JPH0410687B2 - - Google Patents

Info

Publication number
JPH0410687B2
JPH0410687B2 JP912383A JP912383A JPH0410687B2 JP H0410687 B2 JPH0410687 B2 JP H0410687B2 JP 912383 A JP912383 A JP 912383A JP 912383 A JP912383 A JP 912383A JP H0410687 B2 JPH0410687 B2 JP H0410687B2
Authority
JP
Japan
Prior art keywords
water
resin
conductor
manufacturing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP912383A
Other languages
Japanese (ja)
Other versions
JPS59134508A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP912383A priority Critical patent/JPS59134508A/en
Publication of JPS59134508A publication Critical patent/JPS59134508A/en
Publication of JPH0410687B2 publication Critical patent/JPH0410687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気泳動法を利用する母線絶縁導体の
新規な製造法に関する。 一般に変電所には多数の送電線または配電線が
接続され、電力の連系、集中および配分を行なつ
ているが、それら送配電線は変圧気、調相設備と
ともに遮断器、断路器で構成される開閉設備を付
して母線に接続されている。したがつて母線は大
電流、高電圧下で使用されるため母線の絶縁が重
要であり、母線の絶縁のために種々の方式が採用
されている。 従来、母線絶縁導体は、無機質絶縁物であるマ
イカ粉と有機質絶縁物である水分散性ワニスを水
中に分散させた電着塗料液中に銅を素材とした裸
導体を母線を被塗物として浸漬させ、母線導体上
に電気泳動法により電着析出絶縁層を形成させ、
加熱乾燥させたのち、硬化剤などを含有する含浸
樹脂組成物を含浸させ、加熱硬化することにより
製造されている。 前記マイカ粉を水分酸性ワニスとともに用いる
のはマイカ粉のみの電着では電着時の強度が乏し
く、被塗物を電着塗料から取出す際にマイカ粉が
流れ落ち、実際の使用が困難であるため、水分散
ワニスにマイカ粉のバインダー的役割を果させる
ためである。水分散性ワニスはマイカ粉とマイカ
粉との間に生じた間隙を埋めるためのものではな
く、むしろ間隙を残しておき、そこを目的に応じ
た含浸樹脂組成物で含浸し、絶縁層として用いら
れる。 一般に含浸樹脂を含浸したのち加熱硬化される
が、その際含浸した樹脂組成物の粘度が低下し、
いわゆるたれ現象が生じ、絶縁物中に空隙が生
じ、含浸樹脂の塗着面への接着性が低下し、絶縁
性能の良好な母線絶縁導体がえられないという欠
点がある。 また含浸樹脂組成物中には硬化剤が含有されて
おり、必然的に可使時間が制限され、含浸樹脂組
成物貯蔵槽の維持管理が煩雑であり、不経済であ
るという欠点がある。 本発明者らはこれらの欠点を改善するため鋭意
研究した結果、無機質絶縁物であるマイカ粉と有
機質絶縁物である水分散性ワニスとを水中に分散
せしめてえられる電着塗料液中に銅を素材とする
母線用電気導体を浸漬し、電気泳動法により該電
気導体上に電着析出絶縁槽を形成せしめ、それを
加熱乾燥後含浸樹脂用硬化剤を含有する水溶性樹
脂溶液に浸漬し、加熱乾燥させ、ついで含浸樹脂
を含浸せしめて加熱硬化せしめることにより、諸
欠点を解説させうることを見出した。 すなわち本発明では前記電気導体上に電着析出
絶縁槽を形成せしめ、それを加熱乾燥後水溶性樹
脂溶液に浸漬し、加熱乾燥させたのち含浸樹脂を
含浸せしめて加熱硬化することにより、たれ現象
が生じることなく、含浸樹脂の塗装面への接着性
が向上し、品質の著しく安定した母線絶縁導体が
えられる一方、含浸樹脂用硬化剤を水溶性樹脂溶
液に含有させることにより、含浸樹脂の維持管理
の煩雑さや不経済性がはぶかれるという顕著な効
果がえられた。 本発明に用いる水分散性ワニス樹脂は電着可能
な水分散性ワニス樹脂であればよく、たとえば好
適なものとしてはアクリル系樹脂、エポキシエス
テル系樹脂などがあげられる。 本発明に用いるマイカ粉としてはその粒径が
200メツシユふるいを通過せずかつ20メツシユふ
るいを通過するもの、とくに35メツシユふるいを
通過するものが好ましい。その配合量は後工程の
含浸樹脂の含浸性からマイカ粉100部(重量部、
以下同様)に対して水分散性ワニス樹脂5〜30部
が好適である。 本発明に用いる電着塗料がマイカ粉100部に対
して水分散性ワニス樹脂5〜30部を混合して製造
した電着塗料からなるときには熱的、電気的およ
び機械的特性が優れた母線絶縁体がえられる。 本発明に用いる水溶性樹脂としては、たとえば
アクリル系樹脂などが好適であり、溶液の濃度は
5〜15%(重量%、以下同様)、好ましくは5〜
10%である。 前記水溶性樹脂溶液に含有される硬化剤として
は水溶性の硬化剤が好ましく、たとえばトリエタ
ノールアミンなどの有機アミン類または2−エチ
ル−4−メチルイミダゾール(2E4Mz)などの
イミダゾール類などが好適であり、水溶性樹脂溶
液中の濃度は1〜10%、好ましくは1〜6%であ
る。 本発明に用いる含浸樹脂としては一般電気機器
などに用いられる公知の熱硬化性樹脂、たとえば
エポキシ樹脂、イミドエポキシ樹脂などが好適で
ある。 母線導体上に形成される電着析出絶縁層は公知
の電着技術によつて容易に行なわれる。すなわち
第1図に示すような被塗物となる断面長方形より
なる銅素材の母線導体1の電着してはならない接
続させるための電接面2の部分を第2図に示すよ
うに市販の粘着テープ3でシールし、第3図に示
すように電着槽4中に入れた電着塗料5中に母線
導体1を浸漬し、母線導体1を陽極側、対向電極
となる電着槽4を陰極側として直流電源6により
電着槽を形成させうる。さらには公知の自動化技
術によつて自動化、省力化が比較的容易に実施で
きる。 つぎに実施例および比較例をあげて本発明の方
法を説明する。 実施例 1 エピコート1001(シエル化学社正製)2900g、
エチレングリコール100g、テトラヒドロフタル
酸650gおよびキシレン600gを5四ツ口フラス
コに仕込み、チツ素を通じながら145〜150℃で約
1時間反応させて酸価約50の酸付加エポキシ樹脂
をえた。 ラウリル硫酸エステルソーダ30gおよびイオン
交換水25000gを約50の容器に仕込み、撹拌下
に加熱し、65〜70℃で25%アンモニア水溶液500
gおよび酸付加エポキシ樹脂3500gを加えて乳化
し、不活性ガス(チツ素ガス)を通じて過剰のア
ンモニア水とを溜出させながら70℃で約5時間撹
拌し、不揮発分約10%、PH約7.5のエポキシエス
テル系水分散性ワニスをえた。 前記エポキシエステル系水分散性ワニス中にイ
オン交換水でよく水洗した35メツシユ通過のマイ
カ粉を前記水分散性ワニスの樹脂分20部に対し80
部の割合で混入し、イオン交換水を加えてよく撹
拌し、均一に分散させ、全不揮発分15%の電着塗
料を調整した。 えられた電着塗料5を第3図に示すように電着
槽4中に入れた。 被塗物である第1図に示すような断面長方形よ
りなる銅素材の母線導体1の電接面2の部分を第
2図に示すように粘着テープ3でシールし、前記
電着槽4中の電着塗料5に浸漬した。母線導体1
に直流電源6により極間距離20cmで直流電圧
100Vを20秒間印加し、そののち150℃×15分間乾
燥させ、厚さ1mmの電着析出絶縁層をえた。 えられた電着析出絶縁層を有する母線導体を硬
化剤としてトリエタノールアミンを3%添加した
5%のアクリル系樹脂水溶液中に浸漬したのち、
150℃×15分間乾燥させた。 そののち硬化剤を含有しないエポキシ樹脂(エ
ポン828(シエル化学社製)/HN2200(日立化成
工業(株)製)が100部/98部の混合物)を真空含浸
させたのち150℃×5時間硬化させて母線絶縁体
をえた。 えられた母線絶縁体はエポキシ樹脂のたれ現象
を生ずることなく、きわめて品質の安定したもの
であつた。 前記母線絶縁導体の初期絶縁破壊電圧(以下、
BDVという)および250℃×16日間劣化後の
BDVを測定した。 その結果を第1表に示す。
