JPS6121376B2 - - Google Patents

Info

Publication number
JPS6121376B2
JPS6121376B2 JP1134381A JP1134381A JPS6121376B2 JP S6121376 B2 JPS6121376 B2 JP S6121376B2 JP 1134381 A JP1134381 A JP 1134381A JP 1134381 A JP1134381 A JP 1134381A JP S6121376 B2 JPS6121376 B2 JP S6121376B2
Authority
JP
Japan
Prior art keywords
resin
mica
water
electrically insulated
insulated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1134381A
Other languages
Japanese (ja)
Other versions
JPS57124810A (en
Inventor
Aiichiro Hashizume
Akinobu Tamaoki
Hideki Chidai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1134381A priority Critical patent/JPS57124810A/en
Publication of JPS57124810A publication Critical patent/JPS57124810A/en
Publication of JPS6121376B2 publication Critical patent/JPS6121376B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 この発明は、電気泳動法を用いる電気絶縁導体
の製造方法に関し、さらに詳しくは、無機絶縁物
であるマイカ粉と、有機絶縁物である水分散ワニ
ス樹脂を水中に分散させて電着塗料を電気導体に
電気泳動法で形成させた、マイカ組成物塗膜に含
浸樹脂の硬化剤、硬化触媒または硬化速進剤を含
有させ、次いで含浸樹脂で含浸し、加熱硬化せし
めることにより電気機器のコイルに好適な絶縁導
体を製造する方法に関するものである。 従来から、電気機器に用いる電気絶縁導体の製
造方法は、無機または有機あるいは無機・有機複
合系の多孔質絶縁材で巻回された電気導体から成
るコイルに、硬化剤、硬化触媒、硬化促進剤など
を添加した含浸樹脂を含浸させ、かつ加熱硬化し
て製造される。 しかしながら、かかる絶縁導体の製造方法にお
いては、電気導体を多孔質絶縁材で巻回するため
に多くの人手を要し、かつ作業能率を悪いこと、
また含浸ワニスは加熱して硬化させる際、その組
成物の粘度が低下し、いわゆるタレ現象が生じ、
さらには、かかる含浸樹脂は、硬化剤、硬化触媒
あるいは硬化促進剤が添加配合されており、必然
的に可使時間が制限され、含浸樹脂貯蔵槽の維持
管理も煩雑である。 そこで本発明者らは、これらの欠点を排除すべ
く、これまでに前記製造法の欠点の1つである電
気導体に多孔質絶縁材を巻回することが省略でき
る新しい方法として、マイカと水分散ワニスから
成る電着塗料により電着析出絶縁層の形成法につ
いて提案してきた。 (例えば特開昭53・921298、特開昭51−
89178、特開昭51−114602など) しかるに本発明者らは、この電着塗料による電
着析出絶縁層の形成に加えて、含浸ワニス処理に
伴う、前記含浸作業の製造法上の欠点を排除すべ
く、種々検討を重ねた結果、含浸作業の前に、あ
らかじめ含浸樹脂の硬化剤、硬化触媒あるいは硬
化速進剤をマイカ電着層に含有させることにより
解決できることを見出した。 本発明により、従来法の様な硬化剤および硬化
促進剤を添加配合された含浸樹脂を適度の粘度に
保持するための樹脂貯蔵槽の維持管理の煩雑さや
不経済性がはぶかれ、さらに含浸樹脂のタレ現象
が防がれて、含浸樹脂の塗布面への付着接着性が
向上し、柔軟にして品質の著しく安定した電気絶
縁導体を提供しうる。 すなわち、本発明はマイカ粉を混入した水分散
ワニスを電着塗装したマイカ電着層の形成時また
は形成後にあらかじめ含浸樹脂の硬化剤、硬化触
媒または硬化速進剤を含有させて、次いで含浸樹
脂で処理して加熱硬化せしめることを特徴とする
電気絶縁導体の製造方法に関するもので、本発明
により、含浸樹脂の加工に対する使用設備の簡素
化および加工作業性が改善され、しかも、含浸樹
脂の塗布面への付着接着性、含浸性が向上され、
柔軟にして品質の著しく安定した電気絶縁導体が
得られるのである。 本発明に用いる水分散塗料としては、電着可能
な水分散塗料であれば良く、例えば好適なものと
して、アクリル系水分散形電着塗料、エポキシエ
ステル系水分散形電着塗料などがあげられる。 また、その配合量としては後工程の含浸ワニス
の含浸性から、マイカ100重量部に対して、5〜
30重量部が好適である。 さらに本発明に用いる硬化剤、硬化触媒、また
は硬化促進剤としては、含浸樹脂の種類により異
なるが、例えばポリエステル系含浸ワニスの場合
は、過酸化ベンゾイル(BPO)、アゾビスイソブ
チルニトリル(ABIN、ジクミル110−オキサイ
ド(DICUP)などの過酸化物が好適であり、必
要ならばジメチルアニリンなどの促進剤を用いて
もよい。 エポキシ系含浸樹脂の場合は、例えばジシアン
ジアミド(DICY)、オクチル酸亜鉛(Zn―Oct.
