JPS5829701B2 - Denchiyakuzetsuenhouhou - Google Patents

Denchiyakuzetsuenhouhou

Info

Publication number
JPS5829701B2
JPS5829701B2 JP3943575A JP3943575A JPS5829701B2 JP S5829701 B2 JPS5829701 B2 JP S5829701B2 JP 3943575 A JP3943575 A JP 3943575A JP 3943575 A JP3943575 A JP 3943575A JP S5829701 B2 JPS5829701 B2 JP S5829701B2
Authority
JP
Japan
Prior art keywords
electrodeposited
layer
electrodeposition
inorganic
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3943575A
Other languages
Japanese (ja)
Other versions
JPS51114602A (en
Inventor
文彦 佐藤
恭一 柴山
守 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3943575A priority Critical patent/JPS5829701B2/en
Priority to US05/669,625 priority patent/US4058444A/en
Priority to FR7609197A priority patent/FR2306281A1/en
Priority to GB13120/76A priority patent/GB1518456A/en
Priority to DE2613814A priority patent/DE2613814C2/en
Publication of JPS51114602A publication Critical patent/JPS51114602A/en
Publication of JPS5829701B2 publication Critical patent/JPS5829701B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、マイカ粉末などの無機質粉末と水分散形ワ
ニスを含む水分散液を用い、電気泳動法により、電気導
体上に無機質粉末含有率が80多(重量φ以下同様)以
上の素線絶縁層(第一の電着析出層)と無機質含有率が
70〜99φの対地絶縁層(第二の電着析出層)を形成
し、さらに該電着析出層に有機絶縁塗料または無機絶縁
塗料を含浸させて、素線絶縁と対地絶縁を同時に行う例
えば回転機コイルなどの電着絶縁方法に関する。
Detailed Description of the Invention This invention uses an aqueous dispersion containing an inorganic powder such as mica powder and an aqueous dispersion type varnish, and uses an electrophoresis method to coat an electrical conductor with an inorganic powder content of 80% (weight φ or less). Similarly) above strand insulating layer (first electrodeposited layer) and a ground insulating layer (second electrodeposited layer) having an inorganic content of 70 to 99φ are formed, and furthermore, an organic The present invention relates to an electrodeposition insulation method for, for example, rotating machine coils, in which wire insulation and ground insulation are simultaneously performed by impregnating an insulating paint or an inorganic insulating paint.

被塗物である導体上に無機または有機質の骨材であると
ころの紡織布、不織布のテープまたはスリーブなどを設
けておいてから水分散形ワニス中で電着塗装を行う方法
は知られているが、この方法では絶縁皮膜の緒特性が水
分散形ワニスの特性に左右されるため、耐熱性、機械的
特性、電気絶縁性に関し、特に高温での使用に不安があ
る。
A method is known in which a tape or sleeve made of woven fabric or non-woven fabric made of inorganic or organic aggregate is provided on the conductor to be coated, and then electrodeposition is applied in water-dispersed varnish. However, in this method, the properties of the insulating film depend on the properties of the water-dispersed varnish, so there are concerns about heat resistance, mechanical properties, and electrical insulation, especially when used at high temperatures.

さらに、従来方法では絶縁層の形成にテーピング作業が
必須となっているため多くの人手を要し、作業能率が悪
く、しかもコスト高となっていた。
Furthermore, in the conventional method, taping work is essential for forming the insulating layer, which requires a lot of manpower, resulting in poor work efficiency and high cost.

この発明は、従来の絶縁層形成にともなう各種の欠点を
全て解決し、絶縁皮膜の耐熱性、機械的特性、電気的特
性などを向上させ、電気絶縁性能の信頼性が高い電着絶
縁導体が容易に得られる電着絶縁方法を提供するもので
ある。
This invention solves all of the various drawbacks associated with conventional insulating layer formation, improves the heat resistance, mechanical properties, electrical properties, etc. of the insulating film, and creates an electrodeposited insulated conductor with high reliability in electrical insulation performance. The present invention provides an easily obtainable electrodeposition insulation method.

