JPS61214477A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPS61214477A
JPS61214477A JP5736085A JP5736085A JPS61214477A JP S61214477 A JPS61214477 A JP S61214477A JP 5736085 A JP5736085 A JP 5736085A JP 5736085 A JP5736085 A JP 5736085A JP S61214477 A JPS61214477 A JP S61214477A
Authority
JP
Japan
Prior art keywords
layer
concentration
impurity
semiconductor layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5736085A
Other languages
Japanese (ja)
Inventor
Kyohiko Kotani
小谷 教彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5736085A priority Critical patent/JPS61214477A/en
Publication of JPS61214477A publication Critical patent/JPS61214477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce the generation of carriers due to an impact ionization, to impress the change of the potential of a section where one of carriers generated is integrated at a minimum even on the integration of one of carriers generated in the first conduction type semiconductor layer and to increase the conductance of a MOSFET by extending a depletion layer in a second conduction type second semiconductor layer and weakening the field strength of the depletion layer. CONSTITUTION:A low-concentration N<+> impurity layer 8 extends a depletion layer in a high-concentration N<+> impurity layer 3 for a drain and weakens field strength in the depletion layer, and reduces the generation of carriers causing the lowering of source-drain withstanding voltage. A high-concentration P<+> impurity layer 9 prevents the lowering of built-in voltage between a high-concentration N<+> impurity layer 2 for a source and a P-type silicon substrate 1 even when holes in carriers generated are integrated to the front surface of the high-concentration N<+> impurity layer 2 for the source, and obviates the inflow of electrons to the P-type silicon substrate 1 from the high-concentration N<+> impurity layer 2 for the source. Accordingly, the increase of withstanding voltage, that is, fining-of a MOSFET is realized, and reliability is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はMOS型半導体装置に関し、特に微細化、高
耐圧化、高速化および信頼性の高度化が図れるMOS型
半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS type semiconductor device, and particularly to a MOS type semiconductor device that can be miniaturized, increased in voltage resistance, increased in speed, and improved in reliability.

[従来の技術] 従来、MOS電界効果トランジスタ(以下MOSFET
と記す)の微細化のた・めにLDD(LIOht+y 
 Q oped  DIHusion)構造(低濃度拡
散層を有する構造)や、Graded  Juncti
on  (傾斜型接合)構造が使用されている。
[Prior art] Conventionally, MOS field effect transistors (hereinafter referred to as MOSFETs)
LDD (LIOht+y
Q oped DIHusion structure (structure with low concentration diffusion layer), Graded Junction
on (slanted junction) structure is used.

第1図はLOO構造のMOSFETを示す断面図である
。図において、p形シリコン基板1上の一部にソース用
高濃度n+不純物層2.低濃度n−不純物層4が形成さ
れており、またp形シリコン基板1上の他の一部に低濃
度n−不純物層4と間隔を隔てて低濃度n−不純物層5
.ドレイン円高濃度n+不純物層3が形成されている。
FIG. 1 is a sectional view showing a MOSFET with an LOO structure. In the figure, a high concentration n+ impurity layer 2 for source is formed on a part of a p-type silicon substrate 1. A low concentration n-impurity layer 4 is formed, and a low concentration n-impurity layer 5 is formed on another part of the p-type silicon substrate 1 with a spacing therebetween.
.. A drain circle high concentration n+ impurity layer 3 is formed.

6はゲート絶縁膜であり、7はゲート電極である。6 is a gate insulating film, and 7 is a gate electrode.

第2図&t G raded J unction構造
のMOSFETを示す断面図である。図において、p形
シリコン基板1上の一部に低濃度n−不純物[4が形成
されており、この不純物層上にソース用高濃度n1不純
物層2が形成されている。またp形シリコン基板1上の
他の一部に低部[n−不純物層4と間隔を隔てて低濃度
n−不純物層5が形成されており、この不純物層上にド
レイン円高濃度n+不純物層3が形成されている。
FIG. 2 is a sectional view showing a MOSFET having a graded junction structure. In the figure, a low concentration n- impurity [4] is formed on a part of a p-type silicon substrate 1, and a high concentration n1 impurity layer 2 for source is formed on this impurity layer. In addition, a low concentration n- impurity layer 5 is formed in another part of the p-type silicon substrate 1 at a distance from the n- impurity layer 4, and a drain circle with a high concentration n+ impurity layer is formed on this impurity layer. Layer 3 is formed.

