JPS6118411B2 - - Google Patents

Info

Publication number
JPS6118411B2
JPS6118411B2 JP20413282A JP20413282A JPS6118411B2 JP S6118411 B2 JPS6118411 B2 JP S6118411B2 JP 20413282 A JP20413282 A JP 20413282A JP 20413282 A JP20413282 A JP 20413282A JP S6118411 B2 JPS6118411 B2 JP S6118411B2
Authority
JP
Japan
Prior art keywords
prepreg
coil
semiconductive
thermosetting resin
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20413282A
Other languages
Japanese (ja)
Other versions
JPS5899249A (en
Inventor
Koichi Goshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20413282A priority Critical patent/JPS5899249A/en
Publication of JPS5899249A publication Critical patent/JPS5899249A/en
Publication of JPS6118411B2 publication Critical patent/JPS6118411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、タービン発電機、水車発電機など
のような、特に使用電圧の高い回転電機用コイル
の製造方法に関するものである。 高電圧回転電機用絶縁コイルにおいては、絶縁
体内部のコロナ放電を防止するため、できるだけ
空〓のない絶縁体を得るように努力されている。
一般には、絶縁素線を転位して組合わせてなる素
線群の空〓部にはワニスやコンパウンドを充填し
て加熱成形したコイル導体上に、次のような方法
による絶縁処理がなされている。 集成マイカテープやはがしマイカテープを所
定数巻回した後、熱硬化性樹脂を真空加圧含浸
し、加熱成形して絶縁コイルを得るという、い
わゆる真空加圧含浸方式。 あらかじめ熱硬化性樹脂を多量に含有する集
成マイカやはがしマイカのプリプレグテープを
所定数巻回した後、加熱成形した絶縁コイルを
得るという、いわゆるプリプレグ方式。の2通
りの方式が採用されている。 上記(),()の方式において、得られた絶
縁層の特性は両者ともほぼ同等であるが、()
の方式は()の方式に比較して、真空、加圧含
浸装置が必要であること、および作業中にワニス
類を取扱うことから作業性の面で問題があり、最
近は()の方式がより多用されるようになつ
た。 周知のように、高電圧回転電機用コイル導体
は、うず電流をなくすために多数の小導体素線を
組合わせて作られているが、特に高電圧大容量の
機器ではスロツト漏れ磁束の不同による内部循環
電流をなくすため、一般にはレーベル転位なる方
法が採用されている。 このためコイル導体表面、特に転位部には大き
な凸凹が生じることになる。また、素線単独では
変形しやすく、マイカテープの巻回に支障が生じ
るので、通常はワニス類やコンパウンド類を用い
て、素線間を結合すると共に凸凹部、特にくぼみ
部を充填し、コイル導体の表面を平嚊にする作業
が行われている。 しかしながら、このような従来の方法ではワニ
スやコンパウンドを取扱うため、作業が煩雑とな
るばかりでなく、臭気やかぶれ等作業者の安全衛
生面にも問題があつた。 また、このようにして製造したコイル導体は、
内部の空〓を完全に充填できず、その結果、たと
え対地絶縁層として施こしたマイカテープ絶縁層
の製造工程が完全であつても、導体部分に空〓が
あれば絶縁コイルの実使用下においてはコロナの
発生を伴い、最終的には絶縁性能の低下を招き好
ましくなかつた。 この発明は、かゝる上述の従来欠点をすべて排
除できる絶縁コイルを提供するもので作業性を改
善すると共に、製作を簡単にし、しかも最終的な
絶縁コイルの特性は機械、電気的、熱的性質にも
充分すぐれているという、極めて画期的な回転電
機用コイルの製造方法を提供するものである。 すなわちこの発明は、コイル導体および対地絶
縁の各製造工程でのワニス類の取扱いをすべて排
除し、作業性を改善するものであり、さらに空〓
をなくすことが困難なコイル導体を半導電性と
し、コイル導体にシールされた微少ボイドのすべ
てを素線群と同電位とすることにより、包含され
たボイドからコロナ発生を全く排除したことを特
徴とするものである。 しかしこの発明により得た回転電機用コイル
は、絶縁層中にボイドをほとんど含まないので耐
コロナ性の非常にすぐれた絶縁コイルの製作が可
能となるものである。 次に、この発明の一実施例を回転電機用コイル
に適用した場合について添付図面を参照して更に
詳細に説明する。 第1図は絶縁素線をレーベル転位して組合わせ
たコイル導体の斜視図であり、第2図、第3図は
この発明の一実施例により得た回転電機用絶縁コ
イルの断面図である。通常用いられている絶縁素
線1は、銅線にガラス繊維やマイカ粉末のような
無機質基材と熱硬化性樹脂で絶縁処理して成り、
第1図のようにレーベル転位した形状に組合わさ
れる。このように組合わせた素線群を一体化さ
せ、さらに対地絶縁を施すことになるが、この時
の材料組合わせ構成は第2図および第3図で示さ
れる。すなわち、左右の素線1群の列間に多孔質
絶縁材に熱硬化性樹脂を処理してなるプリプレグ
絶縁材2を挿入し、転位部絶素線1aと他の絶縁
素線1との間に層間短絡を避けるために多孔質絶
縁材に熱硬化性樹脂を処理してなるプリプレグ絶
