JPS5866235A - Cathode substrate of thermal electron emission type cathode - Google Patents

Cathode substrate of thermal electron emission type cathode

Info

Publication number
JPS5866235A
JPS5866235A JP56165130A JP16513081A JPS5866235A JP S5866235 A JPS5866235 A JP S5866235A JP 56165130 A JP56165130 A JP 56165130A JP 16513081 A JP16513081 A JP 16513081A JP S5866235 A JPS5866235 A JP S5866235A
Authority
JP
Japan
Prior art keywords
cathode
shape
emission type
heater wire
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165130A
Other languages
Japanese (ja)
Inventor
Yoshio Shoji
庄司 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd, Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP56165130A priority Critical patent/JPS5866235A/en
Publication of JPS5866235A publication Critical patent/JPS5866235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a cathode substrate capable of producing a thermal electron emission type cathode with a low cost and the excellent characteristics and reliability by adhering metallic powders around a heater wire formed in a desired cathode shape substrate by electrodeposition or spraying so that an electron radioactive material can be retained in gaps formed by metallic powders. CONSTITUTION:As electrodeposition is continued, tungsten powders 7 are adhered in protrusions and recesses around a heater wire 1. When a necessary quantity is adhered to form a powder layer, it is heat treated and sintered in a hydrogen or vacuum atmosphere at 1,000-2,000 deg.C for about 20min, then the metallic powders are solidified. An oxide material 9 is coated or filled by spraying in the recesses 8 formed with solidified nickel powders, then an oxide cathode with the excellent characteristics and reliability is obtained even if the cathode shape is complicated such as a coil-like shape.

Description

【発明の詳細な説明】 本発明1ヶ酸化物陰極、含浸型陰極、サーメット陰極な
ど熱電子放射型陰極で、特に複雑な陰極形状でしかもヒ
ータ点人後即座に作動する連動型に適した熱′電子放射
型陰極の陰極基体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention (1) is a thermoelectron emission type cathode such as an oxide cathode, an impregnated cathode, or a cermet cathode, which has a particularly complicated cathode shape and is suitable for an interlocking type that operates immediately after the heater is turned on. 'Relating to the cathode substrate of an electron-emitting cathode.

従来1例えば第1図に示すようなコイル状の陰極形状金
し、連動型を必要とする熱電子放射型陰極で汀、オキサ
イド陰極としては第1図のような二重コイルの一部コイ
ルの中にオキサイド物質を充填固着したものが考えられ
ており。
Conventional 1 For example, as shown in Fig. 1, a coiled cathode is made of gold, and a thermionic emission type cathode that requires an interlocking type is used.As an oxide cathode, a part of the coil of a double coil as shown in Fig. 1 is used as an oxide cathode. It is thought that an oxide substance is filled and fixed inside.

また含浸型陰極では丸棒の高融点粉末焼結体の外周に螺
旋状溝を設けた後例えばドリルなどにより中心部を切欠
除去して螺旋状コイル部分を残し、その螺旋状高融点金
属粉末焼結体に電子しかし、上記のような陰極では、オ
キサイド陰極でに繰り返し動作中に一部コイル中に充填
したオキサイドが割れて脱落したり、あるいは多数のひ
び割れにより電子放射特性の劣化や脱落したオキサイド
物質に基づく管球への悪影響が6り信頼性や寿命の面で
大きな欠点がある。
In addition, in the case of an impregnated cathode, a spiral groove is formed on the outer periphery of a round rod of high melting point powder sintered body, and then the central part is cut out using a drill or the like, leaving a spiral coil portion. However, with the above-mentioned cathode, some of the oxide filled in the coil cracks and falls off during repeated operations with the oxide cathode, or many cracks cause the electron emission characteristics to deteriorate and the oxide that falls off. There is a major drawback in terms of reliability and lifespan due to the adverse effects on the tube due to the substance.

また含浸型陰極では丸棒の高融点金属粉末焼結体の材料
の90%以上を廃棄してし貰うことになり、また製造技
術も難かしく、陰極が非常に高価なものとなり9通常の
陰極としてはとても使用できる状態には至っていない。
In addition, with the impregnated cathode, more than 90% of the material of the round bar high melting point metal powder sintered body must be discarded, and the manufacturing technology is difficult, making the cathode very expensive9. As such, it is not in a usable condition.

本発明にこのような点に鑑みなされたもので。The present invention has been made in view of these points.

