JPS61216221A - Impregnated type cathode and its manufacture - Google Patents

Impregnated type cathode and its manufacture

Info

Publication number
JPS61216221A
JPS61216221A JP60056020A JP5602085A JPS61216221A JP S61216221 A JPS61216221 A JP S61216221A JP 60056020 A JP60056020 A JP 60056020A JP 5602085 A JP5602085 A JP 5602085A JP S61216221 A JPS61216221 A JP S61216221A
Authority
JP
Japan
Prior art keywords
electron
cathode
impregnated
heater
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056020A
Other languages
Japanese (ja)
Inventor
Toshiharu Higuchi
敏春 樋口
Daisuke Miyazaki
大輔 宮崎
Eiji Yamamoto
栄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60056020A priority Critical patent/JPS61216221A/en
Publication of JPS61216221A publication Critical patent/JPS61216221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To prevent evaporation and electron radiation of an electron radioactive substance from portions other than the electron radiating surface so as to acquire an impregnated type cathode with a long service life and a high reliability, by covering the side of the cathode base in an impregnated type cathode formed with a heater container in which a heater is buried. CONSTITUTION:The side of a porous metallic base 21 with a high melting point is processed to seal the pores, combined with a heater container 15, pasted with a brazing material 17a to contact them, then a ring form brazing material 16a is attached to the side of the metallic base 21, and these brazing materials are melted. After that, excessive brazing materials over the side of the metallic base 21 are removed. Then a heater 4 is buried in the heater container 15, and an electron radioactive substance is impregnated to the metallic base 21. In such a way, the side of the cathode base 10 is covered with an elaborate covering layer 16, and, evaporation of the electron radioactive substance from portions other than the electron radiating surface 6 can be reduced broadly, a long service life of the cathode can be maintained, and, at the same time, generation of an inner discharge owing to an attachment of electron radio0active substance can be controlled.

Description

【発明の詳細な説明】 (発明の技術分野〕 この発明は、特に高信頼性が要求される進行波管やクラ
イストロンなどの電子管に好適な含浸型陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an impregnated cathode suitable for electron tubes such as traveling wave tubes and klystrons that particularly require high reliability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

人工衛星などに搭載される高出力進行波管など。 High-power traveling wave tubes installed in artificial satellites, etc.

には、高電流密度特性の要望から含浸型陰極が用いられ
ている。この含浸型陰極に対する要求は、まず第1に長
寿命であること、この寿命を保証するためには、陰極の
寿命が主に電子放射物質の蒸発によってきまるため、不
要な蒸発を極力避けるように構成しなければならない。
Impregnated cathodes are used in order to achieve high current density characteristics. The first requirement for this impregnated cathode is that it has a long lifespan.In order to guarantee this lifespan, the lifespan of the cathode is mainly determined by the evaporation of the electron emitting material, so unnecessary evaporation must be avoided as much as possible. must be configured.

第2に高信頼性であること、長寿命を期待するためには
、製作される陰極の品質が十分保証できるものでなけれ
ばならず、電子放射物質が電子管の他の電極や外囲器な
どに付着して、放電現象などをおこさないよ゛うに構成
することが必要である。
Second, in order to expect high reliability and long life, the quality of the manufactured cathode must be sufficiently guaranteed. It is necessary to configure the structure so that it does not adhere to the surface and cause discharge phenomena.