これらの構造の特徴は、ソース円高濃度n+不純物層2
およびドレイン用高引I+不純物層3のまわりの一部に
あるいはまわり全体に低濃度n−不純物層4F3よび低
濃度n−不純物層5を付加した点であり、その利点とし
ては、低濃度n−不純物層5によってドレイン円高濃度
n+不純物層3の空乏層が広がってこの空乏層内での電
界強度が弱くなり、このためソース・ドレイン耐圧の向
上とホットエレクトロンの注入の減少が図れることであ
る。
The characteristics of these structures are that the source circle has a high concentration n+ impurity layer 2
Also, a low concentration n- impurity layer 4F3 and a low concentration n- impurity layer 5 are added to a part or the entire surrounding of the high I+ impurity layer 3 for the drain, and the advantage is that the low concentration n- The impurity layer 5 expands the depletion layer of the drain circle high concentration n+ impurity layer 3 and weakens the electric field strength within this depletion layer, thereby improving the source/drain breakdown voltage and reducing the injection of hot electrons. .

【発明が解決しようとする問題点] しかしながら、従来のMOSFETにおいては、ソース
円高濃度n+不純物層2のまわりの一部にあるいはまわ
り全体に形成された低濃度n−不純物層4での抵抗成分
の増加がMOSFETのコンダクタンスを大きく低下さ
せるという基本的な欠点があり、このコンダクタンスの
低下はこのMOSFETをLSIなどで使用する場合に
大きな障害になっている。
Problems to be Solved by the Invention] However, in the conventional MOSFET, the resistance component in the low concentration n- impurity layer 4 formed partially or entirely around the source circle high concentration n+ impurity layer 2 The fundamental drawback is that an increase in the MOSFET greatly reduces the conductance of the MOSFET, and this reduction in conductance is a major obstacle when using this MOSFET in LSIs and the like.

また、LLD構造のMOSFETではその製造プロセス
が相当複雑になり、G raded  J uncti
In addition, the manufacturing process for LLD structure MOSFETs is considerably complicated, and graded junction
.

n構造のMOSFETでは低濃度n−不純物層4゜5が
p形シリコン基板1内に深く形成されるためバンチスル
ーが発生しやすいという欠点があった。
In the n-structure MOSFET, the low concentration n-impurity layer 4.5 is formed deep within the p-type silicon substrate 1, so there is a drawback that bunch-through is likely to occur.

以上のように、従来のMOSFETには種々の欠点があ
り、コンダクタンスの低下を生じずに、MOS型半導体
装置の微細化、高耐圧化および信頼性の高度化を達成す
ることは基本的に困難であった。
As mentioned above, conventional MOSFETs have various drawbacks, and it is fundamentally difficult to achieve miniaturization, high breakdown voltage, and high reliability of MOS semiconductor devices without causing a decrease in conductance. Met.

この発明は上記のような欠点を除去するためになされた
もので、微細化、高耐圧化、高速化および信頼性の高度
化を図れるMOS型半導体装1を提供することを目的と
する。
The present invention was made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a MOS type semiconductor device 1 that can be miniaturized, have a high breakdown voltage, operate at high speed, and have high reliability.