第1図に示すコイル形状のように複雑な陰極形状をした
もので、しかも連動型となるようなオキサイド外極、含
浸型陰極などの熱電子放射型陰極を安価で、特性、侶頼
性良く達成できる陰極基体ヲ堤供することを目的とする
もので、具体的には所望の陰極形状の基形に形成したヒ
ータ線材の周囲に金属粉末を電着あるいは吹付などによ
り付層させ、金属粉末で形成された間隙−電子放射性物
質を保持できるような構成にし置の概略断面図である。
Thermionic emission type cathodes, such as oxide outer electrodes and impregnated cathodes, which have complex cathode shapes such as the coil shape shown in Figure 1 and are interlocked, are inexpensive, have good characteristics, and are reliable. The purpose is to provide a cathode substrate that can be achieved. Specifically, metal powder is layered around a heater wire formed into a base shape of a desired cathode shape by electrodeposition or spraying. FIG. 3 is a schematic cross-sectional view of a device configured to hold a formed gap and an electron emissive substance.

第2図で1は例えばタングステン耐で陰極形状の基形に
形成したヒータ線、2(Iゴー万の電極線、3は他方の
電極で金属円筒である。4は電着液で例えばグリセリン
350.9.水350.!9.硝酸塩15g、直径2μ
m程度のタングステン粉末300.!i”(r混合した
もので、5ぼその容器、6は電源である。この装置で電
着液4をよく攪拌して電源6をヒータ線1側が負になる
ように印加すると電着液4中のタングステン粉末がヒー
タ線1層に引き付けられヒータ線1の周囲に密着する。
In Fig. 2, 1 is a heater wire made of, for example, tungsten and formed into a cathode-shaped base, 2 is an electrode wire of 100 ml, and 3 is the other electrode, which is a metal cylinder. 4 is an electrodeposition liquid, such as glycerin 350. .9. Water 350.!9. Nitrate 15g, diameter 2μ
300.m of tungsten powder. ! i" (r mixed, 5 containers, 6 is a power source. When the electrodeposition liquid 4 is stirred well with this device and the power supply 6 is applied so that the heater wire 1 side is negative, the electrodeposition liquid 4 The tungsten powder inside is attracted to the heater wire layer 1 and tightly adheres around the heater wire layer 1.

この際ヒータ線1の周囲で最初にタングステン粉末が付
着した部分に。
At this time, the area around the heater wire 1 where the tungsten powder first adhered.

付着し九粒径分光は他の部分より電極間距離が狭くなり
次の粉末も最初に付着した粉末付近に付着し易くなる。
The distance between the electrodes in the 9-particle diameter spectrometer that has adhered is narrower than that in other parts, making it easier for the next powder to adhere to the vicinity of the powder that adhered first.

従ってそのまま淡々と電Mを続けると第3図に拡大断面
図を示すようにヒータIW1の周囲にタングステン粉末
7が凹凸状に付Nされる。いまこの電着液4中の金属粉
末全タングステン粉末でなくニッケル粉末を混合したも
のを使用すればタングステンのヒータ線1層が形成され
たものを水素または真空雰囲気中で1000℃〜200
0 ’0で約20分間の熱処理をすると焼結されて金属
粉末は固着する。°この固着したニッケル粉末で形成さ
れた凹部8に第4状のような複雑な形状をした陰極形状
のものでも9%性、信頼性の秀れたオキサイド陰極全傅
ることかできる。
Therefore, if the electric current is continued as it is, the tungsten powder 7 will be deposited in an uneven shape around the heater IW1, as shown in an enlarged cross-sectional view in FIG. Now, if you use a mixture of nickel powder instead of all the metal powder tungsten powder in this electrodeposition solution 4, you can heat one layer of tungsten heater wire at 1000℃ to 200℃ in a hydrogen or vacuum atmosphere.
When heat treated at 0'0 for about 20 minutes, the metal powder is sintered and solidified. Even if the recess 8 formed by the fixed nickel powder has a complicated cathode shape such as a fourth shape, an oxide cathode with excellent 9% performance and reliability can be formed.

一方、同様に複雑な形状を有する含浸型陰極を希望する
と1バタンゲステン粉末のような高融点金属粉末をでき
るだけ凹凸を生じないように密着することが望ましい。
On the other hand, if an impregnated cathode having a similarly complicated shape is desired, it is desirable to apply a high melting point metal powder such as 1-batangesten powder in close contact with the cathode so as to minimize unevenness.

