JPS6121490B2 - - Google Patents

Info

Publication number
JPS6121490B2
JPS6121490B2 JP12939779A JP12939779A JPS6121490B2 JP S6121490 B2 JPS6121490 B2 JP S6121490B2 JP 12939779 A JP12939779 A JP 12939779A JP 12939779 A JP12939779 A JP 12939779A JP S6121490 B2 JPS6121490 B2 JP S6121490B2
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
acrylate
parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12939779A
Other languages
Japanese (ja)
Other versions
JPS5653119A (en
Inventor
Kyosuke Yuya
Yoshio Takahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP12939779A priority Critical patent/JPS5653119A/en
Publication of JPS5653119A publication Critical patent/JPS5653119A/en
Publication of JPS6121490B2 publication Critical patent/JPS6121490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硬化性樹脂組成物に関するものであ
る。更に詳しくは、硬化時の重量減少が小さく、
しかも得られる硬化物が優れた耐熱性を有する硬
化性樹脂組成物に関するものである。 不飽和ポリエステルと重合性ビニル単量体とか
ら成る不飽和ポリエステル樹脂やエポキシ(メ
タ)アクリレートと重合性ビニル単量体とから成
るエポキシ(メタ)アクリレート樹脂は、硬化
性、機械的特性、化学的特性に於て優れたものを
有しているが故に注形品、積層品、成形用材料、
塗料あるい電気絶縁用ワニスといつた方面に広く
利用されている。しかしながら、不飽和ポリエス
テル樹脂やエポキシ(メタ)アクリレート樹脂
は、硬化時に成分の一部が揮散して重量が減少
し、又得られる硬化物の耐熱性も高温で使用する
には不充分なものであるという欠点がある。 このような欠点を改良するため、不飽和ポリエ
ステルの酸成分としてテレフタル酸たイソフタル
酸を用いたり、重合性ビニル単量体として一般に
用いられているスチレンの代りにジアリルフタレ
ート、ジアリルイソフタレート、トリアリルシア
ヌレート、トリアリルイソシアヌレート等を用い
る方法が提案されているが、効果は充分とはいえ
ない。又、不飽和ポリエステル分子骨格の中にイ
ミド基を導入するという方法も提案されている
が、イミド基を分子骨格中へ導入するとスチレン
等の重合性ビニル単量体との相溶性が著しく低下
する。 本発明者らはこのような現状に鑑み、鋭意研究
を重ねた結果、特定の重合性化合物と不飽和ポリ
エステル及び/又はエポキシ(メタ)アクリレー
トから成る硬化性樹脂組成物が上記の如き問題点
を一挙に解決するものであることを見出し、本発
明を完成させるに至つたものである。 従つて本発明の目的は、硬化に際して重量減少
が小さくしかも得られる硬化物が優れた耐熱性を
有する硬化性樹脂組成物を提供することにある。 即ち本発明の硬化性樹脂組成物は、 一般式 (但し式中、R1及びR2はそれぞれ水素又はメ
チル基を表し、同じであつても異なつていてもよ
いものとする。) で示される重合性化合物(A) 並びに 不飽和ポリエステル及び/又はエポキシ(メ
タ)アクリレート(B) を含有してなることを特徴とするものである。 本発明で用いられる重合性化合物(A)は前記の一
般式で表わされるものであり、2−テトラヒドロ
フタルイミドエチルアクリレート、2−テトラヒ
ドロフタルイミドエチルメタアクリレートあるい
はこれらのメチル基置換体であるが、これらの群
の中から1種又は2種以上を用いることができ
る。このような重合性化合物(A)は、得られる硬化
性樹脂組成物に対して30〜80重量%の割合で用い
ることが好ましい。30重量%未満の量では得られ
る硬化性樹脂組成物の硬化物の耐熱性が充分でな
く、又逆に80重量%を超える量用いると得られる
硬化物がもろくなる傾向があり、好ましくない。 本発明に用いられる不飽和ポリエステルは、当
業界で一般に用いられているものを用いることが
できる。即ち、酸成分として不飽和二塩基酸を必
須とし必要により飽和二塩基酸や脂肪族一塩基酸
を用い、アルコール成分として多価アルコールを
必須とし必要により1価アルコールを用いて製造
されたものを使用することができる。 これらの不飽和ポリエステルの中でも、本発明
では、酸成分としてα,β−不飽和二塩基酸及び
脂肪族一塩基酸を必ず用いて導かれたものと、多
価アルコール成分としてトリス(2−ヒドロキシ
エチル)イソシアヌレートを必ず用いて導かれた
ものとが好ましいものである。そして、酸成分と
してα,β−不飽和二塩基酸及び脂肪族一塩基酸
を必ず用い且つ多価アルコール成分としてトリス
(2−ヒドロキシエチル)イソシアヌレートを必
ず用いて導かれた不飽和ポリエステルが、本発明
では特に好ましいものである。このような脂肪族
一塩基酸としては、大豆脂肪酸、トール油脂肪
族、米ぬか脂肪族、桐油脂肪酸等を挙げることが
できる。 エポキシ(メタ)アクリレートは、1分子中に
エポキシ基を2個以上有するエポキシ化合物とア
クリル酸やメタアクリル酸に代表される不飽和二
塩基酸との反応生成物を指す。エポキシ化合物と
しては、ビスフエノールA系エポキシ化合物(例
えばチバ社製、“アラルダイトGY−250”)、ノボ
ラツク系エポキシ化合物(例えばシエル社製、
“エピコート154”)、シクロヘキサンやジシクロペ
ンタジエン等の脂還式化合物から導かれるエポキ
シ化合物(例えばチツソ社製、“チツソノツクス
221”)等を挙げることができる。 重合性化合物(A)と不飽和ポリエステル及び/又
はエポキシ(メタ)アクリレート(B)とから本発明
の硬化性樹脂組成物を得るに当たつて、重合性化
合物(A)と不飽和ポリエステル及び/又はエポキシ
(メタ)アクリレート(B)とはいかなる順序で混合
溶解してもよく、又いかなる方法で混合溶解して
もよい。このような混合順序や混合方法により本
発明が限定を受けるものではない。 本発明の硬化性樹脂組成物は重合性化合物(A)並
びに不飽和ポリエステル及び/又はエポキシ(メ
タ)アクリレート(B)とを必須とするものである
が、粘度を調節して作業性を良くするために他の
重合性ビニル単量体を添加して使用することもで
きる。このような他の重合性ビニル単量体として
は、スチレン、ビニルトルエン、ジビニルベンゼ
ン、N−ビニル−2−ピロリドン、N−ビニルピ
リジン、ジアリルフタレート、ジアリルイソフタ
レート、トリアリルシアヌレート、トリアリルイ