)、イミダゾール(2E4MZ)、アミンが好適なも
のとしてあげられる。 含浸樹脂としては、シリコン、エステルイミ
ド、ウレタンなどを用いた場合も、上記と同様に
することができる。 またその配合量としては、後工程で使用する含
浸ワニスを硬化させるに必要な量であればよく、
通常0.01〜10.0重量部(電着析出層に対して)で
ある。特に好適には0.02〜5.0重量部である。 以下に参考例、実施例をあげて、本発明をさら
に具体的に述べる。 電着ワニスの製造方法の一例 エピコート1001(シエル社)100部、テトラヒ
ドロ無水フタル酸25部、エチレングリコール6部
から酸価30〜60の酸付加エポキシ樹脂を得る。こ
の樹脂をアンモニアを含す温水中に分散させた
後、窒素ガスを吹き込むなどの方法によりPH7.0
〜8.0の水分散型ワニスを得る。 参考例 1 ビスフエノール形エポキシ樹脂(エピコート
1001シエル化学社製)・テトラヒドロ無水フタル
酸を主成分とする前記水分散形ワニス中に、イオ
ン交換水でよく水洗した35メツシユ通過のマイカ
粉末を、上記水分散形ワニスの樹脂分10部に対
し、90部の割合で混入し、イオン交換水を加えて
よく撹拌し、均一に分散した全不揮発分15%の電
着層塗料液を調整した。 この調整された電着塗料液中に、あらかじめガ
ラス繊維を機械巻した素線を束ねた誘導電動機コ
イルを浸漬し、極間距離50cmで対向電極との間に
直流電圧100Vを20秒間印加し、コイル上にマイ
カと水分散ワニスの樹脂分とから成る電着析出量
を形成させた。 ついで、これを150℃で15分間加熱乾燥し、厚
さ1.0mmの皮膜を得た。 こうして得られたコイルを、硬化触媒としてイ
ミダゾール(2E4MZ)を添加配合したエポキシ
樹脂(Epon828シエル社製/EN2200日立化成
製)液中に浸漬して、エポキシ樹脂を真空含浸し
たのち、加熱硬化(150℃10hr)して、誘導電動
機用の電気絶縁導体を得た。 参考例 2 ビスフエノール形エポキシ樹脂(エピコート
1001)テトラヒドロ無水フタル酸を主成分とする
前記水分散形ワニス中に、イオン交換水でよく水
洗した35メツシユ通過のマイカ粉末を、上記水分
散形ワニスの樹脂分20部に対し、80部の割合で混
合し、イオン交換水を加えてよく撹拌し、均一に
分散した全不揮発分15%の電着塗料液を調整し
た。 この調整された電着塗料液中にあらかじめガラ
ス繊維を機械巻した素線を成形して束ねた誘導電
動機コイルを浸漬し、極間距離50cmで対向電極と
の間に直流電圧100Vを20秒間印加し、コイル上
にマイカと水分散ワニスの樹脂分とから成る電着
析出層を形成させた。 ついでこれを150℃で15分間加熱乾燥させて厚
さ1.0mmの皮膜を得た。 こうして得られたコイルを、硬化触媒として過
酸化ベンゾイル(BPO)を添加配合した不飽和
ポリエステル樹脂(GE707GE社製)液中に浸漬
して不飽和ポリエステル樹脂を真空含浸したの
ち、加熱硬化剤(150℃16hr)して、誘導電動機
用の電気絶縁導体を得た。 実施例 1 ビスフエノール形エポキシ樹脂(エピコート
1001)テトラヒドロ無水フタル酸を主成分とする
前記水分散形ワニス中に、イオン交換水でよく水
洗した35メツシユ通過のマイカ粉末を、上記水分
散形ワニスの樹脂分10部に対し、90部の割合で混
合し、かつ硬化触媒としてイミダゾール
(2E4MZ)を0.5部添加し、イオン交換水を加えて
よく撹拌し、均一に分散した全不揮発分15%の電
着塗料液を調整した。 この調整された電着塗料液中に、あらかじめガ
ラス繊維を機械巻した素線を成形して束ねた誘導
電動機コイルを浸漬し、極間距離50cmで対向電極
との間に直流電圧100Vを20秒間印加し、コイル
上にマイカと水分散形ワニスの樹脂分さらに添加
した硬化触媒から成る電着析出量を形成させた。 ついで、これを150℃で15分間加熱乾燥させ
て、厚さ1.0mmの皮膜を得た。 こうして得られたコイルをEpon828/HN2200
から成るエポキシ樹脂液中に浸漬して、エポキシ
樹脂を真空含浸したのち、加熱硬化(150℃
10hr)して、誘導電動機用の電気絶縁導体を製作
した。 得られた電気絶縁導体はエポキシ樹脂のタレ現
象を生じることなくきわめて品質に安定したもの
であつた。その結果を表に示す。 実施例 2 ビスフエノール形エポキシ樹脂(エピコート
1001)テトラヒドロ無水フタル酸を主成分とすす
る前記水分散形ワニス中に、イオン交換水でよく
水洗した、35メツシユ通過のマイカ粉末を上記水
分散形ワニスの樹脂分10部に対し、90部の割合で
混合し、かつ硬化触媒として、過酸化ベンゾイル
を0.5部添加し、イオン交換水を加えてよく撹拌
し、均一に分散した全不揮発分15%の電着塗料液
を調整した。 この調整された電着塗料液中に、あらかじめガ
ラス繊維を機械巻した素線を形成して束ねた誘導
電動機コイルを浸漬し、極間距離50cmで対向電極
との間に直流電圧100Vを20秒間印加し、コイル
上にマイカと水分散形ワニスの樹脂分さらに添加
した硬化触媒から成る電着析出量を形成させた。 ついでこれを150℃で15分間加熱乾燥させて、
厚さ1.0mmの皮膜を得た。 こうして得られたコイルを参考例2の不飽和ポ
リエステル樹脂液中に浸漬して、不飽和ポリエス
テル樹脂を真空含浸したのち、加熱硬化(150℃
16hr)して、誘導電動機用の電気絶縁導体を製作
した。 得られた電気絶縁導体は、不飽和ポリエステル
のタレ現象を生じることなくきわめて品質の安定
したものであつた。 その結果を表に示す。 参考例 3 ビスフエノール形エポキシ樹脂(エピコート