すなわち、本発明は無機質粉末水分散液を用い電気泳動
法により、導体上に無機質含有率の高い(80多以上)
第1の電着析出層を形成し、加熱して水分を除去した後
、これを複数本束ねもしくは重合した被塗物上に電気泳
動法によって無機質含有率が70〜99多の第2の電着
析出層を形成させ、加熱後、さらに有機絶縁塗料あるい
は無機絶縁塗料を本電気泳動法により形成して得た電着
析出層の全ての空隙部に含浸させることにより、全体が
一体化された強固な絶縁皮膜を形成するものである。
That is, the present invention uses an aqueous dispersion of inorganic powder to coat a conductor with a high inorganic content (80% or more) by electrophoresis.
After forming a first electrodeposited layer and removing water by heating, a second electrodeposited layer having an inorganic content of 70 to 99% is applied to the coated object by bundling or polymerizing the first electrodeposited layer and applying an electrophoretic method. A deposited layer is formed, and after heating, an organic insulating paint or an inorganic insulating paint is impregnated into all the voids of the electrodeposited layer formed by this electrophoresis method, so that the whole is integrated. It forms a strong insulating film.

第一次の電着析出層の必要条件は加熱後再び電着塗料に
浸漬したときに、電着が可能であること、および少なく
とも後工程での取扱いに必要な機械的強度を有すること
で、これは電着析出層中の無機質含有率によってほとん
ど決定される。
The necessary conditions for the first electrodeposited layer are that it can be electrodeposited when immersed in the electrodeposition paint again after heating, and that it has at least the mechanical strength necessary for handling in the subsequent process. This is largely determined by the mineral content in the electrodeposited layer.

電着析出層の厚さにも関係するが、無機質含有率が80
多以下になると後電着時の電着電圧を極端に上昇させる
必要が生じ、75多以下になると電着が不可能になる。
Although it is related to the thickness of the electrodeposited layer, the inorganic content is 80%.
If it is less than 75, it becomes necessary to extremely increase the electrodeposition voltage during post-electrodeposition, and if it is less than 75, electrodeposition becomes impossible.

該電着析出層の厚さは素縁間の耐電圧特性によって決定
されるが少なくとも2に7以上必要とするため80〜1
20μが採用される。
The thickness of the electrodeposited layer is determined by the withstand voltage characteristics between the bare edges, but it is required to be at least 2 to 7 or more, so it should be 80 to 1.
20μ is adopted.

第二次の電着析出層の必要条件は、有機絶縁塗料または
無機絶縁塗料が素線絶縁部まで含浸できることである。
A necessary condition for the second electrodeposited layer is that the organic or inorganic insulating paint can be impregnated up to the wire insulation.

無機質含有率が70%以下になると、無機質粉層内に空
隙が少なくなり上記絶縁塗料が含浸しにくくなる。
When the inorganic content is 70% or less, there are fewer voids in the inorganic powder layer, making it difficult for the insulating paint to impregnate.

また電着析出層中の無機質含有率が99饅以上になると
電着析出層の機械的強度が弱くなるため対地絶縁層の無
機質含有率は70〜99多、特に好ましくは75〜98
優の範囲が適当である。
In addition, if the inorganic content in the electrodeposited layer exceeds 99, the mechanical strength of the electrodeposited layer becomes weak, so the inorganic content in the ground insulating layer should be 70 to 99, particularly preferably 75 to 98.
The excellent range is appropriate.

回転機コイルや耐熱電線さらに耐火電線に用いられる電
着浴の無機物は絶縁性能の外、析出層の機械的強度や可
撓性が特に要求されることから特にマイカ粉が好ましく
使用されているが可撓性を要求されない回転機コイルや
構造物絶縁体の場合はマイカ粉以外の無機質粉末、ある
いはマイカ粉末と無機質粉末の混合も用いられる。
Mica powder is particularly preferably used as an inorganic substance in electrodeposition baths used for rotating machine coils, heat-resistant electric wires, and fire-resistant electric wires, since not only insulating performance but also mechanical strength and flexibility of the deposited layer are required. For rotating machine coils and structural insulators that do not require flexibility, inorganic powders other than mica powder, or a mixture of mica powder and inorganic powders, may be used.

該無機質粉末としてガラスファイバーのチョップ、ガラ
ス粉末、シリカ粉末、アルミナ粉末などの無機質粉末が
挙げられる。
Examples of the inorganic powder include inorganic powders such as chopped glass fiber, glass powder, silica powder, and alumina powder.