[問題点を解決するための手段] この発明に係るMOS型半導体装置は、第111電形の
半導体基板上に該半導体基板の不純物濃度より不純物濃
度が高い第1導電形の半導体層を形成し、該第1s電形
の半導体層上に不純物濃度が高い第2導電形の第1半導
体層を形成し、上記半導体基板上に上記第1導電形の半
導体層と間隔を隔てて不純物濃度が低い第2導電形の半
導体層を形成し、該第21!′Il形の半導体層上に不
純物濃度が高い第2導電形の第2半導体層を形成し、少
なくとも上記第1導電形の半導体層上および上記半導体
基板上に不純物濃度が低い表面半導体層を形成し、該表
面半導体層の一方側が上記第2導電形の第1半導体層に
接触しその他方側が少なくとも第2導電形の半導体層に
接触するようにし、上記第2導電形の第1半導体層上、
上記表面半導体層上、上記第2導電形の半導体層上およ
び上記第2導電形の第2半導体層上にゲート絶縁膜を形
成し、該ゲート絶縁膜上にゲート電極を形成するように
したものである。
[Means for Solving the Problems] A MOS semiconductor device according to the present invention includes forming a semiconductor layer of a first conductivity type on a semiconductor substrate of a 111th conductivity type, the impurity concentration of which is higher than that of the semiconductor substrate. , a first semiconductor layer of a second conductivity type with a high impurity concentration is formed on the semiconductor layer of the first S conductivity type, and a first semiconductor layer of a second conductivity type with a low impurity concentration is formed on the semiconductor substrate at a distance from the semiconductor layer of the first conductivity type. A semiconductor layer of a second conductivity type is formed, and the 21st! 'A second semiconductor layer of a second conductivity type with a high impurity concentration is formed on the Il type semiconductor layer, and a surface semiconductor layer with a low impurity concentration is formed at least on the semiconductor layer of the first conductivity type and on the semiconductor substrate. one side of the surface semiconductor layer is in contact with the first semiconductor layer of the second conductivity type, and the other side is in contact with at least the semiconductor layer of the second conductivity type; ,
A gate insulating film is formed on the surface semiconductor layer, the second conductivity type semiconductor layer, and the second conductivity type second semiconductor layer, and a gate electrode is formed on the gate insulating film. It is.

[作用1 この発明においては、不1ill物濃度が高い第2導電
形の第2半導体層のまわりの不純物濃度が低い第2導電
形の半導体層は、上記第2導電形の第2半導体層の空乏
層を広げてこの空乏層内の電界強度を弱くし衝突電離に
よるキャリアの発生を減少させ、不純物濃度が高い第2
導電形の第1半導体層のまわりの不純物11度が高い第
1′s電形の半導体層では、上記の発生したキャリアの
一方が集積してもこの部分の電位の変化を最小に抑制す
る。
[Operation 1] In the present invention, the semiconductor layer of the second conductivity type with a low impurity concentration surrounding the second semiconductor layer of the second conductivity type with a high impurity concentration is By widening the depletion layer and weakening the electric field strength within this depletion layer, the generation of carriers due to impact ionization is reduced.
In the semiconductor layer of the 1's conductivity type in which the impurity level around the first semiconductor layer of the conductivity type is high, even if one of the generated carriers is accumulated, the change in the potential of this portion is suppressed to the minimum.

また、上記第1導電形の半導体層はMOS型半導体装置
のコンダクタンスを向上させる。
Further, the semiconductor layer of the first conductivity type improves the conductance of the MOS type semiconductor device.

[実施例] 以下、この発明の実m例を図について説明するが、その
前にこの発明の概要について若干説明する。
[Example] Hereinafter, actual examples of the present invention will be explained with reference to the drawings, but before that, an outline of the present invention will be briefly explained.

MOSFETの耐圧は、ドレイン接合における高電界下
での衝突電離による「なだれ降伏」によって、あるいは
W突電離で発生した電子−正孔対。
The breakdown voltage of a MOSFET is determined by "avalanche breakdown" due to impact ionization under a high electric field at the drain junction, or by electron-hole pairs generated by W impact ionization.