1001)、テトラヒドロ無水フタル酸を主成分とす
る前記水分散形ワニス中にイオン交換水でよく水
洗した35メツシユ通過のマイカ粉末を、上記水分
散形ワニスの樹脂分20部に対し、80部の割合で混
合し、イオン交換水を加えてよく撹拌し、均一に
分散した全不揮発分15%の電着塗料液を調整し
た。 この調整された電着塗料液中に、あらかじめガ
ラス繊維を機械巻した素線を形成して束ねた誘導
電動機コイルを浸漬し、極間距離50cmで対向電極
との間に直流電圧100Vを20秒間印加し、コイル
上にマイカと水分散形ワニスの樹脂分とから成る
電着析出層を形成させた。 ついで、硬化触媒ジシアンジアミド0.5部を添
加したイオン交換水液中に浸漬させ、その後150
℃で15分間加熱乾燥させて、厚さ1.0mmの皮膜を
得た。 こうして得られたコイルをEpon828/HN2200
から成るエポキシ樹脂液中に浸漬して、エポキシ
樹脂を真空含浸したのち、加熱硬化(150℃×
10hr)して、誘導電動機の電気絶縁導体を製作し
た。 得られた電気絶縁導体は、エポキシ樹脂のタレ
現象を生じることなく、きわめて品質の安定した
ものであつた。 その結果を表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an electrically insulated conductor using electrophoresis, and more specifically, the invention relates to a method for manufacturing an electrically insulated conductor using an electrophoresis method. The mica composition coating film is formed by electrophoresis on an electrical conductor, and contains a curing agent, a curing catalyst, or a curing accelerator for the impregnating resin, and then is impregnated with the impregnating resin and cured by heating. The present invention relates to a method for producing an insulated conductor which is particularly suitable for coils of electrical equipment. Traditionally, the manufacturing method of electrically insulated conductors used in electrical equipment has been to add a curing agent, curing catalyst, and curing accelerator to a coil made of an electrical conductor wound with an inorganic, organic, or inorganic/organic composite porous insulating material. It is manufactured by impregnating it with an impregnating resin containing additives and curing it by heating. However, in this method of manufacturing an insulated conductor, a lot of labor is required to wind the electrical conductor with the porous insulating material, and the work efficiency is poor.
In addition, when impregnated varnish is heated and cured, the viscosity of the composition decreases, causing a so-called sagging phenomenon.
Furthermore, such impregnated resins contain curing agents, curing catalysts, or curing accelerators, which inevitably limits their pot life and makes maintenance of impregnated resin storage tanks complicated. Therefore, in order to eliminate these drawbacks, the present inventors developed a new method that eliminates the need to wrap a porous insulating material around an electrical conductor, which is one of the drawbacks of the above-mentioned manufacturing methods. We have proposed a method for forming an electrodeposited insulating layer using an electrodeposition paint consisting of a dispersed varnish. (For example, JP-A-53-921298, JP-A-51-