無機質粉末としてマイカ粉を用いる場合、素線絶縁部、
対地絶縁部とも電着析出層のマイカ粉鱗片の大きさは、
電着析出層の機械的強度、絶縁塗料の含浸性、電着性な
どの考慮して選択されるが、マイカ粉鱗片の大きさがあ
る一定以上(20メツシユ以下の大きさ)になると電着
したマイカ鱗片が電気的に遮断して厚膜が得られないこ
とから20メツシュ以上の大きさのマイカ粉鱗片が用い
られる。
When mica powder is used as the inorganic powder, the wire insulation part,
The size of the mica powder scales in the electrodeposited layer in both the ground insulation part and the electrodeposited layer is as follows:
The selection is made taking into consideration the mechanical strength of the electrodeposited layer, the impregnability of the insulating paint, the electrodepositivity, etc., but if the mica powder scales exceed a certain size (20 mesh or less), the electrodeposit will fail. Mica powder scales having a size of 20 mesh or more are used because the mica scales electrically block electrically and a thick film cannot be obtained.

電着電圧に関しては、第一次電着塗装の際には10Vか
ら100Vの電圧が、また第二次電着塗装の場合は、第
一次電着塗装と比較してかなり高い電圧、即ち、50V
から300Vが適用される。
Regarding electrodeposition voltage, a voltage of 10 V to 100 V is used for the primary electrodeposition coating, and a considerably higher voltage for the secondary electrodeposition coating compared to the first electrodeposition coating, i.e. 50V
300V is applied.

その理由としては初めの電着析出層が電気的遮断層とな
り低電圧ではマイカ粉鱗片が電気泳動しないためである
The reason for this is that the first electrodeposited layer becomes an electrically blocking layer and mica powder scales do not electrophoresis at low voltage.

従来の水分散形ワニスだけの電着絶縁方法は電着に用い
る水分散形ワニスの性能によって諸特性が左右されるた
め特性のよいワニスの開発が急がれているが、特に回転
機の電機子コイルの絶縁に適用しうる耐熱性のよい所望
の水分散形ワニスが今だに出現していないのが現状であ
る。
Conventional electrodeposition insulation methods using only water-dispersed varnish have various properties that depend on the performance of the water-dispersed varnish used for electrodeposition, so there is an urgent need to develop varnishes with good properties. At present, a desirable water-dispersed varnish with good heat resistance that can be applied to the insulation of child coils has not yet appeared.

この発明の方法では、絶縁皮膜の性能が含浸する絶縁塗
料によって決定されるが、目的に応じた絶縁塗料を選択
することにより、すぐれた諸特性を有する絶縁皮膜が容
易に形成されうる。
In the method of the present invention, the performance of the insulating film is determined by the insulating paint used to impregnate the insulating film, but by selecting an insulating paint suitable for the purpose, an insulating film having excellent properties can be easily formed.

また前述のごとく絶縁層の形成にテーピング作業を必要
としないため、生産性が大幅に向上する。
Furthermore, as described above, no taping work is required to form the insulating layer, which greatly improves productivity.

さらに、従来の電着絶縁方法が皮膜形成時に凝結剤とし
て有機溶剤が必要であるのに対し、この発明はマイカ粉
が主体の電着絶縁方法であるため有機溶剤が不要となり
、従来必要であったステップキユアリングが省略でき乾
燥時間が約1/10〜115に短縮しうる。
Furthermore, while conventional electrodeposition insulation methods require an organic solvent as a coagulant during film formation, this invention uses mica powder as the main ingredient, eliminating the need for organic solvents. The step curing step can be omitted, and the drying time can be reduced to about 1/10 to 115 times.

なお、この発明に用いられる水分散形ワニスは以下の様
な各種の合成樹脂の水分散形ワニスが使用し得る。
As the water-dispersed varnish used in this invention, the following various synthetic resin water-dispersed varnishes can be used.

例えばポリウレタン樹脂系ワニス、ポリエステル樹脂系
ワニス、エポキシ樹脂系ワニス、エポキシエステル樹脂
系ワニス、ポリイミド樹脂系ワニス、ポリアミドイミド
樹脂系ワニス、ポリエステルイミド樹脂系ワニス、アク
リル樹脂系ワニスなどが適宜この電着絶縁方法の電着塗
料として用いられる。
For example, polyurethane resin varnish, polyester resin varnish, epoxy resin varnish, epoxy ester resin varnish, polyimide resin varnish, polyamideimide resin varnish, polyesterimide resin varnish, acrylic resin varnish, etc. can be used as appropriate for this electrodeposition insulation. It is used as an electrodeposition coating method.