のうち、たとえばnチャンネルMOSFETであれば正
孔がドレイン電界によってソース近くまで流れてそこに
高密度で集積し、このためソース近くの基板内部の電位
が上昇してソースから電子が多量に基板に注入されMO
SFETがバイポーラトランジスタのように動作するこ
とによって低下する。特に後者のバイポーラ動作は、短
チャンネルMOSFET1.:おいて耐圧低下の主な原
因となっている。この発明はこのMOSFETのバイポ
ーラ動作をも抑制することができる。すなわち、ドレイ
ン付近の不純物の濃度分布を緩やかに変化させることに
よって電界集中を防ぎ衝突電離による電子−正孔対の発
生をまず抑制する。そして、多量の正孔がソース近くに
集積しても、ソース近くにはp+層があるため基板内部
の電位の上昇が抑制されソースから基板への電子の注入
が発生しない。このように、この発明の構造のMOSF
ETは短チャンネルMOSFETでは不可能であった高
いソース・ドレイン耐圧を実現できることが理論的に明
らかである。
For example, in the case of an n-channel MOSFET, holes flow close to the source due to the drain electric field and accumulate there at high density, which increases the potential inside the substrate near the source and causes a large amount of electrons to flow from the source to the substrate. Injected MO
This is due to the fact that the SFET behaves like a bipolar transistor. In particular, the latter bipolar operation is suitable for short channel MOSFET1. : This is the main cause of a decrease in breakdown voltage. The present invention can also suppress bipolar operation of this MOSFET. That is, by gently changing the impurity concentration distribution near the drain, electric field concentration is prevented and the generation of electron-hole pairs due to collision ionization is first suppressed. Even if a large amount of holes accumulate near the source, since there is a p+ layer near the source, the rise in potential inside the substrate is suppressed and injection of electrons from the source to the substrate does not occur. In this way, the MOSFET of the structure of this invention
It is theoretically clear that ETs can achieve high source-drain breakdown voltages that are not possible with short channel MOSFETs.

第1図はこの発明の実施例であるnチャンネルMOSF
ETを示す断面図である。図において、不純物濃度が1
Q I G / cal程度のp形シリコン基板1上の
一部に不純物濃度が10′5〜101’7am”の高濃
度p+不純物層9が形成されており、この不純物層上に
ソース同高濃度n+不純物履2が形成されている。また
p形シリコン基板1上の他の一部に高濃度p+不純物1
19と間隔を隔テテ不純物濃度が10+4〜10I6/
Cl11′の低濃度n−不純物層8が形成されており、
この不純物層上にドレイン用高man+不純物層3が形
成されている。高濃度p+不純物M9上およびp形シリ
コン基板1上に不純物濃度が〜10”/C13のp形ま
たはn形の低濃度不純物層10が形成されており、この
不純物層の一方側がソース円高濃度n+不純物層2に接
触しその他方側が低濃度n−不純物層8に接触している
。ソース円高濃度n+不純物層2上、低濃度不純物層1
0上、低部i[n−不純物層8上およびドレイン用高濃
度n+不純物113上にゲート絶縁膜6が形成されてお
り、このゲート絶縁膜上にゲート電極7が形成されてい
る。p形シリコン基板1はイオン注入で形成してもよく
、あるいはエピタキシャル成長によって形成してもよい
。またp形シリコン基板1内への不純物の導入、すなわ
ちソース円高濃度n+不純物層2.高漢度p+不純物層
9.低濃度不純物層10、低濃度n−不純物層8および
ドレイン円高濃度n+不純物層3は、イオン注入や拡散
によって形成してもよく、あるいはM B E (M 
olecularl On  Beam  l:、pi
taxiy :分子イオンビームエピタキシ)やF I
 B (Focused  I on  Beam :
集束イオンビーム)によって形成してもよい。低濃度n
+不純物層8はドレイン円高濃度n+不純物層3の空乏
層を広げてこの空乏層内の電界強度を弱め、ソース・ド
レイン耐圧の低下の原因とな   ゛るキャリアの発生
を減少させる。高濃度p1不純物層9はこの発生したキ
ャリアのうち正孔がソース層高wren+不純物眉2前
面に集積しても、高濃度p+不純物層9のためにソース
円高濃度n+不純物層2とp形シリコン基板11IIl
のビルトイン電圧の低下を防ぎ、ソース円高濃度n+不
純物層2からp形シリコン基板1への電子の流入を防ぐ
Figure 1 shows an n-channel MOSFET which is an embodiment of the present invention.
It is a sectional view showing ET. In the figure, the impurity concentration is 1
A high-concentration p+ impurity layer 9 with an impurity concentration of 10'5 to 101'7 am'' is formed on a part of the p-type silicon substrate 1 of approximately Q I G / cal, and on this impurity layer there is a source with the same high concentration. An n+ impurity layer 2 is formed.Also, a high concentration p+ impurity 1 is formed on another part of the p-type silicon substrate 1.
19 and the impurity concentration is 10+4~10I6/
A low concentration n-impurity layer 8 of Cl11' is formed,
A high man+ impurity layer 3 for drain is formed on this impurity layer. A p-type or n-type low concentration impurity layer 10 with an impurity concentration of ~10''/C13 is formed on the high concentration p+ impurity M9 and on the p type silicon substrate 1, and one side of this impurity layer is a source circle with high concentration. The other side is in contact with the n+ impurity layer 2, and the other side is in contact with the low concentration n- impurity layer 8.The source circle is on the high concentration n+ impurity layer 2, and the low concentration impurity layer 1
A gate insulating film 6 is formed on the low part i[n- impurity layer 8 and on the high concentration n+ impurity 113 for drain, and a gate electrode 7 is formed on this gate insulating film. P-type silicon substrate 1 may be formed by ion implantation or epitaxial growth. Also, the introduction of impurities into the p-type silicon substrate 1, that is, the source circle high concentration n+ impurity layer 2. High degree p+ impurity layer 9. The low concentration impurity layer 10, the low concentration n- impurity layer 8, and the drain circle high concentration n+ impurity layer 3 may be formed by ion implantation or diffusion, or by M B E (M
olecular On Beam l:, pi
taxi: molecular ion beam epitaxy) and FI
B (Focused on Beam:
It may also be formed by a focused ion beam). low concentration n
The + impurity layer 8 widens the depletion layer of the heavily doped n+ impurity layer 3 in the drain circle, weakens the electric field strength within this depletion layer, and reduces the generation of carriers that cause a decrease in source-drain breakdown voltage. Even if holes among the generated carriers are accumulated on the front surface of the source layer high wren + impurity eyebrow 2, the high concentration p1 impurity layer 9 makes the source circle high concentration n+ impurity layer 2 and p type. Silicon substrate 11IIl
This prevents the built-in voltage from decreasing and prevents electrons from flowing into the p-type silicon substrate 1 from the source circle high concentration n+ impurity layer 2.

