. are usually used, and the thickness thereof is usually about 1 to 5000 μm, preferably 20 μm. ~2000 μm.

また、軽金属塩には特に制限は々いが、代表例としては
、LiC1、LiCl0a、LiBF4、LiPF5、
LiAsFa、Li5bFs、NaCX、NaBF4、
Na PF a、Na S bF a、KCl0a、K
BF4、KPF6、KSbFa、Mg((JOn)2、
 およびLIAIC14などを挙げることができる。就
中、リチウム金属塩が好ましい。これらの金属塩は通常
、単独で使用されるが、二種類以上混合して使用するこ
とができしうる有機溶媒であればよいが、非プロトン性
でかつ高誘電率の有機溶媒が好ましく、たとえばプ・ロ
ビレンカーボネート、r−ブチロラクトン、ジメチルホ
ルムアマイド、ジメチルスルフオキシド、アセトニトリ
ル、エチレンカーボネート、テトラヒドロフラン、ジメ
トキシエタン、メチルフォーメイトおよびジクロロエタ
ン等がある。これらの有機溶媒は、一種類又は二種類以
上の混合溶媒として用いても良い。用いる電池の型式又
は用いる電極の種類によっては、これらの有機溶媒中の
酸素や水またはプロトン性溶媒等の不純物が電池の特性
を低下させる場合があるので、そのような不純物が有機
溶媒に混入されている場合には、これらの有機溶媒を常
法により予め精製しておくことが好ましい。なお溶液の
軽金属塩の濃度は実用上、通常は0゜1〜1.5モル/
l程度とされる。
Although there are no particular restrictions on light metal salts, representative examples include LiCl, LiCl0a, LiBF4, LiPF5,
LiAsFa, Li5bFs, NaCX, NaBF4,
Na PF a, Na S bF a, KCl0a, K
BF4, KPF6, KSbFa, Mg((JOn)2,
and LIAIC14. Among these, lithium metal salts are preferred. These metal salts are usually used alone, but any organic solvent that can be used in combination of two or more types may be used, but aprotic and high dielectric constant organic solvents are preferable. Examples include propylene carbonate, r-butyrolactone, dimethylformamide, dimethyl sulfoxide, acetonitrile, ethylene carbonate, tetrahydrofuran, dimethoxyethane, methyl formate, and dichloroethane. These organic solvents may be used alone or as a mixed solvent of two or more. Depending on the type of battery used or the type of electrode used, impurities such as oxygen, water, or protic solvents in these organic solvents may deteriorate the battery characteristics. In the case where such organic solvents are used, it is preferable to purify these organic solvents in advance by a conventional method. In addition, the concentration of the light metal salt in the solution is practically 0°1 to 1.5 mol/
It is said to be about 1.

セパレータとしては、合成樹脂繊維製の不織布および織
布、ガラス繊維製の不織布および織布ガらびに天然繊維
製の不織布および織布などが使用される。この合成樹脂
としては、たとえば、ポリエチレン、ポリプロピレンお
よびポリ四ふつ化エチレン等がある。セパレータの厚さ
も一概に特定しえないが、必要量の電解液(軽金属塩の
有機溶媒溶液 以下同様)を含有保持することができ、
かつ正極と負極との短絡を防ぐに必要な厚さであればよ
く、実用上、通常は0、05〜10mm%好ましくは0
.1〜2xm程度とされる。
As the separator, nonwoven fabrics and woven fabrics made of synthetic resin fibers, nonwoven fabrics and woven fabrics made of glass fibers, nonwoven fabrics and woven fabrics made of natural fibers, and the like are used. Examples of this synthetic resin include polyethylene, polypropylene, and polytetrafluoroethylene. Although the thickness of the separator cannot be determined unconditionally, it is capable of containing and retaining the required amount of electrolyte (organic solvent solution of light metal salt).
The thickness may be as long as it is necessary to prevent a short circuit between the positive electrode and the negative electrode, and for practical purposes, it is usually 0.05 to 10 mm%, preferably 0.
.. It is said to be about 1 to 2xm.