しかしながら従来の含浸型陰極は、第4図に示すように
、タングステン粉末を焼結して得られた多孔質の金属基
体にBaO,CaO,AQ、0.などからなる電子放射
物質を含浸させた陰極基体■の側面に、モリブデンなど
の高融点金属からなるヒータ容器■をモリブデン・ルテ
ニウム合金からなる高融点ろう材■で接合し、このヒー
タ容器■内に、ヒータ(へ)をアルミナ粉末を焼結して
構成した耐熱絶縁性の埋込剤■中に埋設した構造に形成
されており、陰極基体(υの側面の大部分が露出してい
る。
However, the conventional impregnated cathode, as shown in FIG. 4, is a porous metal substrate obtained by sintering tungsten powder and is coated with BaO, CaO, AQ, and 0.00%. A heater container ■ made of a high-melting point metal such as molybdenum is bonded to the side surface of a cathode substrate ■ impregnated with an electron-emitting substance made of a metal such as molybdenum with a high-melting point brazing material ■ made of a molybdenum-ruthenium alloy. The heater is embedded in a heat-resistant insulating embedding agent made of sintered alumina powder, and most of the sides of the cathode substrate (υ) are exposed.

そのため、金属基体中に含浸した電子放射物質が電子管
動作上必要な電子放射面0以外に、この陰極基体(υの
側面からも蒸発する。ちなみに図示形状の一例では、陰
極基体(1)の露出面は、電子数゛ 射面0が23%、
側面が77%を占め、この側面から大量の電子放射物質
が蒸発して、陰極寿命を短かくしていた。またこの側面
から大量に蒸発した電子放射物質が電子管の他の電極や
外囲器内面に付着して管内放電をおこす欠点があった。
Therefore, the electron emitting substance impregnated into the metal base evaporates from the side surface of this cathode base (υ) in addition to the electron emission surface 0 necessary for electron tube operation.Incidentally, in the example of the illustrated shape, the cathode base (1) is The surface is the number of electrons, and the incident surface 0 is 23%,
The side surfaces accounted for 77%, and a large amount of electron-emitting material evaporated from these sides, shortening the life of the cathode. Another disadvantage is that a large amount of electron-emitting material evaporated from this side surface adheres to other electrodes of the electron tube and the inner surface of the envelope, causing discharge within the tube.

さらにまた、上記のように電子放射面0以外が露出して
いると、この部分から異常電子が放射され、電子管動作
に異常が発生する欠点があった。すなわち、電子放射面
0から放射される電子は、層流状に運動してコレクタ電
極に流れ込むが、側面から放射された電子は、層流状に
は運動せず、異常電子となってアノード電極やヘリック
ス電極に流れ込み、増幅効率の低下や異状ガス放出をお
こし、電子管動作に弊害を与える。
Furthermore, if a portion other than the electron emitting surface 0 is exposed as described above, abnormal electrons are emitted from this portion, resulting in an abnormality in the operation of the electron tube. In other words, electrons emitted from the electron emission surface 0 move in a laminar flow and flow into the collector electrode, but electrons emitted from the side face do not move in a laminar flow and become abnormal electrons and flow into the anode electrode. and the helix electrode, causing a decrease in amplification efficiency and the release of abnormal gases, which harm the operation of the electron tube.

〔発明の目的〕[Purpose of the invention]

この発明は、電子放射面以外からの電子放射物質の蒸発
および電子放射を阻止して、長寿命かつ高信頼性の含浸
型陰極を構成することを目的とする。
An object of the present invention is to prevent evaporation of an electron-emitting substance and electron emission from a surface other than the electron-emitting surface, thereby constructing a long-life and highly reliable impregnated cathode.

〔発明の概要〕[Summary of the invention]

高融点多孔質金属基体の空孔部に電子放射物質を含浸さ
せ、一端面を電子放射面とする陰極基体の他□端面側に
ヒータ容器が取り付けられ、このヒータ容器内にヒータ
が埋設された構造の含浸型陰極において、上記陰極基体
の側面を被覆することにより、−極基゛体側面からの電
子放射物質の蒸発や電子放射を阻止するように構成した
The pores of a high melting point porous metal base are impregnated with an electron emitting substance, one end surface is used as an electron emitting surface, and in addition to the cathode base, a heater container is attached to the end surface side, and a heater is embedded in this heater container. In the impregnated cathode structure, the side surfaces of the cathode substrate are coated to prevent evaporation of the electron emitting substance and electron emission from the side surfaces of the cathode substrate.