このため、MOSFETの高耐圧化ひいては微細化が実
現され、また信頼度の高度化が実現される。
Therefore, higher breakdown voltage and further miniaturization of the MOSFET can be realized, and higher reliability can be realized.

低濃度不純物層10はp形シリコン基板1表面のしきい
値電圧を制御するためのもので、高濃度p“不純物11
9によるしきい値電圧の上昇を抑制する。また、ソース
用高濃度n+不純物1I12のまねりに高濃度p+不純
物!19を形成することによってMOSFETのコンダ
クタンスが向上し、その高速化が実現されも。
The low concentration impurity layer 10 is for controlling the threshold voltage of the surface of the p-type silicon substrate 1, and the high concentration p" impurity layer 11
This suppresses the increase in threshold voltage caused by 9. In addition, a high concentration p+ impurity is added to imitate the high concentration n+ impurity 1I12 for the source! By forming 19, the conductance of the MOSFET can be improved and its speed can be increased.

第2図は、この発明の他の実施例である5OI(311
1con  Qn  In5ulator)nチャンネ
ル間O8FETを示す断面図である。図において、絶縁
物11上に第1図のnチャンネル間O8FETと同様な
構造が形成されており、これによってもMOSFETの
微細化、高耐圧化、高速化および信頼度の高度化が実現
される。
FIG. 2 shows 5OI (311
1con Qn In5ulator) is a cross-sectional view showing an n-channel O8FET. In the figure, a structure similar to the n-channel O8FET in Figure 1 is formed on an insulator 11, and this also realizes miniaturization, higher voltage resistance, higher speed, and higher reliability of the MOSFET. .

上述のような構造の作用は、ソース側またはドレイン側
の構造のみを単独で採用してもバンチスルー発生による
耐圧低下や接合耐圧の低下を招き、この発明のような効
果は期待できない。すなわち、この発明の特徴はMOS
FETの耐圧低下をその原因となる正孔の発生と正孔の
持つ正電荷の影響を抑制することによって実現し、キャ
リアの発生を防ぐことによってホットエレクトロンの発
生も同時に減少させて信頼度の高度化を図り、さらにソ
ースのまわりにp+層を形成することによって低抵抗化
を図りコンダクタンスの向上を実現する、高性能微細化
MOSFETである。
As for the effects of the structure described above, even if only the structure on the source side or the drain side is adopted alone, the withstand voltage and the junction breakdown voltage will be lowered due to bunch-through generation, and the effects of the present invention cannot be expected. In other words, the feature of this invention is that MOS
This reduces the breakdown voltage of FETs by suppressing the generation of holes that cause this and the effect of the positive charge that holes have.By preventing the generation of carriers, the generation of hot electrons is also reduced, resulting in a high level of reliability. This is a high-performance miniaturized MOSFET that achieves lower resistance and improved conductance by forming a p+ layer around the source.