縁材3を挿入する。転位部上には多孔質絶縁材に
導電性または半導電性粉末と熱硬化性樹脂とを処
理してなる2列の素線の幅に切断した半導電性プ
リプレグ材4を重ねる。さらに要すればコイル導
体の全周を半導電性基材に熱硬化性樹脂を処理し
てなる半導電性プリプレグ材5のシート、あるい
はテープを施こしてこれを所定の金型にて加熱加
圧成形してコイル導体を得る。 このようにして得たコイル導体の表面、すなわ
ち第2図の半導電性プリプレグ材4、および第3
図における同様構成の4および5の部分は実使用
下における高電圧印加時にも絶縁素線と同電位と
し、包含される微少ボイドによるコロナ発生をな
くすため、体積抵抗率で104〜109Ωcmに仕上げら
れている。その後、コイル導体上に熱硬化性樹脂
を多量に含む集成マイカ、およびはがしマイカの
マイカプリプレグテープ類6を巻回し、加熱加圧
成形して硬化対地絶縁層を形成する。 この発明の特徴とするところは、上述した如く
半導電性プリプレグ材4および5を用いることに
あるが、第3図のように、コイル導体上さらに半
導電性プリプレグ材シート5を施すことは、この
発明の効果をより大きく発揮させるほか、半導電
性プリプレグ材中の樹脂は、加熱時にマイカプリ
プレグテープ中のレンジよりも流動性に富むた
め、マイカプリプレグテープ類の加熱成形時に、
温度上昇の最も遅いコイル導体上にあつて、樹脂
の流動をより容易とし、コイル導体との接着力を
向上させる役目も併せ有することになる。 前記プリプレグ絶縁材2は、ガラスクロス、ポ
リエステルクロス、ポリエステル不織布、はがし
マイカ、集成マイカ、各種フイルム類、アスペス
トペーパー、芳香族ポリアミドペーパー等通常知
られている多孔質絶縁材の単本、もしくは2種類
を組合わせたものに熱硬化性樹脂を塗布し、乾燥
して半硬化状に仕上げたものが選択される。樹脂
付着量としては、用いる基材の種類にもよるが、
30〜85%(重量%、以下同様)が好適である。ま
た、熱硬化性樹脂としては通常知られている不飽
和ポリエステル、エポキシ、フエノール、アルキ
ツド、シリコン、エステルイミド、ポリアミド、
ポリイミド等のほとんどの合成樹脂系のものが実
用に供され得るが、硬化樹脂の接着強度が大であ
り、しかもプリプレグ状態の貯蔵寿命の長いエポ
キシ樹脂は特に好適である。 また多孔質絶縁材3とは、前記例示したプリプ
レグ絶縁材のほとんどがそのまま実用に供され得
るが、素線1,1a間の挿入の容易さ、等からガ
ラスクロス、芳香族ポリアミドペーパー、はがし
マイカ、集成マイカのプリプレグ類が特に好適で
ある。 転位部上に用いる半導電性プリプレグ材4と
は、ガラス繊維フエルト、ポリエステル不織布フ
エルト、集成マイカのごとき比較的多孔性の大き
い基材と前記樹脂とカーボン粉末、炭化ケイ素粉
末のごとき導電性あるいは半導電性物質とからな
るプリプレグ材料が好適であり、加熱成形後、体
積抵抗率で106〜109Ωcmに仕上るものが好適に選
択される。これら三者の構成比率としては、基材
100部に対し、樹脂の60〜500部、導電性あるいは
半導電性物質の5〜100部が好ましい。また、半
導電性プリプレグ材には前記したほか、導電性な
るいは半導電性基材と樹脂とからなるプリプレグ
材料も良好に用いられる。その代表例としてはカ
ーボン繊維フエルトを基材としてプリプレグ材料
が挙げられる。 以上説明したプリプレグ材料を用いて加熱成形
して得たコイル導体の転位部上は、体積抵抗率で
104〜109Ωcmに仕上るものである。ここで、体積
抵抗率が104Ω以下の場合、うず電流損が増大す
るという欠点が生じるほか、仮に素線間の絶縁被
覆が破損した場合には素線間が短絡するという欠
点がある。また、体積抵抗率が109Ωcm以上の場
合、この発明の目的を達し得ず、いずれも好まし
くない。 なお、第3図で示した構成の場合の半導電性プ
リプレグ材6としては、コイル導体への巻回性を
考慮し、前記半導電性プリプレグ材4よりも前記
プリプレグ絶縁材2に用いた基材が好適である
が、特に加熱時に収縮するような材料が好まし
い。プリプレグ材料の構成および加熱成形後の効
果としては、前述のとおりであるが、第3図にお
いてはコイルの全周について、この発明の効果を
発揮できるので、より完全な絶縁コイルが製作で
きるものである。 さらにこの発明の対地絶縁層をなす、熱硬化性
樹脂を含むマイカプリプレグテープ類について説
明する。 集成マイカテープとは、焼成法あるいは水ジエ
ツト法により製造された集成マイカシートに、ガ
ラスクロス、ポリエステル不織布、紙、各種ポリ
エステルフイルム類、等を裏打ち材としたもの
に、前記例示したごとき熱硬化性樹脂を15〜80%
含有し、テーピング性を容易とするため半硬化状
に仕上げられたものである。 はがしマイカテープとは、4〜6号の金雲母や
白雲母に前記集成マイカテープで用いたものと同
じ裏打ち材、および樹脂系が用いられ、半硬化状
に仕上げられたものである。 これらのマイカプリプレグテープ類は、コイル
導体上に所定数を巻回された後、加熱加圧成形し
て絶縁コイルに仕上げられる。この場合の成形条
件としては、用いる樹脂系にもよるが、通常3〜
20Kg/cm2の圧力下で、100〜170℃の温度で、1〜
15時間成形される。 このように、この発明の方法によつて得られた
回転電機用絶縁コイルは、用いる材料のすべてを
プリプレグ材としているため、製造が簡単である
とともに、作業性面ですぐれているものである。
また得られた絶縁コイルは、従来から問題とされ
ていたコイル導体の空〓によるコロナ発生を全く
排除したため、電気的性質にすぐれている。その
ほか、プリプレグ材に用いる樹脂系をも任意に選
択できるので、機械的、熱的性質のすべての面で
すぐれた特性を有する絶縁コイルの製作を可能に
するものである。 以下、実施例によりこの発明を具体的に説明す
る。 実施例 1 第1図のように平角銅線に2重ガラス繊維の被