ソシアヌレート、メチルメタアクリレート、メチ
ルアクリレート、エチルメタアクリレート、エチ
ルアクリレート、イソデシルメタアクリレート、
ベンジルアクリレート、フルフリルアクリレー
ト、ラウリルメタアクリレート、2−ヒドロキシ
エチルアクリレート、2−ヒドロキシエチルメタ
アクリレート、ヒドロキシピロピルアクリレー
ト、ヒドロキシプロピルメタアクリレート、エチ
レングリコールジアクリレート、エチレングリコ
ールジメタアクリレート、ジエチレングリコール
ジアクリレート、ジエチレングリコールジメタア
クリレート、トリエチレングリコールジアクリレ
ート、トリエチレングリコールジメタアクリレー
ト、ネオペンチルグリコールジアクリレート、ネ
オペンチルグリコールメタアクリレート、1,6
−ヘキサンジアクリレート、1,6−ヘキサンジ
メタアクリレート、トリメチロールプロパントリ
アクリレート、トリメチロールプロパントリメタ
アクリレート、ペンタエリスリトールトリアクリ
レート、ペンタエリスリトールトリメタアクリレ
ート等を挙げることができる。 又、当技術分野において慣用の添加剤、例えば
シリコーン系あるいはアクリル系のレベリング
剤:無水ケイ酸微粒子等の揺変剤:炭酸カルシウ
ム、硅石紛、クレー、ガラス紛、マイカ等の充填
剤等も有効に使用しうるものである。 このようにして得られた本発明の硬化性樹脂組
成物は、硬化に際して重量減少が小さく且つ硬化
して得られる塗膜や成形品が優れた耐熱性を有
し、しかも塗膜の場合には基材への密着性にも優
れているものである。 本発明の硬化性樹脂組成物を使用するに当たつ
て硬化させるには、当技術分野において慣用の重
合開始剤を用いたり、紫外線照射により行なうこ
とができる。重合開始剤としては、ベンゾイルパ
ーオキサイド、ラウロイルパーオキサイド、メチ
ルエチルケトンパーオキサイド、シクロヘキサノ
ンパーオキサイド、t−ブチルハイドロパーオキ
サイド、ジ−t−ブチルパーオキサイド、ジ−t
−アミルパーオキサイド、ジクミルパーオキサイ
ド、p−t−ブチルパーオキシベンゾエート等を
挙げることができる。これらの重合開始剤に例え
ばオクテン酸コバルト、ナフテン酸コバルト、オ
クテン酸マンガン、オクテン酸バナジウム等の有
機金属塩やN,N−ジメチルアニリン等の有機ア
ミンを促進剤として併用することも可能である。
紫外線照射に際しては光増感剤を用いることがで
き、そのような光増感剤としては例えばベンゾイ
ン、ベンゾインエチルエーテル、ベンゾインイソ
プロピルエーテル等を挙げることができる。又、
重合開始剤と紫外線照射とを併用することもでき
る。 以下、本発明を実施例により更に詳しく説明す
る。尚、例中「部」は「重量部」を意味するもの
とする。 参考例 1 フラスコに、N−(2−ヒドロキシエチル)−テ
トラヒドロフタルイミド193g(1モル)、トルエ
ン195g、ハイドロキノン0.5g、アクリル酸80g
(1.1モル)、及びパラトルエンスルホン酸0.8gを
加えて空気気流下90〜110℃でエステル化反応を
行ない、生成水が18ml留出した時点で反応を止め
た。反応終了後NaOH水溶液で中和してPH6〜7
とし、水層とトルエン層を分離したのちトルエン
層からトルエンを減圧蒸留で留去し、目的とする
2−テトラヒドロフタルイミドエチルアクリレー
ト(b.p.161〜165℃/0.29mmHg、以後これをイミ
ドアクリレート(1)と呼ぶ)を得た。このイミドア
クリレート(1)は臭気がなく、常態で液状であつ
た。 参考例 2 参考例1においてN−(2−ヒドロキシエチ
ル)−テトラヒドロフタルイミド193gに替えてN
−(2−ヒドロキシエチル)−メチルテトラヒドロ
フタルイミド217gを用いる他は参考例1と同様
にして2−(メチルテトラヒドロフタルイミド)
エチルアクリレート(以後、イミドアクリレート
(2)と呼ぶ)を得た。このイミドアクリレート(2)も
臭気がなく、常態で板状であつた。 実施例 1 反応器にイソフタル酸0.3モル、アジピン酸0.3
モル、無水マレイン酸0.4モル及びジプロピレン
グリコール1.05モルを仕込み、窒素流下に180〜
220℃で脱水縮合反応せしめ、酸価31の不飽和ポ
リエステルを得た。ゲルパーミエーシヨンクロマ
トグラフイー(以下、GPCと記す。)による数平
均分子量は1800であつた。 この不飽和ポリエステル100部に、参考例1で
得たイミドアクリレート(1)100部及びハイドロキ
ノン0.02部を80℃にて混合溶解せしめて、透明な
硬化性樹脂組成物(1)を得た。この硬化性樹脂組成
物(1)100部にオクテン酸コバルト0.2部をよく溶解
させた後p−t−ブチルパーオキシベンゾエート
1部を添加混合し、このうち1gを60mmφのアル
ミ皿にとつて薄く広げ、130℃で1時間硬化させ
たのち更に150℃で4時間硬化させ、硬化塗膜を
得た。この硬化時の重量減少を測定し、第1表に
示した。 ついで、得られた硬化塗膜の重量を100とし、
250℃の恒温槽中に放置した場合の重量を1日後
及び10日後に測定し、耐熱性を調べた。結果を第
1表に示した。 比較例 1 実施例1においてイミドアクリレート(1)100部
に替えてスチレン100部を用いた他は実施例と同
様にして樹脂組成物を得た。(以下、比較樹脂組
成物(1)という。) この比較樹脂組成物(1)について、実施例1と同
様にして硬化時の重量減少及び硬化塗膜の耐熱性
を調べた結果を第1表に示した。 実施例 2 反応器にテトラヒドロ無水フタル酸0.45モル、
アジピン酸0.25モル及びジエチレングリコール
1.03モルを仕込み、窒素気流下にて180〜230℃で
脱水縮合反応せしめ、酸価10となつたところで
150℃まで冷却し、ついで無水マレイン酸0.3モル
を加え、更に脱水縮合反応を進めて酸価25の不飽
和ポリエステルを得た。GPSによる数平均分子量
は1900であつた。 この不飽和ポリエステル100部にイミドアクリ
レート(1)100部、ジエチレングリコールジメタア
クリート40部及びハイドロキノン0.024部を混合
溶解せしめて臭気のほとんどない透明な硬化性樹
脂組成物(2)を得た。この硬化性樹脂組成物(2)100
部にオクテン酸コバルト0.02部を充分に溶解させ
た後p−t−ブチルパーオキシベンゾエート1部
を混合溶解せしめ、実施例1と同様にして硬化時
の重量減少及び硬化塗膜の耐熱性を調べた。結果
を第1表に示した。 又、硬化性樹脂組成物(2)にオクテン酸コバルト
とp−t−ブチルパーオキシベンゾエートを加え
た上記のものを注型硬化して3mm厚の注型板を得
た。この注型板について250℃の恒温槽中に放置
した場合の重量を測定し、耐熱性を調べた結果を
第1表に示した。 実施例 3 反応器に大豆脂肪族1モル、イソフタル酸0.5
モル、トリメチロールプロパン1モル及びエチレ
ングリコール0.1モルを仕込み、180〜220℃で脱
水反応せしめて酸価10とし、150℃まで冷却した
のちエチレングリコール0.1モル、フマル酸0.5モ
ルを仕込み更に180〜190℃で脱水反応して酸価25
の不飽和ポリエステルを得た。 この不飽和ポリエステル100部にイミドアクリ
レート(1)100部、ジエチレングリコールジメタア
クリレート50部及びハイドロキノン0.02部を混合