本発明の電池において、従来のコイン型電池などと同様
に集電体を使用することができ、かつ好ましい。集電体
は従来のコイン型電池で使用されている集電体を使用し
うる。すなわち、電解液ならびに正極および負極活物質
のそれぞれに対し電気化学的に不活性な導体が用いられ
る。たとえば、白金、金、パラジウム、ニッケル、ステ
ンレス#1カどの金属の板、箔および網、酸化インジウ
ムおよび酸化スズなどの酸化被膜を有するガラスおよび
プラスチック板、ならびに活性炭、グラファイト、アセ
チレンブラックおよび炭素繊維等の炭素類を種々の形態
−たとえば板、網、織布および不織布など−で使用する
ことができる。正負画集電体は互いに異なる材質でもよ
く、また互いに同じ材質でもよい。
In the battery of the present invention, it is possible and preferable to use a current collector as in conventional coin-type batteries. As the current collector, a current collector used in conventional coin-type batteries can be used. That is, an electrochemically inactive conductor is used for each of the electrolytic solution and the positive and negative electrode active materials. For example, metal plates, foils and meshes such as platinum, gold, palladium, nickel and stainless #1, glass and plastic plates with oxide coatings such as indium oxide and tin oxide, activated carbon, graphite, acetylene black and carbon fiber, etc. The carbons can be used in a variety of forms, such as plates, nets, woven and non-woven fabrics, etc. The positive and negative image current collectors may be made of different materials or may be made of the same material.

また、その厚さはO’、001〜101111程度、好
ましくは0.01〜511とされる。
Further, the thickness thereof is O', about 001 to 101111, preferably 0.01 to 511.

本発明の千千〇電池の構造は従来の有機電解質電池と同
様であるが、その−例の原理的構造を第1図に示す。す
表わち、第1図は本発明の電池をコイン型電池とした例
の原理的構造を示すための断面図であって、負極活物質
1の一面に負極集電体2が圧着されており、また負極活
物質1の他の面にはセパレーター6、正極4および正極
集電体5が順次圧着されている。しかして、負極集電体
2および正極集電体5は、リード線6および61にそれ
ぞれ接続されている。
The structure of the 1,000 cell of the present invention is similar to that of a conventional organic electrolyte cell, and the basic structure of an example thereof is shown in FIG. That is, FIG. 1 is a cross-sectional view showing the basic structure of an example of a coin-type battery according to the present invention, in which a negative electrode current collector 2 is crimped onto one surface of a negative electrode active material 1. In addition, a separator 6, a positive electrode 4, and a positive electrode current collector 5 are sequentially pressure-bonded to the other surface of the negative electrode active material 1. Thus, the negative electrode current collector 2 and the positive electrode current collector 5 are connected to the lead wires 6 and 61, respectively.

なお、このコイン型電池はテフロン(商品名)製容器に
収納されてその特性が測定された。
Note that this coin-type battery was housed in a container made of Teflon (trade name), and its characteristics were measured.

〔実施例〕〔Example〕

以下の実施例により本発明をさらに具体的に説明する。 The present invention will be explained in more detail with reference to the following examples.

実施例 1 第1図において、負極活物質1はリチウム金属薄板(厚
さ0.05crIt、直径2.6cIn)、負極集電体
2はステンレス製薄板(厚さ0.1傭、直径2,6α)
、セパレーター3はガラス繊維製不織布(厚さ0.02
(m、直径2.6crIl)に、蒸留脱水したプロピレ
ンカーボネートとエチレンカーボネートとの混合溶媒(
容積比1:4)に溶解した過塩素酸リチウム溶液(過塩
素酸リチウムの濃度1モル/11’)を含浸させた物で
ある。正極4は日本イー・シー■製ケッチェンブラック
(平均粒子径5[10A)10.51!9をベンゼン5
WLtに分散させた懸濁液を導電性多孔体クレカペーパ
ー E−704、厚さ0.03cIrL1直径2.6c
rIl1重量18■)の片面より吸引しながら均一にな
るよ、うに流し込んだのち減圧乾燥して得られた複合体
および正極集電体5は負極集合体2と同じステンレス製
薄板であるコイン型リチウム電池を得た。
Example 1 In FIG. 1, the negative electrode active material 1 is a lithium metal thin plate (thickness 0.05crIt, diameter 2.6cIn), and the negative electrode current collector 2 is a stainless steel thin plate (thickness 0.1cm, diameter 2.6α). )
, the separator 3 is made of glass fiber nonwoven fabric (thickness 0.02
(m, diameter 2.6crIl), a mixed solvent of distilled and dehydrated propylene carbonate and ethylene carbonate (
This is a product impregnated with a lithium perchlorate solution (concentration of lithium perchlorate: 1 mol/11') dissolved in a volume ratio of 1:4. The positive electrode 4 is Ketjenblack (average particle size 5 [10A) 10.51!9 manufactured by Nippon EC ■] and benzene 5
The suspension dispersed in WLt was coated with conductive porous material Creca Paper E-704, thickness 0.03cIrL1 diameter 2.6c.
The composite and the positive electrode current collector 5 are made of coin-shaped lithium, which is the same stainless steel thin plate as the negative electrode assembly 2. Got the battery.