またこの含浸型陰極の製造に際し、高融点多孔質金属基
体の側面を封孔処理したのち、この金属基体の側面に高
融点ろう材からなるリング状ろう材を装着し、このリン
グ状ろう材を溶融して上記金属基体の側面を被覆したの
ち、余剰のろう材を除去して所要の被覆層に仕上げるこ
とにより、所要の含浸型陰極を容易に製作しうるように
したものである。
In addition, when manufacturing this impregnated cathode, after sealing the side surface of the high melting point porous metal substrate, a ring-shaped brazing material made of a high melting point brazing material is attached to the side surface of this metal substrate. After melting and coating the side surfaces of the metal substrate, the excess brazing material is removed to form the desired coating layer, thereby making it possible to easily manufacture the desired impregnated cathode.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明を実施例に基づいて説明
する。
Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

第1図にこの発明の一実施例である含浸型陰極の構成を
示す。この陰極は、一端面を電子放射面■とする陰極基
体(10)”と゛、この陰極基体(10)の他端面側に
取り付けられたヒータ部(11)とを有する。
FIG. 1 shows the structure of an impregnated cathode which is an embodiment of the present invention. This cathode has a cathode base (10)'' whose one end surface is an electron emitting surface (1), and a heater portion (11) attached to the other end surface of this cathode base (10).

上記陰極基体(10)は、タングステンからなる高融点
多孔質金属基体の空孔部に、BaO,CaO,AQ20
゜からなる電子放射物質を含浸させたものであって、そ
の一端面の電子放射面0は凹球面状に形成され、他端面
側は上記一端面側より径小に゛形成されている。また、
上記電子放射面0に近い側面には、環状溝(13)が設
けられている。
The cathode substrate (10) has BaO, CaO, AQ20, etc.
The electron emitting surface 0 on one end surface is formed into a concave spherical shape, and the other end surface side is formed to have a smaller diameter than the one end surface side. Also,
An annular groove (13) is provided on the side surface near the electron emitting surface 0.

ヒータ部(11)は、上記陰極基体(10)より径大に
形成され、かつ一端面中央部に、陰゛極基体(lO)の
他端面側に形成された径小部と嵌合する貫通孔およびこ
の貫通孔と同心状に陰極基体(10)の径大部とほぼ同
一直径の環状溝(14)が設けられたモリブデンからな
るヒータ容器(15)と、このヒータ容器(15)内に
配設されたヒータ(4)と、このヒータは)を埋設する
如く上記ヒータ容器(15)内に充填されたアルミナ粉
末からなる耐熱絶縁性の埋込剤0とから構成されている
The heater part (11) is formed to have a larger diameter than the cathode base (10), and has a through hole in the center of one end surface that fits into a small diameter part formed on the other end surface of the cathode base (10). A heater container (15) made of molybdenum is provided with a hole and an annular groove (14) concentrically with the through hole and having approximately the same diameter as the large diameter portion of the cathode substrate (10); It consists of a heater (4) and a heat-resistant insulating embedding agent 0 made of alumina powder filled in the heater container (15) so as to embed the heater (4).

しかして上記陰極基体(10)の側面には、モリブデン
・ルテニウム合金からなる高融点ろう材の被覆層(16
)が設けられ、陰極基体(10)とヒータ部(11)と
は、陰極基体(10)の他端面に設けられたモリブデン
・ルテニウム合金からなるろう材(17)によりろう付
けされている。
However, on the side surface of the cathode substrate (10), there is a coating layer (16) of a high melting point brazing material made of a molybdenum-ruthenium alloy.
), and the cathode base (10) and heater section (11) are brazed to each other with a brazing material (17) made of a molybdenum-ruthenium alloy provided on the other end surface of the cathode base (10).