The present invention relates to a novel method for manufacturing busbar insulated conductors using electrophoresis. Generally, a large number of power transmission lines or distribution lines are connected to a substation to interconnect, centralize, and distribute electric power, and these transmission and distribution lines consist of transformers, phase adjustment equipment, circuit breakers, and disconnectors. It is connected to the busbar with switching equipment. Therefore, since the bus bar is used under large current and high voltage, insulation of the bus bar is important, and various methods have been adopted for insulating the bus bar. Conventionally, bus insulated conductors are made by coating bare conductors made of copper in an electrodeposition paint solution in which mica powder, an inorganic insulator, and water-dispersible varnish, an organic insulator, are dispersed in water. immersion, and form an electrodeposited insulating layer on the bus conductor by electrophoresis,
It is produced by heating and drying, impregnating with an impregnating resin composition containing a curing agent, etc., and heating and curing. The mica powder is used together with a moisture-acidic varnish because the strength of the electrodeposited mica powder alone is poor, and when the object to be coated is removed from the electrodeposited paint, the mica powder falls off, making it difficult to use in practice. This is to allow the mica powder to act as a binder in the water-dispersed varnish. Water-dispersible varnish is not intended to fill the gaps created between mica powders, but rather leaves gaps and impregnates them with an impregnating resin composition according to the purpose and uses them as an insulating layer. It will be done. Generally, after being impregnated with an impregnating resin, it is heated and cured, but at that time, the viscosity of the impregnated resin composition decreases,
A so-called sag phenomenon occurs, voids are formed in the insulator, and the adhesion of the impregnated resin to the coated surface is reduced, making it impossible to obtain a busbar insulated conductor with good insulation performance. Further, since the impregnated resin composition contains a curing agent, the pot life is inevitably limited, and maintenance of the impregnated resin composition storage tank is complicated and uneconomical. As a result of intensive research to improve these drawbacks, the inventors of the present invention found that copper was added to the electrodeposition paint liquid obtained by dispersing mica powder, an inorganic insulator, and water-dispersible varnish, an organic insulator, in water. An electrical conductor for a bus bar made of material is immersed, an electrodeposition insulation tank is formed on the electrical conductor by electrophoresis, and after drying by heating, it is immersed in a water-soluble resin solution containing a hardening agent for the impregnating resin. It has been found that various defects can be solved by heating and drying, then impregnating with an impregnating resin and heating and curing. That is, in the present invention, an electrodeposited insulation tank is formed on the electrical conductor, and after being heated and dried, it is immersed in a water-soluble resin solution, and after being heated and dried, it is impregnated with an impregnated resin and heated and hardened, thereby preventing the dripping phenomenon. The adhesion of the impregnated resin to the painted surface is improved, and a busbar insulated conductor with extremely stable quality can be obtained. The remarkable effect of eliminating the complexity and uneconomical nature of maintenance was achieved. The water-dispersible varnish resin used in the present invention may be any water-dispersible varnish resin that can be electrodeposited, and suitable examples include acrylic resins and epoxy ester resins. The mica powder used in the present invention has a particle size of
Those that do not pass through a 200-mesh sieve but pass through a 20-mesh sieve, particularly those that pass through a 35-mesh sieve, are preferred. The blending amount is 100 parts of mica powder (parts by weight,
5 to 30 parts of water-dispersible varnish resin is suitable. When the electrodeposition paint used in the present invention is made by mixing 100 parts of mica powder with 5 to 30 parts of a water-dispersible varnish resin, the bus bar insulation has excellent thermal, electrical and mechanical properties. I can get a body. As the water-soluble resin used in the present invention, for example, acrylic resin is suitable, and the concentration of the solution is 5 to 15% (weight %, the same applies hereinafter), preferably 5 to 15%.