このようにして作製したリチウム電池の初期開路電圧は
3,08Vであった。4.7にΩの定負荷放電を行った
ところ、エネルギー密度と放電圧との関係は第2図の曲
線ωのようになった。このとき放電電圧が2.0■に低
下するまでの平均開路電圧は2.59V、正極(炭素系
物質であるケッチェンブラックと導電性多孔体である炭
素繊維との和−以下同様)IKfあたりの放電容量は4
05.3Ah贋、エネルギー密度はI O44,5Wh
/Kfであった。
The initial open circuit voltage of the lithium battery thus produced was 3.08V. When a constant load discharge of Ω was carried out in 4.7, the relationship between energy density and discharge voltage was as shown by the curve ω in Fig. 2. At this time, the average open circuit voltage until the discharge voltage drops to 2.0■ is 2.59V, per positive electrode (the sum of Ketjenblack, which is a carbon-based material, and carbon fiber, which is a conductive porous material - the same applies hereafter) IKf. The discharge capacity of is 4
05.3Ah fake, energy density is IO44.5Wh
/Kf.

第2図の曲線(b)は市販のふつ化黒鉛−リチウム電池
の、そして曲線(C)は市販の二酸化マンガン−リチウ
ム電池のエネルギー密度と放電電圧との関係を示してい
る。
Curve (b) in FIG. 2 shows the relationship between energy density and discharge voltage for a commercially available fluorinated graphite-lithium battery, and curve (C) for a commercially available manganese dioxide-lithium battery.

この結果から、本発明の+チ今咄電池は明らかに正極単
位重量あたりのエネルギー密度は市販品の約2倍であり
、また放電電圧の平坦性も優れていることがわかる。
From these results, it can be seen that the positive electrode battery of the present invention clearly has an energy density per unit weight of the positive electrode that is approximately twice that of a commercially available product, and also has excellent discharge voltage flatness.

比較例 1 正極4としてケッチェンブラック 10M9のみを用い
た他は実施例1と同様にして電池を作製した。この電池
の初期開路電圧は2,92V。
Comparative Example 1 A battery was produced in the same manner as in Example 1 except that only Ketjenblack 10M9 was used as the positive electrode 4. The initial open circuit voltage of this battery is 2,92V.

4.7にΩの定負荷放電時における放電電圧が2、Ov
に低下するまでの平均開路電圧は2゜36v1正極1K
gあたりの放電容量は19.8Ah/Kg、エネルギー
密度は46.7wh西であった。
In 4.7, the discharge voltage during constant load discharge of Ω is 2, Ov.
The average open circuit voltage until it drops to 2°36v1 positive electrode 1K
The discharge capacity per gram was 19.8 Ah/Kg, and the energy density was 46.7 wh.