覆を施し、アルキツド系ワニスを焼付け処理して
なる2.2mm×5.7mmの絶縁素線〔大日日本電機(株)製
品〕1をレーベル転位して、2列21段に組合わせ
た。この素線1群の列間に第2図のように、エピ
コート1001(シエル化学会社製商品名)100部、
BF3モノエチルアミン4部からなる樹脂を60%含
む厚さ0.50mmのガラスクロスプリプレグシートで
できたプリプレグ絶縁材2を挿入した。レーベル
転位下にはノーメツクス#410(デユポン社製商
品名)に前記樹脂を35%含む厚さ0.25mmのノーメ
ツクスプリプレグシートをプリプレグ絶縁材3と
して挿入した。レーベル転位上にはポリエステル
不織布フエルト(商品名HP−35日本バイリーン
社製品)にエピコート1001(前出)80部、エピコ
ート834(シエル化学会社商品名)20部、BF3
ノエチルアミン4部およびカーボン粉末としてア
セチレンプラツク(粒径0.5〜5μ)9部からな
る配合物を75%含む半導電性プリプレグ材4を重
ね、160℃で30分間、10Kg/cm2の圧力で成形し、
転位部上で2×107Ωcmの体積抵抗率を有するコ
イル導体を得た。次に集成マイカテープ6とし
て、サミカサーム366−28−02(スイス、イソラ
社製商品名、厚さ0.18mm、幅30mm)を半重ね巻き
で所定数を巻回した後110℃×1Hr+150℃×13Hr
加熱成形して、絶縁厚さ3.0mmの絶縁コイルを得
た。 実施例 2 実施例1で製作したものと同じコイル導体を用
い、このコイル導体上にテトロンガラス交織布
〔(株)有沢製作所製品、厚さ0.1mm、110℃における
収縮率10%〕に実施例1、半導電性プリプレグシ
ート4で用いた配合物を54%含む、幅30mmのテー
プを半導電性プリプレグ材5としてつき合わせ巻
きで1回巻回した。その後、実施例1と同様に集
成マイカテープの巻回、加熱成形を行い、絶縁厚
さ3.0mmの絶縁コイルを得た。 実施例 3 実施例1で製作したものと同じコイル導体を用
い、このコイル導体上にサミカサーム366−28−
02と下記構成をなすはがしマイカテープを半重ね
巻きで交互に巻回した。その後、実施例1と同一
成形条件により絶縁厚さ3.0mmの絶縁コイルを得
た。 はがしマイカ……5号金雲母の4層貼り 裏打ち材の片側……ポリエチレンテレフタレート
フイルム (厚さ0.025mm) 裏打ち材の片側……ガラスクロス(厚さ0.03mm) 樹脂……ノポラツク系のエポキシ樹脂および硬化
剤を35%含有 比較例 1 実施例1と同じ素線形状のコイルに、実施例1
で用いたプリプレグ絶縁材2および3をそれぞれ
挿入し、レーベル転位上にはポリエステル不織布
フエルトを重ね、スチレン及び有機過酸化物を含
む不飽和ポリエステルワニスをコイル全体に塗布
した。その後130℃で1時間成形し、コイル導体
を得た。以下、実施例1と同様に集成マイカテー
プの巻回、加熱成形を行い、絶縁厚さ3.0mmの絶
縁コイルを得た。 これらの絶縁コイルの代表的特性を第1表に示
した。但し、Δtanδとは二電圧間で誘電正接を
測定したときの値であり、5KV/mm−0.5KV/mm
の値を示してる。また加熱劣化後のΔtanδと
は、90℃において10KVの電圧を10日間印加した
時の値を示している。
The present invention relates to a method of manufacturing a coil for a rotating electric machine, such as a turbine generator, a water turbine generator, etc., which has a particularly high working voltage. In insulated coils for high-voltage rotating electric machines, efforts are being made to obtain an insulator with as few voids as possible in order to prevent corona discharge inside the insulator.
In general, insulation treatment is performed by the following method on a coil conductor that is formed by heating and forming a coil conductor by filling the empty part of a group of wires made by transposing and combining insulated wires with varnish or compound. . This is the so-called vacuum pressure impregnation method, in which a predetermined number of turns of laminated mica tape or peelable mica tape are impregnated with thermosetting resin under vacuum pressure, and then heat molded to obtain an insulated coil. This is the so-called prepreg method, in which a pre-preg tape made of laminated mica or peelable mica containing a large amount of thermosetting resin is wound around a predetermined number of times, and then an insulated coil is heat-formed. Two methods have been adopted. In the above methods () and (), the properties of the obtained insulating layer are almost the same, but ()