上記被覆層(16)の厚さは、この部分からの電子放射
物質の蒸発や異常電子の放射をなくすために0.01+
nm以上、またこの陰極基体(lO)の側面外方にウェ
ネルト電極が配置されるために、電子軌道設計上0.3
nwn以下に形成される。
The thickness of the coating layer (16) is set to 0.01+ to prevent evaporation of electron emitting substances and emission of abnormal electrons from this part.
nm or more, and since the Wehnelt electrode is placed outside the side surface of this cathode substrate (lO), the electron trajectory design requires 0.3 nm or more.
Formed below nwn.

なお、第1図において、(18)はとの含浸型陰極を破
線で示す支持筒(19)に支持させるための支持体であ
る。
In FIG. 1, (18) is a support for supporting the impregnated cathode on the support cylinder (19) shown by the broken line.

この含浸型陰極は、第2図にフローチャートで示すよう
に、高融点多孔質金属基体の側面を封孔処理して、これ
をヒータ容器(15)と組合せたのち、これら髪接合す
るためのろう材を塗布し、さらに金属基体の側面にリン
グ状ろう材を装着し、これらろう材を溶融したのち、上
記金属基体の側面に被着した余剰ろう材を除去する。し
かるのち、ヒータ容器(15)内にヒータ(イ)髪埋込
み、さらに金属基体に電子放射物質を含浸させることに
より製作される。以下この製造方法をさらに詳細に説明
する。
As shown in the flowchart in Figure 2, this impregnated cathode is manufactured by sealing the side surfaces of the high melting point porous metal substrate and combining it with the heater container (15). After applying a ring-shaped brazing filler metal to the side surface of the metal substrate and melting the brazing filler metal, excess brazing filler metal adhering to the side surface of the metal substrate is removed. Thereafter, the heater (a) is embedded in the heater container (15), and the metal base is further impregnated with an electron emitting substance to produce the heater. This manufacturing method will be explained in more detail below.

高融点多孔質の金属基体を製作するために、まず粒径が
3〜10摩のタングステン粉末を棒状に圧縮成形したの
ち、これを還元性雰囲気中で焼結する。その後、この焼
結体の切削加工を容易にするため、空孔部に銅を含浸し
、これを切削加工して、第3図(A)図に示すように、
一端面に凹球面状の電子放射面0、他端面側にヒータ容
器(15)と嵌合する径小部(20)、側面に環状溝(
13)をもつ所定形にする。しかるのち含浸した銅を硝
酸および水素炉などにより高温加熱して除去する。
In order to produce a high melting point porous metal substrate, first, tungsten powder with a particle size of 3 to 10 mm is compression molded into a rod shape, and then this is sintered in a reducing atmosphere. Thereafter, in order to facilitate cutting of this sintered body, copper is impregnated into the pores, and this is cut, as shown in FIG. 3(A).
A concave spherical electron emitting surface 0 on one end surface, a small diameter portion (20) that fits with the heater container (15) on the other end surface, and an annular groove (
13) into a predetermined form. Thereafter, the impregnated copper is removed by heating at a high temperature using nitric acid and a hydrogen furnace.

つぎにこの金属基体(21)の側面を、粒径が約10μ
sのアルミナ研磨紙で研磨して、金属基体の直径を所定
寸法に仕上げるとともに、この側面に開孔している空孔
を封孔する。
Next, the side surface of this metal base (21) is
The diameter of the metal substrate is finished to a predetermined size by polishing it with alumina abrasive paper of No. S, and the pores opened on the side surface of the metal substrate are sealed.

上記のように形成された金属基体に組合わされるヒータ
容器(15)は、モリブデン棒を切削加工して形成され
、(B)図に示すように、このヒータ容器(15)の一
端面に形成された貫通孔に金属基体(21)の径小部(
20)を嵌合して組立てられる。
The heater container (15) to be combined with the metal base formed as described above is formed by cutting a molybdenum rod, and as shown in FIG. The small diameter portion (
20) to be assembled.