この場合には第2図の電着装置で例えば数10秒間ヒー
タ線1側分の粉末を解離し、また電着、解離を繰り返す
たとにエリ第5図に拡大断面図を示すようにほぼ平担状
(て金属粉末が付着される。この電着の際溶液4全常に
攪拌していれば、同均−性よく付着することができる。
In this case, the powder on one side of the heater wire is dissociated for several tens of seconds using the electrodeposition device shown in FIG. The metal powder is deposited in the form of a carrier. If the solution 4 is constantly stirred during electrodeposition, it can be deposited with good uniformity.

この金属粉末7層の上に電子放射性?+質で調合した含
浸剤を塗布して還元性雰囲気′!たに真空雰囲気で15
00〜1700°C位に昇温すれば含浸剤が金属粉末7
の間隙に浸み込み複Hな形状の含浸型陰極を容易に得る
ことかでさる。しかもこのようにして得られた含浸型陰
惨に活融点金属粉末熔結体の中心部全ヒータ線1が貫追
しているため、はぼ直熱型となり含浸型陰極の難点であ
るヒータ全点火してから動作する迄の時間を非常に短縮
することができる。またヒータ線1の周囲に付層した金
属粉末は粉末で間隙をもって密着しているためヒータ抵
抗には余り影響なく所望のヒータ抵抗となるようヒータ
線1を設計しておけば所望の陰極を得られるという利点
もある。
Is there electron radiation on top of this 7 layer of metal powder? Apply an impregnating agent prepared with + quality to create a reducing atmosphere! 15 in a vacuum atmosphere
If the temperature is raised to about 00 to 1700°C, the impregnating agent will turn into metal powder 7
It is possible to easily obtain an impregnated cathode having a double H shape by penetrating into the gap between the electrodes. Moreover, since the entire heater wire 1 of the impregnated cathode obtained in this way penetrates through the center of the active melting point metal powder molten body, it becomes a direct heating type, and the entire heater ignites, which is a drawback of the impregnated cathode. The time it takes to start operating can be greatly reduced. In addition, since the metal powder layered around the heater wire 1 is powder and closely adheres to each other with gaps, the desired cathode can be obtained by designing the heater wire 1 so that it has the desired heater resistance without having much effect on the heater resistance. There is also the advantage of being able to

上・記笑施例では電MVCより金属粉末を付着す便えは
何個も一度にできて安価にできることな面図を示すよう
にヒータとする金属条帯10に設けた切欠部11に高融
点金属粉末全固層する構造のものでも他の部分全マスク
して行なえば一度に多数個でき安価に製造できる。しか
しこの電着法に限らず通常の吹付法など他の方法で付着
することもできる。また金属粉末の種類は使用陰極の目
的に応じて電子放射特性を同上させる例えば陰1セ用ニ
ッケルのような金属粉末や含浸型陰極にする場合でもタ
ングステンでなくモリブデンなどの金属粉末を付着する
こともできるし、また粉末の粒径を適当に選ぶことによ
り気孔率を自由に調整することもできる。
In the above-mentioned embodiments, it is easier to attach metal powder than electric MVC because it can be done in many pieces at once and at a low cost. Even with a structure in which the melting point metal powder is completely solidified, if all other parts are masked, a large number of pieces can be manufactured at a time and at low cost. However, it is not limited to this electrodeposition method, and other methods such as a normal spraying method can also be used. In addition, the type of metal powder depends on the purpose of the cathode used, such as metal powder such as nickel for negative electrodes, or metal powder such as molybdenum instead of tungsten, which can be used as an impregnated cathode. It is also possible to freely adjust the porosity by appropriately selecting the particle size of the powder.