Compared to the method (), the method () requires vacuum and pressure impregnation equipment, and the handling of varnishes during work has problems in terms of workability. It has become more widely used. As is well known, coil conductors for high-voltage rotating electric machines are made by combining many small conductor strands in order to eliminate eddy currents, but especially in high-voltage and large-capacity equipment, the coil conductor for high-voltage rotating electrical machines is made by combining many small conductor wires to eliminate eddy currents. In order to eliminate internal circulating currents, a method called Lebel transposition is generally used. Therefore, large irregularities occur on the surface of the coil conductor, especially at the dislocation portion. In addition, since the strands alone are easily deformed and cause problems when winding the mica tape, varnishes or compounds are usually used to bond the strands together and fill in the uneven parts, especially the depressions, to form the coil. Work is underway to smooth the surface of the conductor. However, since such conventional methods involve handling varnish and compounds, the work is not only complicated, but also poses health and safety problems for workers, such as odor and rashes. In addition, the coil conductor manufactured in this way is
The internal voids cannot be completely filled, and as a result, even if the manufacturing process of the mica tape insulation layer applied as the ground insulation layer is perfect, if there are voids in the conductor part, the insulated coil will not be used properly. In this case, corona was generated, which ultimately led to a decrease in insulation performance, which was undesirable. The present invention provides an insulated coil that can eliminate all of the above-mentioned conventional drawbacks, improves workability, simplifies manufacturing, and improves mechanical, electrical, and thermal properties of the final insulated coil. The present invention provides an extremely innovative method for manufacturing a coil for a rotating electric machine, which has sufficiently excellent properties. In other words, this invention eliminates the handling of varnishes in each manufacturing process of coil conductors and ground insulation, improving work efficiency, and furthermore, eliminates the need for handling varnishes in each manufacturing process of coil conductors and ground insulation.