なお、ソース用高漢度n+不粍物層2とドレイン用高濃
度n+不純物@3の深さは異なってもよく、たとえばソ
ース用高濃度n+不純物層2I3よび高濃度p+不純物
層9の深さをドレイン用高晴度n+不純物層3および低
濃度n−不不純物日の深さより浅くすることによって、
コンダクタンスの低下を防ぎながらパンチスルーによる
耐圧低下を一層効果的に防止することができる。
Note that the depths of the high concentration n+ impurity layer 2 for the source and the high concentration n+ impurity @3 for the drain may be different, for example, the depths of the high concentration n+ impurity layer 2I3 and the high concentration p+ impurity layer 9 for the source. By making the depth shallower than the depth of the high concentration n+ impurity layer 3 for the drain and the low concentration n- impurity layer 3,
It is possible to more effectively prevent a decrease in breakdown voltage due to punch-through while preventing a decrease in conductance.

また、上記実施例では、ソース円高濃度n+不純物層2
およびドレイン層高11度04″不純物層3のまわり全
体に高温度p+不純物層9および低濃度n−不純物N8
を形成する場合について説明したが、ソース用高濃度n
+不純物1126よびドレイン用高引I+不純物113
のまわりの一部に高11度り+不純物w9および低濃度
n−不純物履8を形成する場合についても、上記実施例
と同様の効果を奏する。
Further, in the above embodiment, the source circle high concentration n+ impurity layer 2
and a high temperature p+ impurity layer 9 and a low concentration n- impurity N8 all around the drain layer height 11 degrees 04'' impurity layer 3.
We have explained the case of forming a high concentration n for source.
+Impurity 1126 and drain I + impurity 113
The same effect as in the above embodiment can be obtained also when forming the high 11 degree + impurity w9 and the low concentration n- impurity footwear 8 in a part around the .

また、上記実施例では、nチャンネルMOSFETの場
合について説明したが、各部をp形からn形にn形から
p形にしたpチャンネルMOSFETについてもこの発
明は適用できる。
Further, in the above embodiments, the case of an n-channel MOSFET has been described, but the present invention can also be applied to a p-channel MOSFET in which each part is changed from a p-type to an n-type or from an n-type to a p-type.

[発明の効果1 以上のようにこの発明によれば、第1導電形の半導体基
板上に該半導体基板の不純物濃度より不純物濃度が高い
第1導電形の半導体層を形成し、該第1導電形の半導体
層上に不純物濃度が高い第2導電形の第1半導体層を形
成し、上記半導体基板上に不純物濃度が低い第2導電形
の半導体層を形成し、該第2導電形半導体層上に不純物
濃度が高い第2導電形の第2半導体層を形成したので、
上記第2導電形の半導体層は、上記第2導電形の第2半
導体層の空乏層を広げてこの空乏層内の電界強度を弱ク
シ衝突電離によるキャリアの発生を減少させ、上記第1
導電形の半導体層では、上記の発生したキャリアの一方
が集積してもこの部分の電位の変化を最小に抑制する。
[Effect of the Invention 1 As described above, according to the present invention, a semiconductor layer of a first conductivity type having an impurity concentration higher than that of the semiconductor substrate is formed on a semiconductor substrate of a first conductivity type, and a first semiconductor layer of a second conductivity type with a high impurity concentration is formed on the semiconductor layer of the shape, a second conductivity type semiconductor layer with a low impurity concentration is formed on the semiconductor substrate, the second conductivity type semiconductor layer with a low impurity concentration; Since a second semiconductor layer of the second conductivity type with a high impurity concentration was formed on top,
The semiconductor layer of the second conductivity type widens the depletion layer of the second semiconductor layer of the second conductivity type to reduce the generation of carriers due to weak comb impact ionization by reducing the electric field strength within the depletion layer.
In a conductive type semiconductor layer, even if one of the generated carriers is accumulated, changes in the potential of this portion are suppressed to a minimum.