溶解せしめて臭気のほとんどない透明な硬化性樹
脂組成物(3)を得た。この硬化性樹脂組成物(3)100
部にp−t−ブチルパーオキシベンゾエート1部
を溶解せしめたのち、実施例1におけると同様に
して硬化時の重量減少及び硬化塗膜の耐熱性を調
べた。結果を第1表に示した。 又、上記のp−t−ブチルパーオキシベンゾエ
ートを溶解した硬化性樹脂組成物(3)をブリキ板に
バーコーターにて30μの厚さに塗布し、150℃で
1時間硬化して硬化塗膜を得た。この塗膜は充分
に乾燥硬化しており、ゴバン目テスト(JIS D
0203)の結果は100/100で、密着性に優れたもの
であつた。又、折曲げ試験(JIS K 5400)の結
果も良好であつた。 実施例 4 反応器に大豆脂肪族1モル、イソフタル酸0.5
モル、トリス(2−ヒドロキシエチル)イソシア
ヌレート1モル及びエチレングリコール0.1モル
を仕込み、窒素気流下210℃で脱水縮合せしめて
酸価10なつたところで反応を停止し150℃に冷却
してエチレングリコール0.1モル及びフマル酸0.5
モルを仕込み、180〜190℃で更に脱水縮合せしめ
て酸価22の不飽和ポリエステルを得た。GPCに
よる数平均分子量は1950であつた。 この不飽和ポリエステル100部にイミドアクリ
レート(1)60部、ジエチレングリコールジメタアク
リレート40部及びハイドロキノン0.02部を混合溶
解せしめて臭気のほとんどない透明な硬化性樹脂
組成物(4)を得た。この硬化性樹脂組成物(4)100部
にp−t−ブチルパーオキシベンゾエート1部を
溶解せしめたのち、実施例1におけると同様にし
て硬化時の重量減少及び硬化塗膜の耐熱性を調べ
た。結果を第1表に示した。 又、上記のp−t−ブチルパーオキシベンゾエ
ートを溶解した硬化性樹脂組成物(4)をブリキ板に
バーコーターにて30μの厚さに塗布し、150℃で
1時間硬化して硬化塗膜を得た。この塗膜は充分
に乾燥硬化しており、実施例3と同様にして行つ
たゴバン目テストの結果は100/100で密着性に優
れており、折曲げ試験の結果も良好であつた。
又、上記の重合開始剤を含有する硬化性樹脂組成
物(4)を注型硬化して3mm厚の注型板を得た。この
注型板について、実施例2と同様にして250℃で
耐熱性を調べた。結果を第1表に示した。 比較例 2 実施例4においてイミドアクリレート(1)60部に
替えてジアリルイソフタレート60部を用いる他は
実施例4と同様にして臭気のほとんどない透明な
樹脂組成物を得た。(以下、比較樹脂組成物(2)と
いう。) この比較樹脂組成物(2)について、実施例4と同
様にして硬化時の重量減少及び硬化塗膜の耐熱性
を調べた。結果を第1表に示した。 実施例 5 実施例4で得た不飽和ポリエステル100部に対
してイミドアクリレート(1)150部、ジエチレング
リコールジメタアクリレート50部及びハイドロキ
ノン0.01部を混合溶解せしめて臭気のほとんどな
い透明な硬化性樹脂組成物(5)を得た。 この硬化性樹脂組成物(5)100部にp−t−ブチ
ルパーオキシベンゾエート1部を溶解し、実施例
1におけると同様にして硬化時の重量減少及び硬
化塗膜の耐熱性を調べた。結果を第1表に示し
た。 実施例 6 エポキシ当量185のビスフエノール型エポキシ
樹脂(チバ社製、“アラルダイトGY−2500”)370
部、メタアクリル酸176部、ハイドロキノン0.1部
及びトリエチルアミン2.0部を反応器に仕込み、
空気を導入しながら110℃で5時間反応させ、酸
価が7になつたところで反応を終了し、エポキシ
メタアクリレートを得た。 このエポキシメタアクリレート16.4部、ジアリ
ルフタレート13.6部及び参考例2で得られたイミ
ドアクリレート(2)70部を混合し、ほとんど臭気の
ない透明な硬化性樹脂組成物(6)を得た。 この硬化性樹脂組成物(6)100部にp−t−ブチ
ルパーオキシベンゾエート1部を溶解し、実施例
1におけると同様にして硬化時の重量減少及び硬
化塗膜の耐熱性を調べた。結果を第1表に示し
た。 実施例 7 実施例5においてイミドアクリレート(1)に替え
てイミドアクリレート(2)を用いる他は実施例と同
様にして臭気のない透明な硬化性樹脂組成物(7)を
得た。この硬化樹脂組成物(7)について実施例1に
おけると同様にして硬化時の重量減少及び硬化塗
膜の耐熱性を調べた。結果を第1表に示した。 実施例 8 実施例5においてp−t−ブチルパーオキシベ
ンゾエートに替えてベンゾイルパーオキサイドを
用いる他は実施例5と同様にして硬化時の重量減
少を測定した。結果を第1表に示した。 実施例 9 実施例4において得た硬化性樹脂組成物(4)100
部にオクテン酸コバルト0.2部及びベンゾインエ
チルエーテル2部を溶解せしめた後、ガラス板上
に約100μの塗膜となるように塗布し、紫外線ラ
ンプ(800V)下15cmの距離で5分間照射したと
ころ、充分に硬化した塗膜が得られた。
The present invention relates to a curable resin composition. More specifically, the weight loss during curing is small,
Moreover, the present invention relates to a curable resin composition whose cured product has excellent heat resistance. Unsaturated polyester resins made of unsaturated polyester and polymerizable vinyl monomers and epoxy (meth)acrylate resins made of epoxy (meth)acrylates and polymerizable vinyl monomers have excellent curability, mechanical properties, and chemical properties. Due to its excellent properties, it is used in cast products, laminated products, molding materials,