89178, JP-A No. 51-114602, etc.) However, in addition to forming an electrodeposited insulating layer using this electrodeposition paint, the present inventors have also eliminated the drawbacks in the manufacturing method of the impregnation process associated with the impregnation varnish treatment. As a result of various studies, we have found that this problem can be solved by incorporating a curing agent, a curing catalyst, or a curing accelerator for the impregnating resin into the mica electrodeposition layer before the impregnation operation. The present invention eliminates the complexity and uneconomical maintenance of a resin storage tank for maintaining an appropriate viscosity of impregnated resin mixed with a curing agent and curing accelerator, as in the conventional method. The sagging phenomenon of the resin is prevented, the adhesion of the impregnated resin to the coated surface is improved, and a flexible electrically insulated conductor with extremely stable quality can be provided. That is, in the present invention, a curing agent, a curing catalyst, or a curing accelerator is added to the impregnated resin during or after the formation of a mica electrodeposited layer obtained by electrodepositing a water-dispersed varnish mixed with mica powder, and then the impregnated resin is The present invention relates to a method for manufacturing an electrically insulated conductor characterized by treating it with heat and hardening it.According to the present invention, the equipment used for processing the impregnated resin is simplified and the processing workability is improved, and furthermore, the method of manufacturing the electrically insulated conductor is Adhesion to surfaces and impregnation properties are improved,
An electrically insulated conductor that is flexible and of extremely stable quality can be obtained. The water-dispersed paint used in the present invention may be any water-dispersed paint that can be electrodeposited, and suitable examples include acrylic water-dispersed electrodeposition paints, epoxy ester water-dispersed electrodeposition paints, etc. . In addition, the blending amount is 5 to 5 to 100 parts by weight of mica based on the impregnating properties of the impregnating varnish in the subsequent process.