つぎに(C)図に示すように、上記のように組立゛てら
れた金属基体(21)の他端面に、モリブデン・ルテニ
ウム合金からなるろう材(17a) (融点1950℃
)を塗布し、さらに(D)図に示すように、金属基体(
21)の側面に、プレス成形により形成されたモリ ゛
ブデン・ルテニウム合金からなるリング状ろう材(16
a)を装着する。このリング状ろう材(16a)は、上
記金属基体(21)の側面に装着したとき、その高さが
金属基体(21)の側面に形成された環状溝(13)よ
り低くなるように、また金属基体(21)への装着を容
易にし、かつ後述する溶融により所要の被覆層(16)
を容易に形成できるようにするため、金属基体(21)
の側面との間に全周にわたり約0.05mmの隙間がで
きる大きさに形成されている。
Next, as shown in FIG.
), and as shown in figure (D), coat the metal substrate (
A ring-shaped filler metal (16) made of molybdenum-ruthenium alloy formed by press forming is placed on the side surface of the
Attach a). The ring-shaped brazing filler metal (16a) is arranged so that, when attached to the side surface of the metal base (21), its height is lower than the annular groove (13) formed on the side surface of the metal base (21). The required coating layer (16) can be easily attached to the metal base (21) and can be melted as described below.
In order to easily form a metal substrate (21),
It is formed in such a size that there is a gap of about 0.05 mm around the entire circumference between the side surface and the side surface.

つぎに上記のように配置したろう材(16a) 、 (
17a)を水素雰囲気中で2100℃、数10秒間加熱
して、(E)図に示すように各ろう材(16a)、 (
17a)を溶融する。
Next, the brazing filler metal (16a), (
17a) in a hydrogen atmosphere at 2100°C for several tens of seconds, each brazing filler metal (16a), (
17a) is melted.

溶融したろう材(16b)は、金属基体(21)の側面
に形成された環状溝(13)に流入するが、この溝(1
3)によって電子放射面0への流入が阻止される。また
このろう材(16b)の一部はヒータ容器(15)の一
端面に形成された環状溝(14)にも流入するが、この
溝(14)によって、この溝(14)より内側に位置す
る金属基体面への流入が阻止される。また溶融したろう
材(17)は金属基体(21)の他端面を被覆するとと
もに、金属基体(21)とヒータ容器(15)との嵌合
部に流入してこれらを一体に接合する。
The molten brazing filler metal (16b) flows into the annular groove (13) formed on the side surface of the metal base (21);
3) prevents electrons from flowing into the emission surface 0. A part of this brazing material (16b) also flows into the annular groove (14) formed on one end surface of the heater container (15), but this groove (14) allows the brazing material (16b) to be located inside the groove (14). This prevents the metal from flowing into the surface of the metal substrate. Further, the molten brazing material (17) covers the other end surface of the metal base (21) and flows into the fitting portion between the metal base (21) and the heater container (15) to join them together.

つぎに(F)図に示すように、金属基体(21)の側面
を被覆するろう材(16b)をアルミナ製研削砥石で研
削して、余剰のろう材を除去し、所要の厚さの被覆層(
16)にする。
Next, as shown in FIG. layer(
16).

上記のように金属基体(21)とヒータ容器(15)と
を一体に接合したのち、このヒータ容器(15)内に、
コイリング成形されたヒータ(4)を挿入し、さらに、
たとえば平均粒径10Imと30μsのアルミナ粉末を
重量比で3ニアの割合で混合し、これに有機バインダを
加えて混練した埋込剤を充填して、上記ヒータ(4)を
埋込み、これを真空中で1800’C12時間加熱して
焼結させる。
After joining the metal base (21) and the heater container (15) together as described above, in this heater container (15),
A coiled heater (4) is inserted, and further,
For example, alumina powder with an average particle size of 10Im and 30μs is mixed at a weight ratio of 3Nia, an organic binder is added thereto, a kneaded embedding agent is filled, the heater (4) is embedded, and the mixture is vacuum-filled. Heat in a 1800'C for 12 hours to sinter.