比較例 2 正極4として炭素繊維成形品(商品名:クレ力ペーパー
 E−704)18〜のみを用いた他は実施例1と同様
にしてリチウム電池を作・             
               −17−製した。この
リチウム電池の初期開路電圧は2゜62V、4,7にΩ
の定負荷放電時における放電電圧が2.Ovに低下する
までの平均開路電圧は2,15V、正極IKfあた9の
放電容量は3、OAh/Kl、エネルギー密度は6.5
wh^であった。
Comparative Example 2 A lithium battery was produced in the same manner as in Example 1, except that only the carbon fiber molded product (trade name: Kureriki Paper E-704) 18~ was used as the positive electrode 4.
-17- Manufactured. The initial open circuit voltage of this lithium battery is 2°62V, 4.7Ω
The discharge voltage during constant load discharge is 2. The average open circuit voltage until it drops to Ov is 2.15V, the discharge capacity of the positive electrode IKf is 3, OAh/Kl, and the energy density is 6.5.
It was wh^.

実施例 2 正極4を電気化学■製アセチレンブラック(平均粒子径
420A)10■と炭素繊維成形品(商品名:クレカペ
ーパー E−704)18ダとからつくった複合体とし
た他は実施例1と同様にしてリチウム電池を作製した。
Example 2 Example 1 except that the positive electrode 4 was a composite made of 10 mm of acetylene black (average particle size 420 A) manufactured by Electrochemical ■ and 18 mm of carbon fiber molded product (trade name: KUREKA PAPER E-704). A lithium battery was produced in the same manner as above.

このリチウム電池の初期開路電圧は2.89V、4.7
にΩの定負荷放電時における放電電圧が2.OVに低下
するまでの平均開路電圧は2.24V。
The initial open circuit voltage of this lithium battery is 2.89V, 4.7
The discharge voltage during constant load discharge of Ω is 2. The average open circuit voltage until it drops to OV is 2.24V.

正極IKfあたシの放電容量は121.4Ah^、エネ
ルギー密度は271.9Wh/Kfであった。
The discharge capacity of the positive electrode IKf was 121.4 Ah^, and the energy density was 271.9 Wh/Kf.

比較例 3 正極4として電気化学■製アセチレンブラック(平均粒
子径420A)101119のみを用いた他は実施例1
と同様にしてリチウム電池を作製した。このリチウム電
池の初期開路電圧は2゜90V、4.7にΩの定負荷放
電時における放電電圧が2.Ovに低下するまでの平均
開路電圧は2.32V、正極1Kfあたりの放電容量は
12.6Ah/にへ エネルギー密度は29.2wh/
初であった。
Comparative Example 3 Example 1 except that only acetylene black (average particle size 420A) 101119 manufactured by Denki Kagaku ■ was used as the positive electrode 4.
A lithium battery was produced in the same manner as above. The initial open circuit voltage of this lithium battery is 2°90V, and the discharge voltage during constant load discharge of 4.7Ω is 2.90V. The average open circuit voltage until it drops to Ov is 2.32V, the discharge capacity per 1Kf of positive electrode is 12.6Ah/Energy density is 29.2Wh/
It was the first time.

実施例 3 正極4を旭カーボン■製ファーネスブラックH3−50
0(平均粒子径760A)10119と炭素繊維成形品
(商品名:クレ力ペーパー E−704)18■とから
つくった複合体とした他は実施例1と同様にしてリチウ
ム電池を作製した。このリチウム電池の初期開路電圧は
2゜92V、4,7にΩの定負荷放電時における、放電
電圧が2.Ovに低下するまでの平均開路電圧は2.3
8V、正極1Kfあたりの放電容量は277.9Ah/
獣 エネルギー密度は662゜5wh/Kf であった
Example 3 The positive electrode 4 was Asahi Carbon Furnace Black H3-50.
A lithium battery was produced in the same manner as in Example 1, except that a composite was made from 10119 (average particle diameter: 760 A) and 18 cm of a carbon fiber molded product (trade name: Kureriki Paper E-704). The initial open circuit voltage of this lithium battery is 2°92V, and the discharge voltage during constant load discharge of 4.7Ω is 2.92V. The average open circuit voltage until it drops to Ov is 2.3
8V, discharge capacity per 1Kf of positive electrode is 277.9Ah/
The energy density of the beast was 662°5w/Kf.