It is widely used in paints and electrical insulation varnishes. However, when unsaturated polyester resins and epoxy (meth)acrylate resins are cured, some of their components volatilize and their weight decreases, and the resulting cured products have insufficient heat resistance for use at high temperatures. There is a drawback. In order to improve these drawbacks, terephthalic acid and isophthalic acid are used as the acid component of unsaturated polyester, and diallyl phthalate, diallylisophthalate, and triaryl phthalate are used instead of styrene, which is generally used as a polymerizable vinyl monomer. Methods using lucyanurate, triallylisocyanurate, etc. have been proposed, but the effects are not sufficient. A method of introducing imide groups into the molecular skeleton of unsaturated polyester has also been proposed, but introducing imide groups into the molecular skeleton significantly reduces compatibility with polymerizable vinyl monomers such as styrene. . In view of the current situation, the present inventors have conducted intensive research and found that a curable resin composition consisting of a specific polymerizable compound, unsaturated polyester, and/or epoxy (meth)acrylate does not have the above-mentioned problems. They discovered that the problem could be solved all at once, and completed the present invention. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a curable resin composition which exhibits a small weight loss during curing and which provides a cured product with excellent heat resistance. That is, the curable resin composition of the present invention has the general formula (However, in the formula, R 1 and R 2 each represent hydrogen or a methyl group, and may be the same or different.) Polymerizable compound (A) represented by the following and unsaturated polyester and/or Or, it is characterized by containing epoxy (meth)acrylate (B). The polymerizable compound (A) used in the present invention is represented by the above general formula, and is 2-tetrahydrophthalimidoethyl acrylate, 2-tetrahydrophthalimidoethyl methacrylate, or a methyl group-substituted product thereof. One type or two or more types can be used from the group. Such a polymerizable compound (A) is preferably used in an amount of 30 to 80% by weight based on the resulting curable resin composition. If the amount is less than 30% by weight, the resulting cured product of the curable resin composition will not have sufficient heat resistance, and if it is used in an amount exceeding 80% by weight, the resulting cured product will tend to become brittle, which is not preferred. As the unsaturated polyester used in the present invention, those commonly used in the art can be used. That is, it is produced by using an unsaturated dibasic acid as an essential acid component and using a saturated dibasic acid or an aliphatic monobasic acid as necessary, and a polyhydric alcohol as an essential alcohol component and using a monohydric alcohol as necessary. can be used. Among these unsaturated polyesters, in the present invention, those derived using α,β-unsaturated dibasic acids and aliphatic monobasic acids as acid components and tris (2-hydroxy) as polyhydric alcohol components are used. It is preferable to use ethyl isocyanurate. Then, an unsaturated polyester derived by always using an α,β-unsaturated dibasic acid and an aliphatic monobasic acid as an acid component and always using tris(2-hydroxyethyl) isocyanurate as a polyhydric alcohol component, This is particularly preferred in the present invention. Examples