It is 10%. The curing agent contained in the water-soluble resin solution is preferably a water-soluble curing agent, such as organic amines such as triethanolamine or imidazoles such as 2-ethyl-4-methylimidazole (2E4Mz). The concentration in the water-soluble resin solution is 1 to 10%, preferably 1 to 6%. As the impregnating resin used in the present invention, known thermosetting resins used in general electrical equipment, such as epoxy resins and imide epoxy resins, are suitable. The electrodeposited insulating layer formed on the bus conductor is easily carried out by known electrodeposition techniques. In other words, as shown in FIG. 2, the electrical connection surface 2 of the copper conductor 1, which is made of a copper material and has a rectangular cross section and is the object to be coated, and which must not be electrodeposited, is coated with a commercially available electrical contact surface 2, as shown in FIG. 2. The bus conductor 1 is sealed with adhesive tape 3 and immersed in the electrodeposition paint 5 placed in the electrodeposition tank 4 as shown in FIG. An electrodeposition bath can be formed by using the DC power source 6 with the electrode as the cathode side. Furthermore, automation and labor saving can be implemented relatively easily using known automation techniques. Next, the method of the present invention will be explained with reference to Examples and Comparative Examples. Example 1 Epicote 1001 (manufactured by Ciel Chemical Co., Ltd.) 2900g,
100 g of ethylene glycol, 650 g of tetrahydrophthalic acid and 600 g of xylene were placed in a 5-four neck flask and reacted at 145-150° C. for about 1 hour while nitrogen was passed through the flask to obtain an acid-added epoxy resin with an acid value of about 50. Pour 30 g of lauryl sulfate ester soda and 25,000 g of ion-exchanged water into approximately 50 containers, heat while stirring, and prepare 500 g of 25% ammonia aqueous solution at 65-70℃.
g and 3,500 g of acid-added epoxy resin were added, emulsified, and stirred at 70°C for about 5 hours while distilling off excess ammonia water through inert gas (nitrogen gas), resulting in a mixture with a nonvolatile content of about 10% and a pH of about 7.5. An epoxy ester water-dispersible varnish was obtained. Into the epoxy ester-based water-dispersible varnish, add 80% mica powder that has passed through a 35-mesh mesh and thoroughly washed with ion-exchanged water to 20 parts of the resin content of the water-dispersible varnish.
15% of total nonvolatile content was prepared by adding ion-exchanged water and stirring well to uniformly disperse the mixture. The obtained electrodeposition paint 5 was placed in an electrodeposition tank 4 as shown in FIG. The electrically contacting surface 2 of the bus conductor 1 made of a copper material and having a rectangular cross section as shown in FIG. 1, which is the object to be coated, is sealed with an adhesive tape 3 as shown in FIG. It was immersed in the electrodeposition paint 5 of Bus conductor 1
DC voltage is applied with a distance between poles of 20cm using DC power supply 6.
A voltage of 100V was applied for 20 seconds, and then it was dried at 150°C for 15 minutes to obtain an electrodeposited insulating layer with a thickness of 1 mm. After immersing the obtained bus conductor having the electrodeposited insulating layer in a 5% aqueous acrylic resin solution containing 3% triethanolamine as a hardening agent,
It was dried at 150°C for 15 minutes. After that, an epoxy resin containing no curing agent (a mixture of 100 parts and 98 parts of Epon 828 (manufactured by Ciel Chemical Co., Ltd.) and HN2200 (manufactured by Hitachi Chemical Co., Ltd.)) was vacuum impregnated and cured at 150°C for 5 hours. Then I got the bus insulator. The obtained busbar insulator did not cause any epoxy resin dripping phenomenon and had extremely stable quality. Initial breakdown voltage of the bus insulated conductor (hereinafter referred to as
BDV) and after aging at 250℃ for 16 days.
BDV was measured. The results are shown in Table 1.