30 parts by weight is preferred. Further, the curing agent, curing catalyst, or curing accelerator used in the present invention varies depending on the type of impregnated resin, but for example, in the case of polyester impregnated varnish, benzoyl peroxide (BPO), azobisisobutyl nitrile (ABIN, dicumyl Peroxides such as 110-oxide (DICUP) are preferred, and accelerators such as dimethylaniline may be used if necessary. ―Oct.
), imidazole (2E 4 MZ), and amines are preferred. The same method as above can be used when silicone, esterimide, urethane, etc. are used as the impregnating resin. In addition, the blending amount may be as long as it is the amount necessary to harden the impregnated varnish used in the subsequent process.
It is usually 0.01 to 10.0 parts by weight (based on the electrodeposited layer). Particularly preferred is 0.02 to 5.0 parts by weight. The present invention will be described in more detail with reference to reference examples and examples below. An example of a method for manufacturing an electrodeposition varnish: An acid-added epoxy resin having an acid value of 30 to 60 is obtained from 100 parts of Epicoat 1001 (Siel Corporation), 25 parts of tetrahydrophthalic anhydride, and 6 parts of ethylene glycol. After dispersing this resin in hot water containing ammonia, the pH is reduced to 7.0 by blowing in nitrogen gas or other methods.
Obtain a water-dispersed varnish of ~8.0. Reference example 1 Bisphenol type epoxy resin (Epicote
1001 (manufactured by Ciel Chemical Co., Ltd.)・Into the water-dispersed varnish whose main component is tetrahydrophthalic anhydride, mica powder that has passed through a 35-mesh mesh and has been thoroughly washed with ion-exchanged water is added to 10 parts of the resin content of the water-dispersed varnish. On the other hand, ion-exchanged water was mixed in at a ratio of 90 parts, and ion-exchanged water was added and stirred thoroughly to prepare a uniformly dispersed electrodeposition layer coating liquid with a total non-volatile content of 15%. An induction motor coil made of a bundle of wires mechanically wound with glass fibers was immersed in this adjusted electrodeposition paint solution, and a DC voltage of 100 V was applied for 20 seconds between the opposing electrodes with a distance of 50 cm between the electrodes. An electrodeposited deposit consisting of mica and the resin component of the water-dispersed varnish was formed on the coil. This was then heated and dried at 150°C for 15 minutes to obtain a film with a thickness of 1.0 mm. The coil obtained in this way is immersed in an epoxy resin (Epon828 manufactured by Ciel / EN2200 manufactured by Hitachi Chemical) containing imidazole (2E 4 MZ) as a curing catalyst, vacuum impregnated with the epoxy resin, and then heated and cured. (150°C for 10 hours) to obtain an electrically insulated conductor for an induction motor. Reference example 2 Bisphenol type epoxy resin (Epicote
1001) Into the water-dispersed varnish containing tetrahydrophthalic anhydride as a main component, add 80 parts of mica powder that has passed through a 35-mesh mesh and has been thoroughly washed with ion-exchanged water to 20 parts of the resin content of the water-dispersed varnish. They were mixed in proportion, ion-exchanged water was added, and the mixture was thoroughly stirred to prepare a uniformly dispersed electrodeposition coating liquid with a total non-volatile content of 15%. An induction motor coil made by forming and bundling strands of glass fiber mechanically wound in advance is immersed in this adjusted electrodeposition paint solution, and a DC voltage of 100 V is applied for 20 seconds between the opposing electrodes with a distance of 50 cm between the electrodes. Then, an electrodeposited layer consisting of mica and the resin component of the water-dispersed varnish was formed on the coil. This was then heated and dried at 150°C for 15 minutes to obtain a film with a thickness of 1.0 mm. The coil thus obtained was immersed in an unsaturated polyester resin (manufactured by GE707GE) containing benzoyl peroxide (BPO) as a curing catalyst to vacuum impregnate the unsaturated polyester resin. ℃16 hours) to obtain an electrically insulated conductor for an induction motor. Example 1 Bisphenol type epoxy resin (Epicote
1001) Into the water-dispersed varnish containing tetrahydrophthalic anhydride as a main component, add 90 parts of mica powder that has passed through a 35-mesh mesh and has been thoroughly washed with ion-exchanged water to 10 parts of the resin content of the water-dispersed varnish. 0.5 part of imidazole (2E 4 MZ) was added as a curing catalyst, ion-exchanged water was added, and the mixture was thoroughly stirred to prepare a uniformly dispersed electrodeposition coating liquid with a total non-volatile content of 15%. An induction motor coil made by forming and bundling strands of glass fiber mechanically wound in advance is immersed in this adjusted electrodeposition paint solution, and a DC voltage of 100 V is applied for 20 seconds between the electrodes and the opposing electrodes with a distance of 50 cm between the electrodes. A voltage was applied to form an electrodeposited deposit consisting of mica and a curing catalyst added to the resin of the water-dispersed varnish on the coil. This was then heated and dried at 150°C for 15 minutes to obtain a film with a thickness of 1.0 mm. The coil obtained in this way is used as Epon828/HN2200.