of such aliphatic monobasic acids include soybean fatty acids, tall oil fatty acids, rice bran fatty acids, and tung oil fatty acids. Epoxy (meth)acrylate refers to a reaction product of an epoxy compound having two or more epoxy groups in one molecule and an unsaturated dibasic acid such as acrylic acid or methacrylic acid. Examples of epoxy compounds include bisphenol A-based epoxy compounds (for example, "Araldite GY-250" manufactured by Ciba Corporation), novolac-based epoxy compounds (for example, "Araldite GY-250" manufactured by Ciba Corporation),
"Epicote 154"), epoxy compounds derived from fatty cyclic compounds such as cyclohexane and dicyclopentadiene (e.g. "Titsonox
221''), etc. In obtaining the curable resin composition of the present invention from the polymerizable compound (A) and the unsaturated polyester and/or epoxy (meth)acrylate (B), the polymerizable Compound (A) and unsaturated polyester and/or epoxy (meth)acrylate (B) may be mixed and dissolved in any order and may be mixed and dissolved by any method. Such mixing order and mixing method The present invention is not limited by this. The curable resin composition of the present invention essentially contains a polymerizable compound (A) and an unsaturated polyester and/or an epoxy (meth)acrylate (B). In order to adjust the viscosity and improve workability, other polymerizable vinyl monomers may be added and used. Examples of such other polymerizable vinyl monomers include styrene, vinyltoluene, Divinylbenzene, N-vinyl-2-pyrrolidone, N-vinylpyridine, diallyl phthalate, diallyl isophthalate, triallyl cyanurate, triallyl isocyanurate, methyl methacrylate, methyl acrylate, ethyl methacrylate, ethyl acrylate, isodecyl meth acrylate,
Benzyl acrylate, furfuryl acrylate, lauryl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol Dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol methacrylate, 1,6
-hexane diacrylate, 1,6-hexane dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, and the like. Additionally, additives commonly used in this technical field, such as silicone-based or acrylic leveling agents, thixotropic agents such as anhydrous silicic acid fine particles, fillers such as calcium carbonate, silica powder, clay, glass powder, mica, etc., are also effective. It can be used for The curable resin composition of the present invention thus obtained has a small weight loss upon curing, and the coating film and molded product obtained by curing have excellent heat resistance. It also has excellent adhesion to the base material. When using the curable resin composition of the present invention, curing can be carried out using a polymerization initiator commonly used in the art or by irradiation with ultraviolet rays. As a polymerization initiator, benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, di-t
-amyl peroxide, dicumyl peroxide, pt-butyl peroxybenzoate, and the like. It is also possible to use these polymerization initiators together with organic metal salts such as cobalt octenoate, cobalt naphthenate, manganese octenoate, vanadium octenoate, and organic amines such as N,N-dimethylaniline as accelerators.