【表】 実施例 2 前記実施例1における硬化剤の種類およびその
使用料ならびに水溶性樹脂の濃度を第1表に示し
たように変更した以外は実施例1と同様にして母
線絶縁導体をえた。 えられた母線絶縁導体はエポキシ樹脂のたれ現
象を生ずることなく、きわめて品質の安定したも
のであつた。 前記母線絶縁導体の初期BDVおよび250℃×16
日間劣化後のBDVを測定した。 その結果を第1表に示す。 比較例 1 実施例1と同様にしてえられた電着析出絶縁層
を有する母線導体にエポン828/HN2200/オク
チル酸亜鉛が100部/98部/1部であるエポキシ
樹脂組成物を真空含浸させたのち150℃×5時間
硬化させて母線絶縁導体をえた。前記オクチル酸
亜鉛はエポキシ樹脂硬化剤である。 えられた母線絶縁導体の初期BDVおよび250℃
×16日間劣化後のBDVを測定した。 その結果を第1表に示す。 比較例 2 5mm×2mmの平角銅線をマイカを含む水分散形
ワニス中に浸漬し、電着法により導体上にポーラ
スなマイカ電着層を設けた。ついで該電着層に、
アセトン中にビスフエノールAエポキシ樹脂とテ
トラヒドロフタル酸無水物を溶解させた樹脂液
(5%)を含浸し、130℃で10時間硬化させてポー
ラスな絶縁層をえた。さらにビスフエノールAエ
ポキシ樹脂とテトラヒドロフタル酸からなる無溶
剤樹脂100部に2−エチル4−メチルイミダゾー
ルを硬化触媒として1部配合した組成物を真空含
浸させた。 えられた導体を130℃のオーブンに入れて硬化
させたが、硬化完了までに多くの含浸樹脂がタレ
落ちた。電気特性を計測したところ、1kV−5kV
間のtanδ変化、Δtanδが5%(Δtanδは絶縁層中
のボイドの数に比例して大きくなり、ポーラスな
構造であることを示す)を示し、絶縁層中での硬
化速度が遅く、含浸した樹脂が硬化する前に絶縁
層中から抜け出たことが示された。
[Table] Example 2 A busbar insulated conductor was obtained in the same manner as in Example 1, except that the type of curing agent, its usage amount, and the concentration of water-soluble resin in Example 1 were changed as shown in Table 1. . The obtained busbar insulated conductor did not cause any epoxy resin dripping phenomenon and had extremely stable quality. Initial BDV of said bus insulated conductor and 250℃×16
BDV was measured after days of deterioration. The results are shown in Table 1. Comparative Example 1 A bus conductor having an electrodeposited insulating layer obtained in the same manner as in Example 1 was vacuum impregnated with an epoxy resin composition containing 100 parts/98 parts/1 part of Epon 828/HN2200/zinc octylate. Afterwards, it was cured at 150°C for 5 hours to obtain a busbar insulated conductor. The zinc octylate is an epoxy resin curing agent. Initial BDV and 250℃ of the obtained busbar insulated conductor
BDV was measured after ×16 days of deterioration. The results are shown in Table 1. Comparative Example 2 A 5 mm x 2 mm rectangular copper wire was immersed in a water-dispersed varnish containing mica, and a porous mica electrodeposition layer was provided on the conductor by electrodeposition. Then, on the electrodeposited layer,
A resin solution (5%) in which bisphenol A epoxy resin and tetrahydrophthalic anhydride were dissolved in acetone was impregnated and cured at 130°C for 10 hours to obtain a porous insulating layer. Further, a composition prepared by blending 1 part of 2-ethyl 4-methylimidazole as a curing catalyst with 100 parts of a solvent-free resin consisting of bisphenol A epoxy resin and tetrahydrophthalic acid was vacuum impregnated. The resulting conductor was placed in an oven at 130°C to cure, but much of the impregnated resin dripped off before curing was completed. When I measured the electrical characteristics, it was 1kV-5kV.
The change in tan δ between the layers, Δtan δ, was 5% (Δtan δ increases in proportion to the number of voids in the insulating layer, indicating a porous structure), and the curing rate in the insulating layer was slow, and the impregnated It was shown that the resin escaped from the insulating layer before it was cured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は母線導体の説明図、第2図は母線導体
の電接面部分を粘着テープでシールした状態を示
す説明図、第3図は母線導体に電着析出絶縁層を
形成させている状態を示す説明図である。 (図面の主要符号)、1:母線導体、5:電着
塗料
Figure 1 is an explanatory diagram of a bus conductor, Figure 2 is an explanatory diagram showing the electric contact surface of the bus conductor sealed with adhesive tape, and Figure 3 is an illustration of an electrodeposited insulating layer formed on the bus conductor. It is an explanatory diagram showing a state. (Main symbols in the drawing), 1: Bus conductor, 5: Electrodeposition paint