以上説明したように2本発明によればオキサ9F″陰極
や含浸型陰極などの熱電子放射型陰極々複雑な形状をし
た陰極でも容易に製造することができ、安価で特性や信
頼性の良い熱電子放射型陰極を借ることができ、しかも
含浸型陰極でも連動型とすることができ、陰極線管や放
電管などへの利用価匝が高く、電子産業の発展に大・卒
ぐ寄与する効果がある。
As explained above, according to the present invention, cathodes of thermionic emission type such as OXA9F'' cathodes and impregnated cathodes can be easily manufactured even with cathodes having complex shapes, and are inexpensive and have good characteristics and reliability. Thermionic emission type cathodes can be borrowed, and even impregnated cathodes can be made into interlocking types, making it highly useful for cathode ray tubes, discharge tubes, etc., and greatly contributing to the development of the electronic industry. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコイル状オキサイド陰使の斜視図、第2
図は本発明の陰極基体を製造する装置の一例で′亀N装
置の概略断面図、第3図はヒータ線の周囲に金属粉末全
電着した部分的拡大断面図、第4図は本発明の陰極基体
にオキサイド物質全充填した部分的拡大断面図、第5図
は含浸型陰極用に金属粉末を付着した陰極基体の部分的
拡大断面図、第6図は従来の金属条帯の切欠部に多孔質
体音形成した含浸型陰極の平面図およびWTlli図で
ある。 1・・・ヒータ線、4・・・電着液、7川金属粉末。 9・・・オキサイド物質。 特許出顧入 新日本無組株式会社 帛1図 \、− 篤3図 篤4図 第5図 帛6図
Figure 1 is a perspective view of a conventional coiled oxide shader;
The figure shows an example of the apparatus for producing the cathode substrate of the present invention, and is a schematic cross-sectional view of the KameN device. Figure 3 is a partially enlarged cross-sectional view of the metal powder fully electrodeposited around the heater wire. Figure 4 is the inventive device. Figure 5 is a partially enlarged cross-sectional view of a cathode base with metal powder attached for an impregnated cathode, and Figure 6 is a cutout of a conventional metal strip. FIG. 2 is a plan view and a WTlli diagram of an impregnated cathode in which a porous body is formed. 1... Heater wire, 4... Electrodeposition liquid, 7 River metal powder. 9...Oxide substance. Patent sponsorship Shin Nippon Mugumi Co., Ltd. Figure 1\, - Atsushi 3 Figure Atsushi 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 所望の1宸極形状の基形に形成したヒータ材の少なくと
も一部に金属粉末を被着し、該金属粉末の間隙に電子放
射性物質を保持できるようにしたこと全特徴とする熱電
子放射型陰極の陰極基体。
A thermionic emission type, characterized in that metal powder is coated on at least a part of a heater material formed into a desired one-pole-shaped base, and an electron-emitting substance can be held in the gaps between the metal powders. Cathode substrate of cathode.
JP56165130A 1981-10-16 1981-10-16 Cathode substrate of thermal electron emission type cathode Pending JPS5866235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165130A JPS5866235A (en) 1981-10-16 1981-10-16 Cathode substrate of thermal electron emission type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165130A JPS5866235A (en) 1981-10-16 1981-10-16 Cathode substrate of thermal electron emission type cathode

Publications (1)

Publication Number Publication Date
JPS5866235A true JPS5866235A (en) 1983-04-20

Family

ID=15806467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165130A Pending JPS5866235A (en) 1981-10-16 1981-10-16 Cathode substrate of thermal electron emission type cathode

Country Status (1)

Country Link
JP (1) JPS5866235A (en)

Similar Documents

Publication Publication Date Title
US2912611A (en) Thermionic cathodes
US2172207A (en) Glow cathode
US3558966A (en) Directly heated dispenser cathode
DE2602649A1 (en) GRID-CONTROLLED ELECTRON SOURCE AND METHOD FOR MANUFACTURING IT
JPH08227655A (en) Electric field effect electron source and its production
KR19990022701A (en) An impregnated negative electrode structure, a negative electrode substrate used therefor, an electron gun structure using the negative electrode substrate, and an electron tube
US2438732A (en) Electron tube cathode
US2499192A (en) Dispenser type cathode
GB1057909A (en) Method of manufacturing cathodes for electron tubes
JPS5866235A (en) Cathode substrate of thermal electron emission type cathode
US3307974A (en) Method of forming thermionic cathodes
JPH04232252A (en) Sputtered scandium oxide coating for dispenser cathode and its manufacture
US5670841A (en) Electron gun for a cathode ray tube having a plurality of electrodes layers forming a main lens
JPS6360499B2 (en)
JP3363816B2 (en) Discharge tube electrode and discharge tube using the same
US2082602A (en) Thermionic cathode
JPS5866229A (en) Quick action type impregnated cathode
JPH01128330A (en) Electron emitting cathode structure for cathode ray tube and its manufacture
JP2984179B2 (en) Method of manufacturing heater and cathode ray tube having inorganic insulating film
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
JPS5842141A (en) Pierce type electron gun
JPS61216221A (en) Impregnated type cathode and its manufacture
GB783836A (en) Cathode structure for magnetrons
MXPA02001603A (en) Improved oxide-coated cathode and method for making same.
JPS6035777B2 (en) Manufacturing method of impregnated cathode