A photosensitizer can be used during ultraviolet irradiation, and examples of such photosensitizers include benzoin, benzoin ethyl ether, benzoin isopropyl ether, and the like. or,
A polymerization initiator and ultraviolet irradiation can also be used together. Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, "parts" in the examples shall mean "parts by weight." Reference Example 1 In a flask, 193 g (1 mol) of N-(2-hydroxyethyl)-tetrahydrophthalimide, 195 g of toluene, 0.5 g of hydroquinone, and 80 g of acrylic acid.
(1.1 mol) and 0.8 g of para-toluenesulfonic acid were added to carry out an esterification reaction at 90 to 110°C under a stream of air, and the reaction was stopped when 18 ml of produced water had been distilled out. After the reaction is complete, neutralize with NaOH aqueous solution to pH 6-7.
After separating the aqueous layer and toluene layer, toluene was distilled off from the toluene layer by vacuum distillation to obtain the desired 2-tetrahydrophthalimidoethyl acrylate (bp 161-165℃/0.29mmHg, hereinafter referred to as imide acrylate (1)). call). This imide acrylate (1) had no odor and was normally in a liquid state. Reference Example 2 In Reference Example 1, 193 g of N-(2-hydroxyethyl)-tetrahydrophthalimide was replaced with N.
2-(methyltetrahydrophthalimide) was prepared in the same manner as in Reference Example 1 except that 217 g of -(2-hydroxyethyl)-methyltetrahydrophthalimide was used.
Ethyl acrylate (hereinafter referred to as imide acrylate)
(2)) was obtained. This imide acrylate (2) also had no odor and was normally plate-like. Example 1 0.3 mol of isophthalic acid and 0.3 mol of adipic acid in the reactor
mol, maleic anhydride 0.4 mol and dipropylene glycol 1.05 mol, and under nitrogen flow, 180 ~
A dehydration condensation reaction was carried out at 220°C to obtain an unsaturated polyester with an acid value of 31. The number average molecular weight determined by gel permeation chromatography (hereinafter referred to as GPC) was 1800. 100 parts of the imide acrylate (1) obtained in Reference Example 1 and 0.02 part of hydroquinone were mixed and dissolved in 100 parts of this unsaturated polyester at 80°C to obtain a transparent curable resin composition (1). After thoroughly dissolving 0.2 parts of cobalt octenoate in 100 parts of this curable resin composition (1), 1 part of pt-butyl peroxybenzoate was added and mixed, and 1 g of this was poured into a 60 mm diameter aluminum dish and thinly spread. It was spread and cured at 130°C for 1 hour, and then further cured at 150°C for 4 hours to obtain a cured coating film. The weight loss during curing was measured and shown in Table 1. Next, the weight of the obtained cured coating film is set as 100,
The weight of the sample when it was left in a constant temperature bath at 250°C was measured after 1 day and 10 days to examine its heat resistance. The results are shown in Table 1. Comparative Example 1 A resin composition was obtained in the same manner as in Example 1 except that 100 parts of styrene was used in place of 100 parts of imide acrylate (1). (Hereinafter referred to as Comparative Resin Composition (1).) Regarding this Comparative Resin Composition (1), the weight loss during curing and the heat resistance of the cured coating film were investigated in the same manner as in Example 1. The results are shown in Table 1. It was shown to. Example 2 0.45 mol of tetrahydrophthalic anhydride in the reactor,
Adipic acid 0.25 mol and diethylene glycol
1.03 mol was charged and a dehydration condensation reaction was carried out at 180 to 230°C under a nitrogen stream, and when the acid value reached 10.