また、上記第1導電形の半導体層はMOSFETのコン
ダクタンスを向上させる。°このため、微細化、高耐圧
化。
Further, the semiconductor layer of the first conductivity type improves the conductance of the MOSFET. °For this reason, miniaturization and high voltage resistance.

高速化、および信頼度の高度化が図れるMOS FET
を従来のMOS F E Tより簡単な製造方法により
しかも精度良く作ることができる。
MOS FET with higher speed and higher reliability
can be manufactured using a simpler manufacturing method than conventional MOS FETs and with higher precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例であるnチャンネル間O8
FETを示す断面図である。 第2図は、この発明の他の実施例である5OInチャン
ネルMOSFETを示す断面図である。 第3図は、従来のLDD構造のMOSFETを示す断面
図である。 第4図は、従来のQ raded J unction
構造のMOSFETを示す断面図である。 図において、1はp形シリコン基板、2はソース円高濃
度n+不純物層、3はドレイン同高濃度n+不純物層、
4.5は低部[n−不純物層、6はゲート絶縁膜、7は
ゲート電極、8は低濃度n−不純物層、9は高濃度p+
不純物層、10は低濃度不純物層である。 なお、各図中同一符号は同一または相当部分を示す。 代  理  人     大  岩  増  雄第1図 第2図 1に−a@ 第3図 第4図
FIG. 1 shows an O8 between n channels, which is an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing an FET. FIG. 2 is a sectional view showing a 5OIn channel MOSFET which is another embodiment of the present invention. FIG. 3 is a cross-sectional view showing a conventional LDD structure MOSFET. Figure 4 shows a conventional Q rated junction.
FIG. 2 is a cross-sectional view showing a MOSFET structure. In the figure, 1 is a p-type silicon substrate, 2 is a source circle high concentration n+ impurity layer, 3 is a drain same high concentration n+ impurity layer,
4.5 is the lower part [n- impurity layer, 6 is the gate insulating film, 7 is the gate electrode, 8 is the low concentration n- impurity layer, 9 is the high concentration p+
The impurity layer 10 is a low concentration impurity layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 1-a@ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 第1導電形の半導体基板と、 前記半導体基板上に形成され、該半導体基板の不純物濃
度より不純物濃度が高い第1導電形の半導体層と、 前記不純物濃度が高い第1導電形の半導体層上に形成さ
れる不純物濃度が高い第2導電形の第1半導体層と、 前記半導体基板上に前記不純物濃度が高い第1導電形の
半導体層と間隔を隔てて形成される不純物濃度が低い第
2導電形の半導体層と、 前記不純物濃度が低い第2導電形の半導体層上に形成さ
れる不純物濃度が高い第2導電形の第2半導体層と、 少なくとも前記不純物濃度が高い第1導電形の半導体層
上および前記半導体基板上に形成され、かつ一方側が前
記不純物濃度が高い第2導電形の第1半導体層に接触し
他方側が少なくとも前記不純物濃度が低い第2導電形の
半導体層に接触している不純物濃度が低い表面半導体層
と、 前記不純物濃度が高い第2導電形の第1半導体層上、前
記不純物濃度が低い表面半導体層上、前記不純物濃度が
低い第2導電形の半導体層上および前記不純物濃度が高
い第2導電形の第2半導体層上に形成されるゲート絶縁
膜と、 前記ゲート絶縁膜上に形成されるゲート電極とを備えた
MOS型半導体装置。
[Scope of Claims] A semiconductor substrate of a first conductivity type; a semiconductor layer of a first conductivity type formed on the semiconductor substrate and having an impurity concentration higher than that of the semiconductor substrate; and a first conductivity type semiconductor layer having an impurity concentration higher than that of the semiconductor substrate. a first semiconductor layer of a second conductivity type with a high impurity concentration formed on a semiconductor layer of a conductivity type; and a semiconductor layer of a first conductivity type with a high impurity concentration formed on the semiconductor substrate at a distance. a second conductivity type semiconductor layer with a low impurity concentration; a second conductivity type second semiconductor layer with a high impurity concentration formed on the second conductivity type semiconductor layer with a low impurity concentration; a second conductivity type formed on a semiconductor layer of a high first conductivity type and on the semiconductor substrate, one side in contact with the first semiconductor layer of a second conductivity type in which the impurity concentration is high, and the other side at least in the low impurity concentration; a surface semiconductor layer with a low impurity concentration that is in contact with the semiconductor layer; on the first semiconductor layer of the second conductivity type with the high impurity concentration; A MOS semiconductor device comprising: a gate insulating film formed on a semiconductor layer of a conductivity type and a second semiconductor layer of a second conductivity type having a high impurity concentration; and a gate electrode formed on the gate insulating film. .
JP5736085A 1985-03-19 1985-03-19 Mos type semiconductor device Pending JPS61214477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5736085A JPS61214477A (en) 1985-03-19 1985-03-19 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5736085A JPS61214477A (en) 1985-03-19 1985-03-19 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61214477A true JPS61214477A (en) 1986-09-24