また、この発明に用いられる含浸用の有機絶縁塗料とし
ては、耐熱性のよいエポキシ樹脂系ワニス、ポリアミド
イミド樹脂系ワニス、シリコ、ン樹脂系ワニス、ポリイ
ミド樹脂系ワニスなどが、無機絶縁塗料としては例えば
金属(At、Mg、Znなど)の第一リン酸塩水溶液な
どのリン酸系塗料、コロイダルシリカ(例えばニラサン
化学製「スノウテツクス」などのシリカ系塗料などがこ
の電着絶縁方法の電着析出層へ含浸させる絶縁塗料とし
て用いられる。
In addition, the organic insulating paint for impregnation used in this invention includes epoxy resin varnish, polyamideimide resin varnish, silicone resin varnish, polyimide resin varnish, etc., which have good heat resistance, and the inorganic insulating paint includes For example, phosphoric acid-based paints such as an aqueous solution of primary phosphates of metals (At, Mg, Zn, etc.), silica-based paints such as colloidal silica (for example, ``Snowtechs'' manufactured by Nirasan Chemical Co., Ltd.) are electrodeposited in this electrodeposition insulation method. Used as an insulating coating to be impregnated into layers.

また含浸性が問われるので含浸する絶縁塗料の粘度とし
ては上限1000cp(センチ、ポイズ)程度で50〜
800cpが最もよく使用される。
Also, since the impregnating property is a question, the viscosity of the insulating paint to be impregnated should be approximately 1000 cp (centimeter, poise) and 50 to 50.
800 cp is most commonly used.

電着被塗物即ち導体の材質に関しては電気的導体であれ
ば特に制限はなく、また上記導体の形状に関しても特に
制限のあるものではなく、例えば線状物、棒状物、板状
物などであってもよい。
There are no particular restrictions on the material of the electrodeposited object, that is, the conductor, as long as it is an electrical conductor, and there are no particular restrictions on the shape of the conductor; for example, it may be a linear object, a rod-like object, a plate-like object, etc. There may be.

以下実施例をあげて本発明の絶縁方法について説明する
The insulation method of the present invention will be described below with reference to Examples.

なお実施例の部および優は重量部、重量部である。Note that parts and parts in Examples are parts by weight.

〔実施例 1〕 水分散形アクリルーエポキシ系樹脂ワニス(■−550
−20ワニス菱電化成製)中によく水洗した100メツ
シュ以上のマイカ粉末を該水分散形ワニスの樹脂分1部
に対して9部の割合で混入してよく攪拌し均一に分散し
た電着塗料を調整した。
[Example 1] Water-dispersed acrylic-epoxy resin varnish (■-550
-20 varnish (manufactured by Ryoden Kasei) was mixed with mica powder of 100 meshes or more thoroughly washed with water at a ratio of 9 parts to 1 part of the resin content of the water-dispersed varnish, stirred well, and electrodeposited uniformly. Adjusted the paint.

この調整された該電着塗料中に亀甲形に成形された回転
機用電機子コイルを陽極とし、ステンレス板を陰極とし
て浸し、極間距離15crrLで50Vの直流電圧を8
秒間通電して、該電機子コイル上に第1の電着析出層(
以下「マイカ層」という)を析出させた。
A rotating machine armature coil shaped into a hexagonal shape was used as an anode, and a stainless steel plate was immersed as a cathode in this adjusted electrocoating paint, and a DC voltage of 50V was applied to 8
A first electrodeposited layer (
A layer (hereinafter referred to as "mica layer") was precipitated.

ついでこのコイルを電着塗料から取り出し、230℃で
15分間の加熱処理を行なって水分を除去し皮膜厚さ0
.10fiの皮膜を得た。
Next, this coil was taken out from the electrodeposition paint and heated at 230°C for 15 minutes to remove moisture and reduce the film thickness to 0.
.. A film of 10 fi was obtained.

次に上記加熱処理を行なったコイルを6本束ねて前記の
電着塗料中に陽極として浸し、極間距離15(mで15
0Vの直流電圧を10秒間通電して、電気泳動的にコイ
ル上に第2の電着析出層を形成させた。
Next, six coils that had been subjected to the above heat treatment were bundled together and immersed in the electrodeposition paint as an anode, and the distance between the electrodes was 15 (15 in m).
A DC voltage of 0 V was applied for 10 seconds to electrophoretically form a second electrodeposited layer on the coil.