The mixture was cooled to 150°C, then 0.3 mol of maleic anhydride was added, and the dehydration condensation reaction was further advanced to obtain an unsaturated polyester with an acid value of 25. The number average molecular weight by GPS was 1900. 100 parts of imide acrylate (1), 40 parts of diethylene glycol dimethacrylate, and 0.024 parts of hydroquinone were mixed and dissolved in 100 parts of this unsaturated polyester to obtain a transparent curable resin composition (2) with almost no odor. This curable resin composition (2) 100
After sufficiently dissolving 0.02 part of cobalt octenoate in 1 part, 1 part of pt-butyl peroxybenzoate was mixed and dissolved, and the weight loss during curing and the heat resistance of the cured coating film were examined in the same manner as in Example 1. Ta. The results are shown in Table 1. Further, the above-mentioned curable resin composition (2) to which cobalt octenoate and pt-butyl peroxybenzoate were added was cast and cured to obtain a cast plate with a thickness of 3 mm. The weight of this cast plate was measured when it was left in a constant temperature bath at 250°C, and the heat resistance was investigated. The results are shown in Table 1. Example 3 1 mole of soybean aliphatic and 0.5 isophthalic acid in the reactor
1 mole of trimethylolpropane and 0.1 mole of ethylene glycol were charged, and the acid value was dehydrated at 180 to 220°C to give an acid value of 10. After cooling to 150°C, 0.1 mole of ethylene glycol and 0.5 mole of fumaric acid were charged to give an acid value of 180 to 190. Acid value 25 after dehydration reaction at ℃
An unsaturated polyester was obtained. 100 parts of imide acrylate (1), 50 parts of diethylene glycol dimethacrylate, and 0.02 part of hydroquinone were mixed and dissolved in 100 parts of this unsaturated polyester to obtain a transparent curable resin composition (3) with almost no odor. This curable resin composition (3) 100
After dissolving 1 part of pt-butyl peroxybenzoate in 1 part, the weight loss during curing and the heat resistance of the cured coating film were examined in the same manner as in Example 1. The results are shown in Table 1. Further, the curable resin composition (3) in which the above-mentioned pt-butyl peroxybenzoate was dissolved was applied to a tin plate with a bar coater to a thickness of 30μ, and cured at 150°C for 1 hour to form a cured coating. I got it. This coating film has sufficiently dried and hardened, and has been passed the goblin test (JIS D
0203) was 100/100, indicating excellent adhesion. The results of the bending test (JIS K 5400) were also good. Example 4 1 mole of soybean aliphatic and 0.5 isophthalic acid in the reactor
1 mole of tris(2-hydroxyethyl)isocyanurate and 0.1 mole of ethylene glycol were dehydrated and condensed at 210°C under a nitrogen stream. When the acid value reached 10, the reaction was stopped, and the mixture was cooled to 150°C to produce 0.1 mol of ethylene glycol. Mol and fumaric acid 0.5
The mixture was further dehydrated and condensed at 180 to 190°C to obtain an unsaturated polyester having an acid value of 22. The number average molecular weight by GPC was 1950. 60 parts of imide acrylate (1), 40 parts of diethylene glycol dimethacrylate, and 0.02 part of hydroquinone were mixed and dissolved in 100 parts of this unsaturated polyester to obtain a transparent curable resin composition (4) with almost no odor. After dissolving 1 part of pt-butyl peroxybenzoate in 100 parts of this curable resin composition (4), the weight loss during curing and the heat resistance of the cured coating were examined in the same manner as in Example 1. Ta. The results are shown in Table 1. In addition, the curable resin composition (4) in which the above pt-butyl peroxybenzoate was dissolved was applied to a tin plate with a bar coater to a thickness of 30μ, and cured at 150°C for 1 hour to form a cured coating. I got it. This coating film was sufficiently dried and cured, and the result of the cross-cut test conducted in the same manner as in Example 3 was 100/100, indicating excellent adhesion, and the results of the bending test were also good.
Further, the curable resin composition (4) containing the above polymerization initiator was cast and cured to obtain a cast plate with a thickness of 3 mm. The heat resistance of this casting plate was examined at 250°C in the same manner as in Example 2. The results are shown in Table 1. Comparative Example 2 A transparent resin composition with almost no odor was obtained in the same manner as in Example 4, except that 60 parts of diallylisophthalate was used in place of 60 parts of imide acrylate (1). (Hereinafter, referred to as Comparative Resin Composition (2).) Regarding this Comparative Resin Composition (2), the weight loss during curing and the heat resistance of the cured coating film were examined in the same manner as in Example 4. The results are shown in Table 1. Example 5 A transparent curable resin composition with almost no odor was prepared by mixing and dissolving 150 parts of imide acrylate (1), 50 parts of diethylene glycol dimethacrylate, and 0.01 part of hydroquinone in 100 parts of the unsaturated polyester obtained in Example 4. I got item (5). One part of pt-butyl peroxybenzoate was dissolved in 100 parts of this curable resin composition (5), and the weight loss during curing and the heat resistance of the cured coating film were examined in the same manner as in Example 1. The results are shown in Table 1. Example 6 Bisphenol type epoxy resin with epoxy equivalent weight 185 (manufactured by Ciba, “Araldite GY-2500”) 370
176 parts of methacrylic acid, 0.1 part of hydroquinone and 2.0 parts of triethylamine were charged into a reactor.
The reaction was carried out at 110° C. for 5 hours while introducing air, and the reaction was terminated when the acid value reached 7 to obtain epoxy methacrylate. 16.4 parts of this epoxy methacrylate, 13.6 parts of diallyl phthalate, and 70 parts of the imide acrylate (2) obtained in Reference Example 2 were mixed to obtain a transparent curable resin composition (6) with almost no odor. One part of pt-butyl peroxybenzoate was dissolved in 100 parts of this curable resin composition (6), and the weight loss during curing and the heat resistance of the cured coating film were examined in the same manner as in Example 1. The results are shown in Table 1. Example 7 An odorless and transparent curable resin composition (7) was obtained in the same manner as in Example 5 except that imide acrylate (2) was used instead of imide acrylate (1). Regarding this cured resin composition (7), the weight loss upon curing and the heat resistance of the cured coating film were examined in the same manner as in Example 1. The results are shown in Table 1. Example 8 The weight loss during curing was measured in the same manner as in Example 5 except that benzoyl peroxide was used instead of pt-butyl peroxybenzoate. The results are shown in Table 1. Example 9 Curable resin composition (4) obtained in Example 4 100
After dissolving 0.2 parts of cobalt octenoate and 2 parts of benzoin ethyl ether in the solution, it was applied to a glass plate to form a coating film of approximately 100μ, and irradiated under an ultraviolet lamp (800V) at a distance of 15cm for 5 minutes. A sufficiently cured coating film was obtained.