しかるのちBaO,CaO9AQ、0.からなる電子放
射物質を水素雰囲気中で加熱して、上記金属基体(21
)の空孔部に溶融含浸させる。
After that, BaO, CaO9AQ, 0. The above metal substrate (21
) is melted and impregnated into the pores.

上記のように含浸型陰極を構成すると、陰極基体(10
)の側面が緻密な被覆層(16)によって被覆されるの
で、電子放射面0以外からの電子放射物質の蒸発を大幅
に減少させることができ、したがって、陰極を長寿命の
ものとすることができる。また電子放射物質の付着によ
る管内放電の発生を抑制することができる。また、電子
放射面0以外がらの電子放射をなくすことができるため
、増幅効率を増大させることができ、高寿命、かつ高性
能の陰極とすることができる。
When the impregnated cathode is constructed as described above, the cathode substrate (10
) is covered with a dense coating layer (16), the evaporation of the electron-emitting substance from areas other than the electron-emitting surface 0 can be significantly reduced, and therefore the cathode can have a long life. can. Furthermore, the occurrence of intraluminal discharge due to adhesion of electron emitting substances can be suppressed. Further, since electron emission from surfaces other than the electron emitting surface 0 can be eliminated, amplification efficiency can be increased, and a cathode with a long life and high performance can be obtained.

また製造に際し、多孔質金属基体(20)の側面を封孔
したのち、ろう材(16a)を溶融して被覆層(16)
を形成するので、溶融ろう材(16b)が金属基体(2
0)の内部まで浸入することがなく、したがって、電子
放射物質を金属基体(20)の側面部まで十分に含浸さ
せることができ、電子放射面0の周辺部からも良好な電
子放射が得られる陰極とすることができる。また被覆層
(16)を形成するに際し、あらかじめプレス成形によ
り所定寸法に成形されたリング状ろう材(16a)を用
いるので、必要部分以外へのろう材(16b)の流出を
少くすることができ、しかも金属基体(20)の側面に
環状溝(13)を形成して、溶融ろう材(16b)の電
子放射面への流出を阻止するようにしたので、品質の安
定した高信頼性の陰極を製造することができるようにな
った。
In addition, during manufacturing, after sealing the side surfaces of the porous metal substrate (20), the brazing material (16a) is melted to form the coating layer (16).
, so that the molten brazing filler metal (16b) is attached to the metal base (2).
Therefore, the electron emitting substance can be sufficiently impregnated to the side surface of the metal base (20), and good electron emission can be obtained even from the periphery of the electron emitting surface 0. It can be a cathode. In addition, when forming the coating layer (16), since a ring-shaped brazing material (16a) that has been press-molded to a predetermined size is used, it is possible to reduce the flow of the brazing material (16b) to areas other than the required areas. Furthermore, an annular groove (13) is formed on the side surface of the metal base (20) to prevent the molten brazing filler metal (16b) from flowing out to the electron emitting surface, resulting in a highly reliable cathode with stable quality. can now be manufactured.

以上側面が電子放射面と同一直径に構成された陰極基体
を有する含浸型陰極について述べたが、この発明は、側
面の直径が電子放射面の直径より大きい場合、あるいは
電子放射面の直径より小さい直径の側面をもつ陰極基体
などその構造が異なる各種含浸型陰極に適用す暮ことが
できる。
The above description has been made of an impregnated cathode having a cathode substrate whose side surfaces have the same diameter as the electron emitting surface. However, this invention is applicable when the side surface diameter is larger than the diameter of the electron emitting surface or smaller than the diameter of the electron emitting surface. It can be applied to various impregnated cathodes with different structures, such as cathode substrates with side surfaces of different diameters.