ついでこのコイルを電着塗料から取り出して、230℃
で30分間の加熱処理を行なった後、該電着塗装体をV
−590−15ワニス(商品名、菱電化成製、エポキシ
樹脂)で1時間真空含浸して取り出した後、150℃で
15時間の加熱処理を行ない皮膜厚さ0.45711I
Ilのほぼ均一な塗膜をもつ電着絶縁皮膜を得た。
Next, take this coil out of the electrodeposition paint and heat it to 230℃.
After heat treatment for 30 minutes at
-590-15 varnish (trade name, manufactured by Ryoden Kasei, epoxy resin) was vacuum impregnated for 1 hour and taken out, and then heat treated at 150°C for 15 hours to a film thickness of 0.45711I.
An electrodeposited insulating film having a substantially uniform coating of Il was obtained.

該電着絶縁皮膜の素線絶縁破壊電圧は9.5に■、対地
絶縁破壊電圧は23KV以上であった。
The wire dielectric breakdown voltage of the electrodeposited insulating film was 9.5 (■), and the dielectric breakdown voltage to ground was 23 KV or higher.

〔実施例 2〕 上記実施例1と同じ水分散形ワニス中によく水洗した4
8〜80メツシユのマイカ粉末を水分散形ワニス樹脂分
1部に対して9部の割合で混入した液にイオン交換水を
加えてよく攪拌し均一に分散した全不揮発分13多の電
着塗料を調整した。
[Example 2] The same water-dispersed varnish as in Example 1 above was prepared by washing thoroughly with water.
Electrodeposition paint with a total non-volatile content of 13%, which is made by adding ion-exchanged water to a solution in which 8 to 80 meshes of mica powder is mixed in a ratio of 9 parts to 1 part of water-dispersed varnish resin and thoroughly stirring to uniformly disperse the mixture. adjusted.

この調整された該電着塗料中に亀甲形に成形された回転
機用電機子コイルを陽極として浸し、極間距離15Cr
IL170■で15秒間通電してコイル上に第1のマイ
カ層を析出させた。
An armature coil for a rotating machine shaped into a hexagonal shape was immersed in the adjusted electrodeposition paint as an anode, and the distance between the electrodes was 15Cr.
A first mica layer was deposited on the coil by applying current for 15 seconds at IL170.

ついでこのコイルを230℃で15分間加熱処理し、皮
膜厚さo、osmの皮膜を得た。
This coil was then heat-treated at 230° C. for 15 minutes to obtain a film with a film thickness of o and osm.

さらに上記の電着処理を行なったコイルを4本束ねて前
記電着塗料中に陽極として浸し、極間距離15(1’1
llloOVで55秒間通電してコイル上に第2の電着
析出層を設けた。
Furthermore, four coils subjected to the above electrodeposition treatment were bundled and dipped in the electrodeposition paint as an anode, and the distance between the electrodes was 15 (1'1).
A second electrodeposited layer was provided on the coil by applying current at lloOV for 55 seconds.

ついでこのコイルを加熱処理した後、Hl−400ワニ
ス(商品名、日立化成製、ポリアミドイミドイミド樹脂
)を含浸させ、加熱処理を行なって皮膜厚さ1mのほぼ
均一な塗膜をもつ電着絶縁皮膜を得た。
After heat-treating this coil, it is impregnated with Hl-400 varnish (trade name, manufactured by Hitachi Chemical, polyamide-imide-imide resin) and heat-treated to form an electrodeposited insulation film with a nearly uniform coating thickness of 1 m. A film was obtained.

該電着絶縁皮膜の素線絶縁破壊電圧は9KV、対地絶縁
破壊電圧は50に7以上であった。
The wire dielectric breakdown voltage of the electrodeposited insulating film was 9 KV, and the dielectric breakdown voltage to ground was 7 in 50 or more.

〔実施例 3〕 ビスフェノール形エポキシ樹脂77部、エチレングリコ
ール3部、テトラヒドロ無水フタル酸20部を主成分と
する水分散形ワニス中によく水洗した35メツシュ以上
のマイカ粉末を水分散形ワニスの樹脂分1部に対して9
部の割合で混入した液にイオン交換水を加えてよく攪拌
し均一に分散した全不揮発分15φの電着塗料を調整し
た。
[Example 3] A water-dispersed varnish containing 77 parts of bisphenol-type epoxy resin, 3 parts of ethylene glycol, and 20 parts of tetrahydrophthalic anhydride as a resin of a water-dispersed varnish was mixed with thoroughly washed mica powder having a mesh size of 35 or more. 9 for 1 part
Ion-exchanged water was added to the mixed solution at a ratio of 1.5 parts, and the mixture was thoroughly stirred to prepare an electrodeposition paint having a total non-volatile content of 15 φ and uniformly dispersed.