Claims (1)

【特許請求の範囲】 1 無機質絶縁物であるマイカ粉と有機絶縁物で
ある水分散性ワニスとを水中に分散せしめてえら
れる電着塗料液中に銅を素材とする母線用電気導
体を浸漬し、電気泳動法により該電気導体上に電
着析出絶縁層を形成せしめ、それを加熱乾燥後含
浸樹脂用硬化剤を含有する水溶性樹脂溶液に浸漬
し、加熱乾燥させ、ついで含浸樹脂を含浸せしめ
て加熱硬化せしめることを特徴とする母線絶縁導
体の製造法。 2 前記電着塗料においてマイカ粉100重量部と
水分散性ワニス樹脂10〜50重量部とからなる混合
物を用いる特許請求の範囲第1項記載の製造法。 3 前記水溶性樹脂がアクリル系樹脂である特許
請求の範囲第1項記載の製造法。 4 前記水溶性樹脂濃度が3〜15重量%である特
許請求の範囲第1項記載の製造法。 5 前記硬化剤が水溶性の有機アミン類またはイ
ミダゾール類である特許請求の範囲第1項記載の
製造法。 6 前記水溶性樹脂溶液中の硬化剤の濃度が0.5
〜10重量%である特許請求の範囲第1項記載の製
造法。
[Scope of Claims] 1. An electrical conductor for a bus made of copper is immersed in an electrodeposition coating solution obtained by dispersing mica powder, which is an inorganic insulator, and water-dispersible varnish, which is an organic insulator, in water. Then, an electrodeposited insulating layer is formed on the electrical conductor by electrophoresis, and after being heated and dried, it is immersed in a water-soluble resin solution containing a hardening agent for the impregnating resin, heated and dried, and then impregnated with the impregnating resin. A method for producing a busbar insulated conductor, which comprises at least heating and curing the conductor. 2. The manufacturing method according to claim 1, wherein the electrodeposition coating uses a mixture of 100 parts by weight of mica powder and 10 to 50 parts by weight of a water-dispersible varnish resin. 3. The manufacturing method according to claim 1, wherein the water-soluble resin is an acrylic resin. 4. The manufacturing method according to claim 1, wherein the water-soluble resin concentration is 3 to 15% by weight. 5. The manufacturing method according to claim 1, wherein the curing agent is a water-soluble organic amine or imidazole. 6 The concentration of the curing agent in the water-soluble resin solution is 0.5
10. The manufacturing method according to claim 1, wherein the content is 10% by weight.
JP912383A 1983-01-20 1983-01-20 Method of producing bus insulating conductor Granted JPS59134508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP912383A JPS59134508A (en) 1983-01-20 1983-01-20 Method of producing bus insulating conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP912383A JPS59134508A (en) 1983-01-20 1983-01-20 Method of producing bus insulating conductor