〔発明の効果〕〔Effect of the invention〕

高融点多孔質金属基体に電子放射物質を含浸させてなる
陰極基体の側面に被覆層を形成して、電子放射面以外か
らの電子放射性物質の蒸発および電子放射をなくすよう
に構成したので、長寿命にして管内放電をおこしにくく
かつ増幅効率を増大させることができる高性能陰極とす
ることができる。
A coating layer is formed on the side surface of the cathode substrate, which is made by impregnating a high-melting point porous metal substrate with an electron-emitting substance, to eliminate evaporation of the electron-emitting substance and electron emission from areas other than the electron-emitting surface. It is possible to obtain a high-performance cathode that is less likely to cause intraluminal discharge during its lifetime and can increase amplification efficiency.

また製造に際し、多孔質金属基体の側面を封孔したのち
に、この側面にろう材からなる被覆層を形成して、ろう
材が金属”基体の内部まで浸入するのを防止したので、
金属基体の周辺部まで電子放射物質を十分に含゛浸させ
ることができ、電子放射面の周辺部からも良好な電子放
射が得られる陰極とすることができる。
In addition, during manufacturing, after sealing the side surfaces of the porous metal substrate, a coating layer made of brazing material was formed on the side surfaces to prevent the brazing material from penetrating into the interior of the metal substrate.
The metal substrate can be sufficiently impregnated with the electron-emitting substance up to the periphery, and the cathode can provide good electron emission even from the periphery of the electron-emitting surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明め一実施例である含浸型陰極の断面図
、第2図はその製造工程を示すフローチャート、第3図
(A)ないしくF)図はそれぞれその製造方法を説明す
るための工程図で、第4図は従来の含浸型陰極構体の断
面図である。 (4)・・・ヒータ      0・・・電子放射面(
10)・・・陰極基体    (11)・・・ヒータ部
(13) 、 (14)・・・環状溝  (15)・・
・ヒータ容器(16)・・・被覆層     (17)
・・・ろう材(21)・・・金属基体
Fig. 1 is a sectional view of an impregnated cathode according to an embodiment of the present invention, Fig. 2 is a flowchart showing the manufacturing process, and Figs. 3 (A) to F) are for explaining the manufacturing method. FIG. 4 is a sectional view of a conventional impregnated cathode structure. (4)...Heater 0...Electron emission surface (
10)... Cathode base (11)... Heater part (13), (14)... Annular groove (15)...
・Heater container (16)...covering layer (17)
... Brazing filler metal (21) ... Metal base

Claims (7)