この調整された該電着塗料中に亀甲形に成形された回転
機用電機子コイルを陽極として浸し、極間距離15Cr
rL、20Vで25秒間通電して、コイル上に第1のマ
イカ層を析出させた。
An armature coil for a rotating machine shaped into a hexagonal shape was immersed in the adjusted electrodeposition paint as an anode, and the distance between the electrodes was 15Cr.
A first mica layer was deposited on the coil by applying current at rL, 20V for 25 seconds.

ついでこのコイルを230℃で15秒間加熱処理し、皮
膜厚さ0.11Mの皮膜を得た。
This coil was then heat-treated at 230° C. for 15 seconds to obtain a film with a thickness of 0.11M.

さらに上記の電着処理を行なったコイルを6本束ねて前
記電着塗料中に陽極として浸し、極間距離15CIrL
200Vで60秒間通電して該コイル上に第2のマイカ
層を析出させた。
Further, six coils subjected to the above electrodeposition treatment were bundled and dipped in the electrodeposition paint as an anode, and the distance between the electrodes was 15 CIrL.
A second mica layer was deposited on the coil by applying current at 200V for 60 seconds.

ついでこのコイルを加熱処理した後、該電着析出層にノ
ルイミド102ワニス(商品名、日本ロープイア服装、
ポリイミド樹脂)を含浸させ、加熱処理を行なって皮膜
厚さ3双のほぼ均一な塗膜をもつ電着絶縁皮膜を得た。
Next, after heat-treating this coil, the electrodeposited layer was coated with Norimide 102 varnish (trade name, Nippon Ropeia Clothing).
The electrodeposited insulating film was impregnated with a polyimide resin (polyimide resin) and heat-treated to obtain an electrodeposited insulating film having a substantially uniform coating film with three film thicknesses.

該電着絶縁皮膜の素線絶縁破壊電圧は8KV、対地絶縁
破壊電圧は80に7以上であった。
The wire dielectric breakdown voltage of the electrodeposited insulating film was 8 KV, and the dielectric breakdown voltage to ground was 7 in 80 or more.

〔実施例 4〕 Du pont製のアクリル系水分散形ワニスのレフト
ンRK−6308の樹脂分1部に対して100メツシュ
以上のマイカ粉末を9部の割合で混入してよく攪拌し均
一に分散した全不揮発分30%の電着塗料を調整した。
[Example 4] Mica powder of 100 mesh or more was mixed in at a ratio of 9 parts to 1 part of the resin content of Lefton RK-6308, an acrylic water-dispersible varnish manufactured by Du Pont, and thoroughly stirred to uniformly disperse the mixture. An electrodeposition paint with a total non-volatile content of 30% was prepared.

この調整された該電着塗料中に亀甲形に形成された回転
機用電機子コイルを陽極として浸し、極間距離15Cr
IL、50Vで9秒間通電してコイル上に第1のマイカ
層を析出させた。
A rotating machine armature coil formed in a hexagonal shape was immersed in the adjusted electrodeposition paint as an anode, and the distance between the electrodes was 15Cr.
A first mica layer was deposited on the coil by applying current at 50 V IL for 9 seconds.

ついでこの電着物を230℃で15分間加熱処理し、皮
膜厚さ0.1Mの皮膜を得た。
This electrodeposited material was then heat-treated at 230° C. for 15 minutes to obtain a film having a thickness of 0.1M.

さらに上記の電着処理を行なったコイルを6本束ねて前
記電着塗料中に陽極として浸し、極間距離15crIL
1300■で25秒間通電してコイル上に第2のマイカ
層を析出させた。
Further, six coils subjected to the above electrodeposition treatment were bundled and dipped in the electrodeposition paint as an anode, and the distance between the electrodes was 15 crIL.
A second mica layer was deposited on the coil by applying current at 1300 μm for 25 seconds.