実施例 4 正極4の導電性多孔体として東し■製炭素繊維成形品(
商品名:トレカマット、厚さ0.02cIIL1直径2
.6Cm)16109を使用した他は実施例1と同様に
してリチウム電池を作製した。
Example 4 As a conductive porous body for the positive electrode 4, a carbon fiber molded product manufactured by Toshi
Product name: Trading card mat, thickness 0.02cIIL1 diameter 2
.. A lithium battery was produced in the same manner as in Example 1 except that 6Cm) 16109 was used.

このリチウム電池の初期開路電圧3.08V。The initial open circuit voltage of this lithium battery is 3.08V.

4.7にΩの定負荷放電時における放電電圧が2、Ov
に低下するまでの平均開路電圧は2゜s 8 V、 正
極I KghftA)ノ放電容*2 B 8. 9Ah
/Kg、エネルギー密度は745,4wh/匂であった
In 4.7, the discharge voltage during constant load discharge of Ω is 2, Ov.
The average open circuit voltage until it drops to 2゜s 8 V, positive electrode I KghftA) no discharge capacity *2 B 8. 9Ah
/Kg, and the energy density was 745.4 wh/odor.

実施例 5 正極4を、比表面積967.5m’/gの日本イー・シ
ー■製のケッチェンブラックの8.5学顕微鏡で鎖状構
造を有していることを確認)のち、これを呉羽化学■製
炭素繊維成形品(商品名:クレカペーパー E−704
、厚さ0゜03cIn、直径2.6cIIL1118■
)の片面より吸引しながら均一になるように流し込み、
減圧乾燥して得られた複合体とした他は実施例1と同様
にしてリチウム電池を作製した。
Example 5 It was confirmed that the positive electrode 4 had a chain structure using a Ketjen Black 8.5 microscope (manufactured by Nippon EC) with a specific surface area of 967.5 m'/g), and then it was examined using a Kureha test. Chemically manufactured carbon fiber molded product (product name: KUREKA PAPER E-704
, thickness 0゜03cIn, diameter 2.6cIIL1118■
) Pour it evenly while suctioning from one side of the
A lithium battery was produced in the same manner as in Example 1, except that the composite was obtained by drying under reduced pressure.

このようにして作製したリチウム電池の初期開路電圧は
5.08V、4.7にΩの定負荷放電を行ったところ、
エネルギー密度と放電電圧との関係は第5図の曲線(d
)のようになった。この時、放電電圧が2.Ovに低下
するまでの平均開路電圧は2.62V、正極IKgあた
りの放電容量534.5Ah/Kg、エネルギー密度は
1’s99.4WkV’l14であった。
The initial open circuit voltage of the lithium battery produced in this way was 5.08V, and when a constant load discharge of 4.7Ω was performed,
The relationship between energy density and discharge voltage is shown by the curve (d
) became like this. At this time, the discharge voltage is 2. The average open circuit voltage until it decreased to Ov was 2.62V, the discharge capacity per IKg of positive electrode was 534.5Ah/Kg, and the energy density was 1's99.4WkV'l14.

実施例 6〜8 ケッチェンブラックの超音波処理時間を第1表に示した
時間とした以外は、実施例5と同様にしてリチウム電池
を作製し放電実験を行った。
Examples 6 to 8 Lithium batteries were prepared in the same manner as in Example 5, except that the ultrasonic treatment time of Ketjen black was changed to the time shown in Table 1, and a discharge experiment was conducted.

その結果を第1表に示す。The results are shown in Table 1.

第1表 ☆ 放電電圧が2.Ovに低下するまでの値☆☆ 正極
1−あたりの値 実施例 9 正極4を、比表面積1,400dl&の活性炭素粉末 
18,5119をベンゼン smlに分散させた懸濁液
を東し■製炭素繊維成形品(商品名:トレカマット、厚
さ0.02CIll、直径2゜6crn1重量16■)
の片面より吸引しながら均一にカるように流し込んだの
ち減圧乾燥して形成して得られた複合体としたほかは実
施例1と同様にしてリチウム電池を作製した。
Table 1 ☆ Discharge voltage is 2. Value until it decreases to Ov ☆☆ Value per positive electrode 1 Example 9 Positive electrode 4 was made of activated carbon powder with a specific surface area of 1,400 dl
A suspension of 18,5119 dispersed in benzene sml was made into a carbon fiber molded product (trade name: trading card mat, thickness 0.02 CIll, diameter 2°6 crn 1 weight 16 cm).
A lithium battery was produced in the same manner as in Example 1, except that the composite was formed by pouring the mixture into a uniform layer while suctioning from one side of the mixture and drying under reduced pressure.