The coil conductor, which is difficult to eliminate, is made semiconductive, and all microvoids sealed in the coil conductor are made to have the same potential as the wire group, thereby completely eliminating corona generation from the included voids. That is. However, since the coil for a rotating electric machine obtained according to the present invention contains almost no voids in the insulating layer, it is possible to manufacture an insulated coil with extremely excellent corona resistance. Next, a case in which an embodiment of the present invention is applied to a coil for a rotating electric machine will be described in more detail with reference to the accompanying drawings. FIG. 1 is a perspective view of a coil conductor made by combining insulated wires by Lebel transposition, and FIGS. 2 and 3 are cross-sectional views of an insulated coil for a rotating electric machine obtained according to an embodiment of the present invention. . The commonly used insulated wire 1 is made by insulating a copper wire with an inorganic base material such as glass fiber or mica powder and a thermosetting resin.
As shown in FIG. 1, they are combined into a Leber transposed shape. The wire groups thus combined are integrated and further insulated to the ground, and the material combination structure at this time is shown in FIGS. 2 and 3. That is, a prepreg insulating material 2 made of a porous insulating material treated with a thermosetting resin is inserted between the rows of one group of left and right strands of strands, and a prepreg insulating material 2 made of a porous insulating material treated with a thermosetting resin is inserted between the dislocation-free strand 1a and the other insulating strands 1. In order to avoid interlayer short circuits, a prepreg insulating material 3 made of a porous insulating material treated with a thermosetting resin is inserted. A semiconductive prepreg material 4 cut to the width of two rows of strands made by treating a porous insulating material with a conductive or semiconductive powder and a thermosetting resin is placed on the dislocation portion. Furthermore, if necessary, a sheet or tape of a semiconductive prepreg material 5 made of a semiconductive base material treated with a thermosetting resin is applied around the entire circumference of the coil conductor, and this is heated and heated in a predetermined mold. A coil conductor is obtained by pressure forming. The surface of the coil conductor thus obtained, that is, the semiconductive prepreg material 4 in FIG.
Parts 4 and 5 of the same configuration in the figure have a volume resistivity of 10 4 to 10 9 Ωcm in order to maintain the same potential as the insulated wire even when high voltage is applied in actual use, and to eliminate corona generation due to the included minute voids. It has been finished. Thereafter, mica prepreg tapes 6 made of assembled mica containing a large amount of thermosetting resin and peelable mica are wound around the coil conductor, and molded under heat and pressure to form a hardened ground insulating layer. The feature of this invention is that the semiconductive prepreg materials 4 and 5 are used as described above, but as shown in FIG. In addition to further demonstrating the effects of this invention, the resin in the semiconductive prepreg material has more fluidity than the microwave in the mica prepreg tape when heated, so when heating the mica prepreg tape,
Since it is on the coil conductor whose temperature rises slowest, it also has the role of making the flow of the resin easier and improving the adhesive force with the coil conductor. The prepreg insulating material 2 may be one or two types of commonly known porous insulating materials such as glass cloth, polyester cloth, polyester nonwoven fabric, peelable mica, laminated mica, various films, aspest paper, aromatic polyamide paper, etc. A combination of these is coated with a thermosetting resin and dried to a semi-cured state. The amount of resin attached depends on the type of substrate used, but
30 to 85% (weight %, the same applies hereinafter) is suitable. In addition, thermosetting resins include commonly known unsaturated polyesters, epoxies, phenols, alkyds, silicones, esterimides, polyamides,
Although most synthetic resins such as polyimide can be put to practical use, epoxy resins are particularly suitable as they have a high adhesive strength as a cured resin and have a long shelf life in the prepreg state. The porous insulating material 3 may be made of glass cloth, aromatic polyamide paper, peelable mica, etc., although most of the above-mentioned prepreg insulating materials can be put to practical use as they are. , laminated mica prepregs are particularly preferred. The semiconductive prepreg material 4 used on the dislocation site is a material consisting of a relatively porous base material such as glass fiber felt, polyester nonwoven felt, or laminated mica, the resin, and a conductive or semiconductive material such as carbon powder or silicon carbide powder. A prepreg material made of a conductive substance is suitable, and a material having a volume resistivity of 10 6 to 10 9 Ωcm after heat molding is preferably selected. The composition ratio of these three materials is