Family

ID=13053409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5736085A Pending JPS61214477A (en) 1985-03-19 1985-03-19 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61214477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141372A (en) * 1986-12-04 1988-06-13 Seiko Instr & Electronics Ltd Insulated gate field effect transistor
EP0583897A2 (en) * 1992-08-03 1994-02-23 Hughes Aircraft Company Field-effect transistor with structure for suppressing hot-electron effects, and method of fabricating the transistor
WO2004070847A1 (en) * 2003-02-07 2004-08-19 Matsushita Electric Industrial Co., Ltd. Field-effect transistor, its manufacturing method, and complementary field-effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141372A (en) * 1986-12-04 1988-06-13 Seiko Instr & Electronics Ltd Insulated gate field effect transistor
EP0583897A2 (en) * 1992-08-03 1994-02-23 Hughes Aircraft Company Field-effect transistor with structure for suppressing hot-electron effects, and method of fabricating the transistor
EP0583897A3 (en) * 1992-08-03 1994-08-17 Hughes Aircraft Co Field-effect transistor with structure for suppressing hot-electron effects, and method of fabricating the transistor
US5527721A (en) * 1992-08-03 1996-06-18 Hughes Aircraft Company Method of making FET with two reverse biased junctions in drain region
WO2004070847A1 (en) * 2003-02-07 2004-08-19 Matsushita Electric Industrial Co., Ltd. Field-effect transistor, its manufacturing method, and complementary field-effect transistor

Similar Documents

Publication Publication Date Title
US6917054B2 (en) Semiconductor device
US5362982A (en) Insulated gate FET with a particular LDD structure
JP5342241B2 (en) JFET with drain and / or source deformation implant
US20060001110A1 (en) Lateral trench MOSFET
US8513736B2 (en) Semiconductor device
KR20100064263A (en) A semiconductor device and method for manufacturing the same
JP2002217406A (en) Semiconductor device and its manufacturing method
JP2003338624A (en) Semiconductor device
US6476430B1 (en) Integrated circuit
JP2933796B2 (en) Method for manufacturing semiconductor device
JPS61214477A (en) Mos type semiconductor device
US6246093B1 (en) Hybrid surface/buried-channel MOSFET
JPS63293979A (en) Semiconductor device
JPH0465549B2 (en)
JP3192857B2 (en) Vertical MOS semiconductor device and method of manufacturing the same
JP2578662B2 (en) Method for manufacturing semiconductor device
KR0149705B1 (en) A structure of the insulated gate bipolar transistor and manufacturing method of the same
JP4547872B2 (en) Method for manufacturing switching element
JP2969832B2 (en) MIS type semiconductor device
JPH06338616A (en) Vertical mos device and manufacture thereof
JPS61177776A (en) Semiconductor device
KR100521994B1 (en) Trench gate type MOS transistor and its manufacturing method
JPH1098183A (en) Semiconductor device and manufacture thereof
JP2507981B2 (en) Manufacturing method of complementary MIS transistor
CN116093135A (en) Depletion type MOSFET device structure easy to integrate