このようにして作製したリチウム電池の初期開路電圧は
3,18Vであった。つづいて4゜7にΩの定負荷放電
を行ったところ、エネルギー密度と放電電圧との関係は
第4図の曲線(e)のようになった。この時、放電電圧
が2.OOVまで低下するまでの平均開路電圧は2.S
IV。
The initial open circuit voltage of the lithium battery thus produced was 3.18V. Subsequently, when a constant load discharge of Ω was performed at 4°7, the relationship between energy density and discharge voltage became as shown by curve (e) in FIG. 4. At this time, the discharge voltage is 2. The average open circuit voltage until it drops to OOV is 2. S
IV.

正極1恥あたりの放電容、、!249.1 Ah/匂、
エネルギー密度650.6wh/に4 であった。
Discharge capacity per positive electrode,,! 249.1 Ah/odor,
The energy density was 650.6 wh/4.

比較例 4 正極4として比表面#1,4oom/、Sjの活性炭素
粉末 18.5■のみを用いた他は実施例9と同様にし
て電池を作成した。この電池の初期開路電圧は3.OO
V、4.7KOの定負荷放電時における放電電圧が2.
OVに低下するまでの平均開路電圧は2,55V、正極
1Kgあたりの放電容量は66.5All/に9%エネ
ルギー密度は95.Owh/′Kgであった。エネルギ
ー密度と放電電圧との関係を第4図の曲線(f)で示す
Comparative Example 4 A battery was prepared in the same manner as in Example 9, except that only activated carbon powder with a specific surface of #1,4oom/, Sj, 18.5cm was used as the positive electrode 4. The initial open circuit voltage of this battery is 3. OO
The discharge voltage during constant load discharge of V, 4.7KO is 2.
The average open circuit voltage until it drops to OV is 2.55V, the discharge capacity per 1kg of positive electrode is 66.5All/, and the 9% energy density is 95. Owh/'Kg. The relationship between energy density and discharge voltage is shown by curve (f) in FIG.

比較例 5 正極4として東し■製炭素繊維成形品(商品名:トレカ
マット、厚さo、o2cIIL1重量16■)のみを用
いた他は実施例1と同様にしてリチウム電池を作製した
。このリチウム電池の初期開路電圧は2,82V14,
7にΩの定負荷放電時における放電電圧が2.Ovに低
下するまでの平均開路電圧は2.41V、正極1Kgあ
たりの放電容量は1 、 2 Ah、/に6  エネル
ギー密度は2.9wh/Kg であった。
Comparative Example 5 A lithium battery was produced in the same manner as in Example 1, except that only a carbon fiber molded product manufactured by Toshishi (trade name: Trading Mat, thickness o, o2cIIL1 weight 16cm) was used as the positive electrode 4. The initial open circuit voltage of this lithium battery is 2,82V14,
7, the discharge voltage during constant load discharge of Ω is 2. The average open circuit voltage until it decreased to Ov was 2.41 V, the discharge capacity per kg of positive electrode was 1.2 Ah, and the energy density was 2.9 wh/Kg.

〔発明の効果〕〔Effect of the invention〕

本発明電池は、炭素系物質を導電性多孔体に附着担持さ
せた複合体を正極とすることによって、正極単位重量あ
たシのエネルギー密度が非常に高く、放電電圧が高く、
また長期にわたって高い放電電圧を維持しうるというす
ぐれた電池特性を有し、かつ公害上および資源回収の問
題はなく、シかも安価である。
The battery of the present invention has an extremely high energy density per unit weight of the positive electrode, a high discharge voltage, and
In addition, it has excellent battery characteristics in that it can maintain a high discharge voltage for a long period of time, has no problems with pollution or resource recovery, and is inexpensive.