For every 100 parts, 60 to 500 parts of resin and 5 to 100 parts of conductive or semiconductive material are preferred. In addition to the above-mentioned semiconductive prepreg materials, prepreg materials made of a conductive or semiconductive base material and a resin are also suitably used. A representative example thereof is a prepreg material using carbon fiber felt as a base material. The volume resistivity of the dislocation area of the coil conductor obtained by heat forming using the prepreg material explained above is
It is finished with a resistance of 10 4 to 10 9 Ωcm. Here, when the volume resistivity is 10 4 Ω or less, there is a drawback that eddy current loss increases, and if the insulation coating between the wires is damaged, there is a short circuit between the wires. Further, if the volume resistivity is 10 9 Ωcm or more, the object of the present invention cannot be achieved, and both are not preferable. Note that the semiconductive prepreg material 6 in the configuration shown in FIG. Materials are preferred, particularly those that shrink when heated. The structure of the prepreg material and the effect after heat forming are as described above, but in Fig. 3, the effect of the present invention can be demonstrated around the entire circumference of the coil, so a more perfect insulated coil can be manufactured. be. Furthermore, mica prepreg tapes containing a thermosetting resin and forming the ground insulating layer of the present invention will be explained. Laminated mica tape is a laminated mica sheet produced by a firing method or a water jet method, with a backing material such as glass cloth, polyester nonwoven fabric, paper, various polyester films, etc., and a thermosetting material such as those exemplified above. 15-80% resin
It is finished in a semi-cured state to facilitate taping. Peelable mica tape is made of No. 4 to No. 6 phlogopite or muscovite using the same backing material and resin system as those used for the laminated mica tape, and is finished in a semi-cured state. These mica prepreg tapes are wound a predetermined number of times on a coil conductor, and then heated and pressed to form an insulated coil. The molding conditions in this case depend on the resin system used, but are usually 3~
Under a pressure of 20Kg/ cm2 , at a temperature of 100-170℃, from 1 to
Molded for 15 hours. As described above, the insulated coil for a rotating electric machine obtained by the method of the present invention is easy to manufacture and has excellent workability since all the materials used are prepreg materials.
In addition, the obtained insulated coil has excellent electrical properties because it completely eliminates the generation of corona due to voids in the coil conductor, which has been a problem in the past. In addition, since the resin system used for the prepreg material can be arbitrarily selected, it is possible to manufacture an insulated coil having excellent properties in all aspects of mechanical and thermal properties. EXAMPLES The present invention will be specifically described below with reference to Examples. Example 1 As shown in Figure 1, a 2.2 mm x 5.7 mm insulated wire made by coating a rectangular copper wire with double glass fiber and baking with alkyd varnish [product of Dainichi Nippon Denki Co., Ltd.] 1 was rearranged and combined into two rows and 21 stages. Between the rows of this 1 group of wires, as shown in Figure 2, 100 copies of Epicoat 1001 (trade name manufactured by Ciel Chemical Co., Ltd.),
A prepreg insulation material 2 made of a 0.50 mm thick glass cloth prepreg sheet containing 60% of a resin consisting of 4 parts of BF 3 monoethylamine was inserted. A 0.25 mm thick Nomex prepreg sheet containing 35% of the above-mentioned resin was inserted into Nomex #410 (trade name, manufactured by DuPont) as the prepreg insulating material 3 under the Lebel dislocation. On the Lebel dislocation, 80 parts of Epikote 1001 (mentioned above), 20 parts of Epicoat 834 (product name of Ciel Chemical Co., Ltd.), 4 parts of BF 3 monoethylamine, and carbon powder were added to polyester nonwoven felt (product name: HP-35, product of Nippon Vilene Co., Ltd.). A semiconductive prepreg material 4 containing 75% of a compound consisting of 9 parts of acetylene plaque (particle size 0.5 to 5μ) was layered and molded at 160°C for 30 minutes at a pressure of 10Kg/cm 2 .