ついでこの電着物を加熱処理した後、該電着塗装体にV
−590−15ワニス(商品名、菱電化戊製、エポキシ
樹脂)を含浸させ、加熱処理を行なって皮膜厚さ2Mの
ほぼ均一な塗膜をもつ電着絶縁皮膜を得た。
Then, after heat-treating this electrodeposited material, V is applied to the electrodeposited body.
-590-15 varnish (trade name, manufactured by Ryoden Kabo Co., Ltd., epoxy resin) was impregnated and heat treated to obtain an electrodeposited insulating film having a thickness of 2M and having a substantially uniform coating.

該電着絶縁皮膜の素線絶縁破壊電圧は10に■、対地絶
縁破壊電圧は65KV以上であった。
The strand dielectric breakdown voltage of the electrodeposited insulating film was 10.1, and the dielectric breakdown voltage to ground was 65 KV or more.

〔実施例 5〕 実施例1と同じ電着浴に亀甲形に底形された回転機用電
機子コイルを陽極として浸し、極間距離15cIrL1
100■で4秒間通電してコイル上に第1のマイカ層を
析出させた。
[Example 5] An armature coil for a rotating machine having a hexagonal bottom shape was immersed as an anode in the same electrodeposition bath as in Example 1, and the distance between the poles was 15 cIrL1.
A first mica layer was deposited on the coil by applying current for 4 seconds at 100 μm.

ついでこの電着物を230℃で15分間加熱処理し、皮
膜厚さ0.1 Mの皮膜を得た。
This electrodeposited material was then heat-treated at 230° C. for 15 minutes to obtain a film having a thickness of 0.1 M.

さらに上記の電着処理を行なった亀甲形のコイルを4本
束ねて前記電着塗料中に陽極として浸し、極間距離15
1Z77Z1150Vで45秒間通電してコイル上に第
2のマイカ層を析出させた。
Furthermore, four tortoiseshell-shaped coils subjected to the above electrodeposition treatment were bundled together and immersed in the electrodeposition paint as an anode, and the distance between the electrodes was 15.
A second mica layer was deposited on the coil by applying current at 1Z77Z1150V for 45 seconds.

ついでこのコイルを加熱処理した後、該電着塗装体に無
機絶縁塗料するコロイダルシリカ(商品名、「スノーテ
ックス30J、日産化学社製)を含浸させ、加熱処理を
行なって皮膜厚さ2聰のほぼ均一な塗膜をもつ電着絶縁
皮膜を得た。
After heat-treating this coil, the electrodeposited body is impregnated with colloidal silica (trade name: "Snowtex 30J, manufactured by Nissan Chemical Co., Ltd."), which is an inorganic insulating coating, and heat-treated to form a film with a thickness of 2 cm. An electrodeposited insulating film with a nearly uniform coating was obtained.

該電着絶縁皮膜の素線絶縁破壊電圧は8KV、対地絶縁
破壊電圧は60に■以上であった。
The wire dielectric breakdown voltage of the electrodeposited insulating film was 8 KV, and the dielectric breakdown voltage to ground was 60 mm or higher.

また、この実施例の方法によれば、ポリウレタン樹脂系
ワニス、ポリエステル樹脂系ワニス、ポリイミド樹脂系
ワニスなと全ての水分散形ワニスの適用が可能であり、
これらも実施例とほぼ同様な緒特性を示した。
Furthermore, according to the method of this embodiment, all water-dispersed varnishes such as polyurethane resin varnish, polyester resin varnish, and polyimide resin varnish can be applied.
These also showed almost the same characteristics as the examples.