Publications (2)

Publication Number Publication Date
JPS59134508A JPS59134508A (en) 1984-08-02
JPH0410687B2 true JPH0410687B2 (en) 1992-02-26

Family

ID=11711857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP912383A Granted JPS59134508A (en) 1983-01-20 1983-01-20 Method of producing bus insulating conductor

Country Status (1)

Country Link
JP (1) JPS59134508A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150153B (en) * 1983-11-25 1986-09-10 Gen Electric Electrodeposition of mica on coil or bar connections
US6387508B1 (en) 2000-09-14 2002-05-14 3M Innovative Properties Company Metal bonding film compositions

Also Published As

Publication number Publication date
JPS59134508A (en) 1984-08-02

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
KR920002171B1 (en) Process for depositing an insulating coating
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
US4427740A (en) High maximum service temperature low cure temperature non-linear electrical grading coatings resistant to V.P.I. resins containing highly reactive components
US4576694A (en) Method for producing electrically insulated conductor
GB1427063A (en) Method of electrocoating electrical conductors
US3369947A (en) Method of treating articles with polymerization or polyaddition reactionable systems
CN116918226A (en) Slot insulation system for a rotating electrical machine and method for manufacturing a slot insulation system
JPH0410687B2 (en)
JPH0381243B2 (en)
KR930004730B1 (en) Electrodeposition of mica
JPS6121377B2 (en)
JPS5829701B2 (en) Denchiyakuzetsuenhouhou
JPS6121376B2 (en)
JPS6253884B2 (en)
JP2908431B1 (en) Manufacturing method of electrical insulation coil
JPS60180461A (en) Insulating method of field coil
CA1288726C (en) Process for electrodepositing mica on coil or bar connections and resulting products
JPS581097A (en) Manufacture of mica composition
JPS601710A (en) Method of producing electric insulated conductor
JPS62188797A (en) Production of flexible insulating film
JPS5816568B2 (en) Insulator manufacturing method
JPS63195918A (en) Manufacture of electrically insulating material
JPS5852040B2 (en) Electrodeposition coating method