A coil conductor having a volume resistivity of 2×10 7 Ωcm on the dislocation site was obtained. Next, as the laminated mica tape 6, Samikatherm 366-28-02 (trade name, manufactured by Isola, Switzerland, thickness 0.18 mm, width 30 mm) was wound a predetermined number of times in a half-overlap manner, and then the tape was wound at 110°C x 1Hr + 150°C x 13Hr.
An insulated coil with an insulation thickness of 3.0 mm was obtained by heat molding. Example 2 Using the same coil conductor as that produced in Example 1, a Tetron glass interwoven fabric [manufactured by Arisawa Seisakusho Co., Ltd., thickness 0.1 mm, shrinkage rate 10% at 110°C] was coated on the coil conductor. 1. A tape with a width of 30 mm containing 54% of the compound used in semiconductive prepreg sheet 4 was wound once as semiconductive prepreg material 5 by butt winding. Thereafter, the mica tape assembly was wound and heated in the same manner as in Example 1 to obtain an insulated coil with an insulation thickness of 3.0 mm. Example 3 Using the same coil conductor as that produced in Example 1, Samikatherm 366-28- was applied on this coil conductor.
02 and peelable mica tape having the following configuration were alternately wound in a half-overlap manner. Thereafter, an insulated coil with an insulation thickness of 3.0 mm was obtained under the same molding conditions as in Example 1. Peel off mica...One side of the 4-layer backing material made of No. 5 phlogopite...Polyethylene terephthalate film (thickness 0.025mm) One side of the backing material...Glass cloth (thickness 0.03mm) Resin...Nopolac epoxy resin and Comparative example 1 containing 35% hardening agent Example 1 was applied to a coil having the same wire shape as Example 1.
The prepreg insulating materials 2 and 3 used in 2 were inserted, a polyester nonwoven felt was layered on the Leber dislocation, and an unsaturated polyester varnish containing styrene and an organic peroxide was applied to the entire coil. Thereafter, it was molded at 130°C for 1 hour to obtain a coil conductor. Thereafter, the assembled mica tape was wound and heated in the same manner as in Example 1 to obtain an insulated coil with an insulation thickness of 3.0 mm. Typical characteristics of these insulated coils are shown in Table 1. However, Δtanδ is the value when the dielectric loss tangent is measured between two voltages, and is 5KV/mm−0.5KV/mm.
It shows the value of Further, Δtanδ after heat deterioration indicates the value when a voltage of 10 KV was applied for 10 days at 90°C.

【表】 以上詳述した実施例および比較例から明らかな
ように、この発明によつて得られた回転電機用絶
縁コイルは、製造が簡単であるとともに、作業性
面でもすぐれており、しかもコイル導体からのコ
ロナ発生を排除したため、絶縁コイルの性能が大
幅に向上し、ひいては回転電機の寿命を著しく向
上させるという、極めて画期的なものであり、工
業上の価値は大である。 なお、この発明においては、上述した如きすぐ
れた特性を持つ回転電機用コイルの表面に、保護
テープを施したり、コロナシールド層を施すこと
も可能であり、この発明の要旨を変更しない限り
任意に選択して使用できるものである。
[Table] As is clear from the Examples and Comparative Examples detailed above, the insulated coil for rotating electric machines obtained by the present invention is easy to manufacture and has excellent workability. By eliminating the generation of corona from the conductor, the performance of the insulated coil is greatly improved, which in turn significantly extends the lifespan of rotating electrical machines.This is an extremely groundbreaking product and has great industrial value. In addition, in this invention, it is also possible to apply a protective tape or a corona shield layer to the surface of a coil for a rotating electric machine having the excellent characteristics as described above, and it is possible to apply a protective tape or a corona shield layer to the surface of the coil for a rotating electric machine, which has the excellent characteristics as described above. It can be used selectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーベル転位を施したコイル導体の斜
視図であり、第2図および第3図は、この発明の
製造方法により得た回転電機用絶縁コイルの一実
施例を示し、いずれも第1図の−′線に沿う
断面図で製作したときの断面図である。 1……絶縁素線、1a……転位部絶素線、2,
3……プリプレグ絶縁材、4,5……半導電性プ
リプレグ材、6……マイカプリプレグテープ類。