After vacuum impregnating the epoxy resin by immersing it in an epoxy resin solution consisting of
(10 hours) to produce an electrically insulated conductor for an induction motor. The obtained electrically insulated conductor had extremely stable quality without causing any sagging phenomenon of the epoxy resin. The results are shown in the table. Example 2 Bisphenol type epoxy resin (Epicote
1001) Into the water-dispersed varnish containing tetrahydrophthalic anhydride as a main component, add 90 parts of mica powder that has passed through a 35 mesh, thoroughly washed with ion-exchanged water, to 10 parts of the resin content of the water-dispersed varnish. 0.5 part of benzoyl peroxide was added as a curing catalyst, ion-exchanged water was added, and the mixture was thoroughly stirred to prepare a uniformly dispersed electrodeposition coating liquid with a total non-volatile content of 15%. In this adjusted electrodeposition paint solution, an induction motor coil made of mechanically wound glass fiber wires and a bundle is immersed, and a DC voltage of 100 V is applied for 20 seconds between the opposite electrode and the electrode with a distance of 50 cm. A voltage was applied to form an electrodeposited deposit consisting of mica and a curing catalyst added to the resin of the water-dispersed varnish on the coil. Next, heat-dry this at 150℃ for 15 minutes,
A film with a thickness of 1.0 mm was obtained. The coil thus obtained was immersed in the unsaturated polyester resin liquid of Reference Example 2 to vacuum impregnate the unsaturated polyester resin, and then heat cured at 150°C.
16 hours) to produce electrically insulated conductors for induction motors. The obtained electrically insulated conductor had extremely stable quality without causing the sagging phenomenon of unsaturated polyester. The results are shown in the table. Reference example 3 Bisphenol type epoxy resin (Epicote
1001), 80 parts of mica powder, which has passed through a 35-mesh mesh and has been thoroughly washed with ion-exchanged water, is added to the above-mentioned water-dispersed varnish containing tetrahydrophthalic anhydride as a main component, per 20 parts of the resin content of the above-mentioned water-dispersed varnish. They were mixed in proportion, ion-exchanged water was added, and the mixture was thoroughly stirred to prepare a uniformly dispersed electrodeposition coating liquid with a total non-volatile content of 15%. In this adjusted electrodeposition paint solution, an induction motor coil made of mechanically wound glass fiber wires and a bundle is immersed, and a DC voltage of 100 V is applied for 20 seconds between the opposite electrode and the electrode with a distance of 50 cm. An electrodeposited layer consisting of mica and a resin component of the water-dispersed varnish was formed on the coil. Next, it was immersed in an ion-exchanged water solution containing 0.5 part of curing catalyst dicyandiamide, and then
It was heated and dried at ℃ for 15 minutes to obtain a film with a thickness of 1.0 mm. The coil obtained in this way is used as Epon828/HN2200.