【特許請求の範囲】[Claims] (1)高融点多孔質金属基体の空孔部に電子放射物質を
含浸させ、一端面を電子放射面とする陰極基体と、この
陰極基体の他端面側に取り付けられたヒータ容器内にヒ
ータが埋設されたヒータ部と、上記陰極基体の側面を被
覆する被覆層とを具備することを特徴とする含浸型陰極
(1) A cathode substrate in which the pores of a high-melting point porous metal substrate are impregnated with an electron-emitting substance and one end surface serves as an electron-emitting surface, and a heater is installed in a heater container attached to the other end surface of the cathode substrate. An impregnated cathode comprising an embedded heater section and a coating layer covering a side surface of the cathode substrate.
(2)被覆層は厚さが0.01〜0.3mmに形成され
ていることを特徴とする特許請求の範囲第1項記載の含
浸型陰極。
(2) The impregnated cathode according to claim 1, wherein the coating layer has a thickness of 0.01 to 0.3 mm.
(3)被覆層は高融点ろう材で構成されていることを特
徴とする特許請求の範囲第1項記載の含浸型陰極。
(3) The impregnated cathode according to claim 1, wherein the coating layer is made of a high melting point brazing material.
(4)陰極基体は電子放射面に近い側面に上記電子放射
面へのろう材の流入を阻止する環状溝を有することを特
徴とする特許請求の範囲第1項記載の含浸型陰極。
(4) The impregnated cathode according to claim 1, wherein the cathode substrate has an annular groove on a side surface close to the electron emitting surface to prevent a brazing material from flowing into the electron emitting surface.
(5)高融点金属を主成分とする粉末を焼結して得られ
た多孔質の金属基体の側面を封孔する工程と、上記金属
基体とヒータ容器とを組合わさせる工程と、高融点ろう
材からなるリング状ろう材を上記金属基体の側面に装着
する工程と、上記リング状ろう材を溶融して上記金属基
体の側面を被覆する工程と、溶融後の上記ろう材の余剰
部分を除去して所要の被覆層に仕上げる工程と、上記金
属基体に電子放射物質を含浸する工程とを有することを
特徴とする含浸型陰極の製造方法。
(5) A step of sealing the side surface of a porous metal substrate obtained by sintering a powder containing a high melting point metal as a main component, a step of combining the metal substrate with a heater container, and a step of combining a high melting point metal with a heater container; A step of attaching a ring-shaped brazing material made of brazing material to the side surface of the metal substrate, a step of melting the ring-shaped brazing material to cover the side surface of the metal substrate, and a step of removing the surplus portion of the brazing material after melting. A method for manufacturing an impregnated cathode, comprising the steps of removing and finishing the coating layer to form a desired coating layer, and impregnating the metal substrate with an electron emitting substance.
(6)金属基体の側面を研削加工により封孔することを
特徴とする特許請求の範囲第5項記載の含浸型陰極の製
造方法。
(6) The method for manufacturing an impregnated cathode according to claim 5, wherein the side surface of the metal substrate is sealed by grinding.
(7)溶融後のろう材の余剰部分を研削加工により除去
することを特徴とする特許請求の範囲第5項記載の含浸
型陰極の製造方法。
(7) The method for manufacturing an impregnated cathode according to claim 5, wherein the surplus portion of the brazing material after melting is removed by grinding.
JP60056020A 1985-03-22 1985-03-22 Impregnated type cathode and its manufacture Pending JPS61216221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056020A JPS61216221A (en) 1985-03-22 1985-03-22 Impregnated type cathode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056020A JPS61216221A (en) 1985-03-22 1985-03-22 Impregnated type cathode and its manufacture

Publications (1)

Publication Number Publication Date
JPS61216221A true JPS61216221A (en) 1986-09-25

Family

ID=13015379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056020A Pending JPS61216221A (en) 1985-03-22 1985-03-22 Impregnated type cathode and its manufacture

Country Status (1)

Country Link
JP (1) JPS61216221A (en)

Similar Documents

Publication Publication Date Title
US2912611A (en) Thermionic cathodes
US3558966A (en) Directly heated dispenser cathode
EP1001453A1 (en) Electricity lead-in body for bulb and method for manufacturing the same
US3400294A (en) Heated cathode and method of manufacture
JPS61216221A (en) Impregnated type cathode and its manufacture
JPS5842141A (en) Pierce type electron gun
WO2000045417A1 (en) Electrode for discharge tube and discharge tube using it
JPS6360499B2 (en)
JPH04215227A (en) Dispenser type cathode and manufacture thereof
EP0365647A1 (en) Expandable dispenser cathode
JPH0439646Y2 (en)
JPS5925337B2 (en) Manufacturing method of electron tube grid electrode
JPS62217525A (en) Impregnated cathode
KR20000009399A (en) Cathode for cathode-ray tube and manufacturing method thereof
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
JPH04322029A (en) Impregnated type cathode and manufacture thereof
JP2685835B2 (en) Manufacturing method of impregnated cathode
JP3137406B2 (en) Manufacturing method of cathode assembly
JPH047550Y2 (en)
JPS6364234A (en) Impregnated cathode
US7372192B2 (en) Cathode for cathode ray tube with improved lifetime
JPS5866235A (en) Cathode substrate of thermal electron emission type cathode
JPS6347100B2 (en)
JP3611984B2 (en) Discharge tube and method for manufacturing cathode for discharge tube
JPS61181026A (en) Impregnated cathode for electron tube