以上のごとく、本発明によれば、導体上に無機質粉末含
有率が80%以上の第1の電着析出層を形成し、さらに
上記の電着物を複数本束ねたものに無機質粉末含有率が
70〜99饅の第2の電着析出層を形成した後、該電着
塗装皮膜に絶縁皮膜に絶縁塗料を含浸させることにより
、生産性を大幅に向上させると共に、熱的、機械的、電
気的特性が良好な任意の厚さの電着絶縁皮膜を形成する
電着絶縁方法を得るものである。
As described above, according to the present invention, a first electrodeposited layer having an inorganic powder content of 80% or more is formed on a conductor, and a plurality of the above electrodeposited materials are bundled and the inorganic powder content is After forming the second electrodeposited layer of 70 to 99 mm, the electrodeposited film is impregnated with an insulating coating, which greatly improves productivity and improves thermal, mechanical, and electrical properties. The present invention provides an electrodeposited insulation method for forming an electrodeposited insulation film of any thickness with good physical properties.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質粉末と水分散形ワニスを含んだ水分散液を電
着塗料とし、電気泳動法を用いて導体上に無機質の含有
率が80重量饅以上の第1の電着析出層を形成させ、こ
れを加熱して水分を除去した後、この第1の電着析出層
を有する導体を複数本重合してさらに電着塗料中に浸漬
し、上記導体上に無機質含有率が70〜99重量係の第
2の電着析出層を形成し、これを加熱して水分を除去し
た後、該電着析出層に有機絶縁塗料または無機絶縁塗料
を含浸させることを特徴とする電着絶縁方法。
1. Using an aqueous dispersion containing an inorganic powder and a water-dispersed varnish as an electrodeposition paint, forming a first electrodeposition layer having an inorganic content of 80% by weight or more on a conductor using an electrophoresis method, After heating this to remove moisture, a plurality of conductors having the first electrodeposited layer are polymerized and further immersed in electrodeposition paint, so that the inorganic content is 70 to 99% by weight on the conductor. An electrodeposited insulation method, which comprises forming a second electrodeposited layer, heating it to remove moisture, and then impregnating the electrodeposited layer with an organic or inorganic insulating paint.
JP3943575A 1975-03-31 1975-03-31 Denchiyakuzetsuenhouhou Expired JPS5829701B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3943575A JPS5829701B2 (en) 1975-03-31 1975-03-31 Denchiyakuzetsuenhouhou
US05/669,625 US4058444A (en) 1975-03-31 1976-03-23 Process for preparing an insulated product
FR7609197A FR2306281A1 (en) 1975-03-31 1976-03-30 PROCESS FOR THE PREPARATION OF AN INSULATION PRODUCT
GB13120/76A GB1518456A (en) 1975-03-31 1976-03-31 Process for preparing insulation products by electrophoretic deposition
DE2613814A DE2613814C2 (en) 1975-03-31 1976-03-31 Process for coating electrical coil formers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3943575A JPS5829701B2 (en) 1975-03-31 1975-03-31 Denchiyakuzetsuenhouhou

Publications (2)

Publication Number Publication Date
JPS51114602A JPS51114602A (en) 1976-10-08
JPS5829701B2 true JPS5829701B2 (en) 1983-06-24

Family

ID=12552909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3943575A Expired JPS5829701B2 (en) 1975-03-31 1975-03-31 Denchiyakuzetsuenhouhou

Country Status (1)

Country Link
JP (1) JPS5829701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093921A (en) * 2015-12-16 2018-08-22 미쓰비시 마테리알 가부시키가이샤 A heat-resistant insulated wire and an electrodeposition liquid used for forming the insulating layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574344A (en) * 1978-11-30 1980-06-04 Toshiba Corp Manufacture of winding for electrical rotary machine
JPS58174455A (en) * 1982-04-06 1983-10-13 Mitsubishi Electric Corp Production of epoxyester resin dispersion for electrodeposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093921A (en) * 2015-12-16 2018-08-22 미쓰비시 마테리알 가부시키가이샤 A heat-resistant insulated wire and an electrodeposition liquid used for forming the insulating layer

Also Published As

Publication number Publication date
JPS51114602A (en) 1976-10-08

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
US4615778A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
US4427740A (en) High maximum service temperature low cure temperature non-linear electrical grading coatings resistant to V.P.I. resins containing highly reactive components
JP2827333B2 (en) Manufacturing method of heat-resistant insulating coil
US2478322A (en) Process for producing improved electrical conductors
US4058444A (en) Process for preparing an insulated product
US3702813A (en) Process of insulating wire by electrophoresis plus non-electrophoresis coating steps
KR870000653B1 (en) Production method for insulated conductor
US3369947A (en) Method of treating articles with polymerization or polyaddition reactionable systems
US2754353A (en) Composite electrical insulation and method of fabrication
JPS5829701B2 (en) Denchiyakuzetsuenhouhou
US3616389A (en) Process for producing electrophoretically insulated conductors and coils
JPS5829703B2 (en) Denchiyakuzetsuenhouhou
JPS6118411B2 (en)
JPS5852040B2 (en) Electrodeposition coating method
JPH0410687B2 (en)
JPS6121377B2 (en)
CA1288726C (en) Process for electrodepositing mica on coil or bar connections and resulting products
JPS5816568B2 (en) Insulator manufacturing method
JPS6121376B2 (en)
JP3287116B2 (en) High heat resistant insulated wire
JPS6253884B2 (en)
JPS6122552B2 (en)