After vacuum-impregnating the epoxy resin by immersing it in an epoxy resin solution consisting of
(10 hours) to produce an electrically insulated conductor for an induction motor. The electrically insulated conductor obtained had extremely stable quality without causing any sagging phenomenon of the epoxy resin. The results are shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 マイカを含む水分散形ワニスを用いて、電気
導体にマイカ電着層を設け、含浸樹脂により一体
化する電気絶縁導体の製造方法において、上記マ
イカ電着層の形成時または形成後に上記含浸樹脂
の硬化剤、硬化触媒または硬化速進剤を該マイカ
電着層に含有させ、しかる後含浸樹脂により含浸
処理することを特徴とする電気絶縁導体の製造方
法。 2 含浸樹脂は、ポリエステル樹脂・エポキシ樹
脂・シリコン樹脂・ウレタン樹脂・不飽和ポリエ
ステル樹脂及びイミド変性エポキシ樹脂の少なく
とも一つであることを特徴とする特許請求の範囲
第1項記載の電気絶縁導体の製造方法。
[Scope of Claims] 1. A method for manufacturing an electrically insulated conductor, in which a mica electrodeposited layer is provided on an electrical conductor using a water-dispersed varnish containing mica, and the mica electrodeposited layer is integrated with an impregnated resin, when the mica electrodeposited layer is formed. Alternatively, a method for manufacturing an electrically insulated conductor, which comprises incorporating a curing agent, a curing catalyst, or a curing accelerator of the impregnating resin into the electrodeposited mica layer after formation, and then impregnating the layer with the impregnating resin. 2. The electrically insulated conductor according to claim 1, wherein the impregnated resin is at least one of polyester resin, epoxy resin, silicone resin, urethane resin, unsaturated polyester resin, and imide-modified epoxy resin. Production method.
JP1134381A 1981-01-28 1981-01-28 Method of producing electrically insulated conductor Granted JPS57124810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134381A JPS57124810A (en) 1981-01-28 1981-01-28 Method of producing electrically insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134381A JPS57124810A (en) 1981-01-28 1981-01-28 Method of producing electrically insulated conductor

Publications (2)

Publication Number Publication Date
JPS57124810A JPS57124810A (en) 1982-08-03
JPS6121376B2 true JPS6121376B2 (en) 1986-05-27

Family

ID=11775382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134381A Granted JPS57124810A (en) 1981-01-28 1981-01-28 Method of producing electrically insulated conductor

Country Status (1)

Country Link
JP (1) JPS57124810A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150153B (en) * 1983-11-25 1986-09-10 Gen Electric Electrodeposition of mica on coil or bar connections
JPS62237610A (en) * 1986-04-09 1987-10-17 三菱電機株式会社 Self-bonding insulated wire

Also Published As

Publication number Publication date
JPS57124810A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
KR920002171B1 (en) Process for depositing an insulating coating
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
US4442138A (en) Substrate pretreatment with a metal-beta keto ester complex in the method of curing an anaerobic resin
KR870000653B1 (en) Production method for insulated conductor
JPS6121376B2 (en)
JPS6121377B2 (en)
JPS6253884B2 (en)
JPH0410687B2 (en)
JPS60180461A (en) Insulating method of field coil
JPS5829701B2 (en) Denchiyakuzetsuenhouhou
US3117900A (en) Insulating electrical conductors
US3923725A (en) Method for forming epoxy resin products
JPS5852040B2 (en) Electrodeposition coating method
JPS62188797A (en) Production of flexible insulating film
CA1288726C (en) Process for electrodepositing mica on coil or bar connections and resulting products
JPS581097A (en) Manufacture of mica composition
JPS6121379B2 (en)
JPS5816568B2 (en) Insulator manufacturing method
JPS63154035A (en) Insulated coil for rotary electric machine
JPS5931802B2 (en) Manufacturing method of insulated conductor
JPS58198803A (en) Method of producing insulated wire
JPS5927970A (en) Electrodeposition coating
JPS601710A (en) Method of producing electric insulated conductor