【図面の簡単な説明】 第1図は本発明の電池の一例の原理的構造を示すための
断面図であり、第2〜4図は電池特性を示すグラフであ
る。 第1図において 1・・・負極活物質 2・・・負極集電体 3・・・セ
パレータ 4・・・正極 5・・・正極集電体 6.6
1・・・・・リード線 特許出願人  三菱瓦斯化学株式会社 代表者長野和吉
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the basic structure of an example of the battery of the present invention, and FIGS. 2 to 4 are graphs showing battery characteristics. In FIG. 1, 1... Negative electrode active material 2... Negative electrode current collector 3... Separator 4... Positive electrode 5... Positive electrode current collector 6.6
1... Lead wire patent applicant Kazuyoshi Nagano, representative of Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 軽金属を活物質とする負極、軽金属塩の有機溶媒溶液を
含浸させたセパレーターおよび正極を使用した有機電解
質電池において、正極が炭素系物質を導電性多孔体に附
着担持させた複合体であることを特徴とする電池。
In an organic electrolyte battery using a negative electrode containing a light metal as an active material, a separator impregnated with an organic solvent solution of a light metal salt, and a positive electrode, the positive electrode is a composite in which a carbon-based material is attached and supported on a conductive porous body. Characteristic batteries.
JP60056618A 1985-03-20 1985-03-20 Cell Pending JPS61216243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056618A JPS61216243A (en) 1985-03-20 1985-03-20 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056618A JPS61216243A (en) 1985-03-20 1985-03-20 Cell

Publications (1)

Publication Number Publication Date
JPS61216243A true JPS61216243A (en) 1986-09-25

Family

ID=13032256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056618A Pending JPS61216243A (en) 1985-03-20 1985-03-20 Cell

Country Status (1)

Country Link
JP (1) JPS61216243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
WO2011048753A1 (en) * 2009-10-20 2011-04-28 パナソニック株式会社 Lithium primary battery
JP2021009848A (en) * 2013-11-08 2021-01-28 株式会社半導体エネルギー研究所 Power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
WO2011048753A1 (en) * 2009-10-20 2011-04-28 パナソニック株式会社 Lithium primary battery
JP2021009848A (en) * 2013-11-08 2021-01-28 株式会社半導体エネルギー研究所 Power storage device

Similar Documents

Publication Publication Date Title
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
CN102324317B (en) Electrode for flexible solid super capacitor and preparation method thereof
JP2002203542A (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery including the same
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
Tang et al. Factors of kinetics processes in lithium–sulfur reactions
CN110176591A (en) A kind of preparation method of water system zinc ion secondary cell and its anode based on organic electrode materials
KR19980070935A (en) An electrode structure, a secondary battery provided with the electrode structure, and a method of manufacturing the electrode structure and the secondary battery
KR20100137486A (en) Mesoporous materials for electrodes
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
CN110800135B (en) Electrode and lithium secondary battery comprising the same
CN109110818A (en) It is a kind of two dimension molybdenum disulfide, tungsten disulfide thin slice electrochemical preparation method
KR102507331B1 (en) Sulfur-carbon material composite, positive electrode material for lithium sulfur secondary battery and lithium sulfur secondary battery
CN109638289A (en) A kind of preparation method and application of new type lithium ion battery conductive additive carbonization silk
JP2008192758A (en) Electrode for electric double-layer capacitor
JP4973892B2 (en) Capacitors
CN109461914A (en) A kind of preparation method of vanadic anhydride nanometer sheet and graphene composite material
JP4973882B2 (en) Capacitors
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JPH10321216A (en) Lithium secondary battery positive electrode body and secondary battery using the same
JP5565114B2 (en) Capacitor using porous metal
JPS61216243A (en) Cell
CN109360739B (en) Preparation method of nickel/nickel oxide loaded carbon nanofiber electrode material
JP2001229917A (en) Method of producing negative electrode
JPS63102166A (en) Secondary battery
CN110610817A (en) Based on Mn3O4Supercapacitor made of graphene composite material and preparation method of supercapacitor