【表】 第1表に示した結果からも明らかな如く、本発
明の硬化性樹脂組成物は硬化時の重量減少が小さ
く、且つ硬化して得られる塗膜や成形品の耐熱性
も優れたものである。
[Table] As is clear from the results shown in Table 1, the curable resin composition of the present invention had a small weight loss during curing, and the heat resistance of the coating film and molded product obtained by curing was also excellent. It is something.

Claims (1)

【特許請求の範囲】 1 一般式 (但し式中、R1及びR2はそれぞれ水素又はメ
チル基を表し、同じであつても異なつてもよいも
のとする。) で示される重合性化合物(A) 並びに 不飽和ポリエステル及び/又はエポキシ(メ
タ)アクリレート(B) を含有してなることを特徴とする硬化性樹脂組成
物。 2 不飽和ポリエステルが、α,β−不飽和二塩
基酸及び脂肪族一塩基酸を必ず含有する酸成分を
用いて導かれたものである特許請求の範囲第1項
記載の硬化性樹脂組成物。 3 不飽和ポリエステルが、トリス(2−ヒドロ
キシエチル)イソシアヌレートを必ず含有する多
価アルコール成分を用いて導かれたものである特
許請求の範囲第1項又は第2項記載の硬化性樹脂
組成物。 4 エポキシ(メタ)アクリレートが、ビスフエ
ノール骨格を有するエポキシ化合物を成分として
導かれたものである特許請求の範囲第1項、第2
項又は第3項記載の硬化性樹脂組成物。
[Claims] 1. General formula (However, in the formula, R 1 and R 2 each represent hydrogen or a methyl group, and may be the same or different.) Polymerizable compound (A) represented by: and unsaturated polyester and/or epoxy A curable resin composition containing (meth)acrylate (B). 2. The curable resin composition according to claim 1, wherein the unsaturated polyester is derived using an acid component that necessarily contains an α,β-unsaturated dibasic acid and an aliphatic monobasic acid. . 3. The curable resin composition according to claim 1 or 2, wherein the unsaturated polyester is derived using a polyhydric alcohol component that necessarily contains tris(2-hydroxyethyl)isocyanurate. . 4. Claims 1 and 2, wherein the epoxy (meth)acrylate is derived from an epoxy compound having a bisphenol skeleton as a component.
The curable resin composition according to item 1 or 3.
JP12939779A 1979-10-09 1979-10-09 Curable resin composition Granted JPS5653119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12939779A JPS5653119A (en) 1979-10-09 1979-10-09 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12939779A JPS5653119A (en) 1979-10-09 1979-10-09 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS5653119A JPS5653119A (en) 1981-05-12
JPS6121490B2 true JPS6121490B2 (en) 1986-05-27

Family

ID=15008549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12939779A Granted JPS5653119A (en) 1979-10-09 1979-10-09 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS5653119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383195U (en) * 1986-11-19 1988-06-01

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592816B1 (en) * 1998-11-30 2006-06-23 도아고세이가부시키가이샤 Pressure-sensitive adhesive composition curable with actinic energy ray and pressure-sensitive adhesive sheet
JP4538910B2 (en) * 2000-06-16 2010-09-08 東亞合成株式会社 Aqueous crosslinkable resin composition
EP1211293A3 (en) 2000-11-30 2004-01-14 Kansai Paint Co., Ltd. Curing type water base resin composition
JP2003096388A (en) 2001-09-26 2003-04-03 Kansai Paint Co Ltd Resin composition for aqueous coating material
JP2003096386A (en) * 2001-09-26 2003-04-03 Kansai Paint Co Ltd Resin composition for aqueous coating material
JP6236238B2 (en) * 2013-07-18 2017-11-22 日東シンコー株式会社 Resin composition for electrical insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383195U (en) * 1986-11-19 1988-06-01

Also Published As

Publication number Publication date
JPS5653119A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
JPS6121490B2 (en)
JPS6039283B2 (en) Method for producing polybutadiene-modified unsaturated polyester
JPH1160540A (en) Aromatic ester (meth)acrylate dendrimer and curable resin composition
JPH0231090B2 (en)
JPH0372647B2 (en)
JP3422103B2 (en) Photocurable resin composition
JPS5952649B2 (en) photocurable composition
JPS61161248A (en) Acrylamide oligomer and preparation thereof
JPS5918717A (en) Curable resin composition
JPS5853644B2 (en) Photocurable heat-resistant resin composition
JPS5996115A (en) Photocurable resin composition
JPS5928230B2 (en) Photocurable insulation varnish
JPS6035012A (en) Resin composition
JPH0155651B2 (en)
JPS5874708A (en) Unsaturated polyester resin composition
JPS5980416A (en) Resin composition
JPS5932484B2 (en) Photocurable resin composition
JPS5950247B2 (en) Curable resin composition
JPS62207309A (en) Photocurable composition
JPH0334772B2 (en)
JPS6334881B2 (en)
JPS63241016A (en) Curable composition
JPS6011052B2 (en) Curable resin composition
JPH07324123A (en) Thermosetting allylic resin composition excellent in curability
JPH0153689B2 (en)