FIG. 1 is a perspective view of a coil conductor subjected to Lebel transposition, and FIGS. 2 and 3 show an example of an insulated coil for a rotating electric machine obtained by the manufacturing method of the present invention, and both are It is a sectional view taken along the line -' in the figure. 1...Insulated strand, 1a...Dislocation-free strand, 2,
3... prepreg insulating material, 4, 5... semiconductive prepreg material, 6... mica prepreg tapes.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁素線を転位して組合わせてなる素線群の
空〓部、特に素線間および素線列間には多孔質絶
縁材に熱硬化性樹脂を処理したプリプレグ絶縁材
を挿入し、転位部上には多孔質絶縁材に導電性ま
たは半導電性粉末と熱硬化性樹脂とを処理した半
導電性プリプレグ材あるいは半導電性基材に熱硬
化性樹脂を処理した半導電性プリプレグ材を重
ね、これを所定の金型にて加熱加圧成形したコイ
ル導体を得る工程、該コイル導体上に予め多量の
熱硬化性樹脂を含むマイカプリプレグテープを巻
装する工程、これを加熱加圧成形して硬化絶縁層
を形成する工程を有することを特徴とする回転電
機用コイルの製造方法。
1. A prepreg insulating material made of a porous insulating material treated with a thermosetting resin is inserted into the empty space of a group of strands formed by transposing and combining insulating strands, especially between the strands and between the strand rows, On the dislocation part, there is a semiconductive prepreg material in which a porous insulating material is treated with conductive or semiconductive powder and a thermosetting resin, or a semiconductive prepreg material in which a semiconductive base material is treated with a thermosetting resin. A process of stacking the coil conductors and forming them under heat and pressure in a predetermined mold to obtain a coil conductor.A process of wrapping a mica prepreg tape containing a large amount of thermosetting resin in advance on the coil conductor. A method for manufacturing a coil for a rotating electrical machine, comprising the step of forming a hardened insulating layer by molding.
JP20413282A 1982-11-18 1982-11-18 Manufacture of coil for rotary electric machinery Granted JPS5899249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20413282A JPS5899249A (en) 1982-11-18 1982-11-18 Manufacture of coil for rotary electric machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20413282A JPS5899249A (en) 1982-11-18 1982-11-18 Manufacture of coil for rotary electric machinery

Publications (2)

Publication Number Publication Date
JPS5899249A JPS5899249A (en) 1983-06-13
JPS6118411B2 true JPS6118411B2 (en) 1986-05-12

Family

ID=16485361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20413282A Granted JPS5899249A (en) 1982-11-18 1982-11-18 Manufacture of coil for rotary electric machinery

Country Status (1)

Country Link
JP (1) JPS5899249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343531Y2 (en) * 1986-08-29 1991-09-12

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247247A (en) * 1985-04-25 1986-11-04 Toshiba Corp Winding for rotary electric machine
SE455246B (en) * 1986-10-22 1988-06-27 Asea Ab MANUFACTURER FOR SAVING IN A STATOR OR ROTOR IN AN ELECTRIC MACHINE AND MANUFACTURING A MANUFACTURING
JPS63131561U (en) * 1987-02-19 1988-08-29
JP4999426B2 (en) * 2006-11-08 2012-08-15 三菱電機株式会社 Rotating electric machine
JP5269153B2 (en) * 2011-07-08 2013-08-21 三菱電機株式会社 Rotating electric machine
US8872405B2 (en) * 2012-02-01 2014-10-28 Siemens Energy, Inc. High voltage stator coil with reduced power tip-up

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343531Y2 (en) * 1986-08-29 1991-09-12

Also Published As

Publication number Publication date
JPS5899249A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US4001616A (en) Grounding of outer winding insulation to cores in dynamoelectric machines
CA1289610C (en) Coil for arrangement in slots in a stator or rotor of an electrical machine
US4427740A (en) High maximum service temperature low cure temperature non-linear electrical grading coatings resistant to V.P.I. resins containing highly reactive components
JP3721359B2 (en) Stepped electric field insulation system for dynamoelectric machine
JPS63250010A (en) Conductor with surrounded insulation
US3845438A (en) Tape insulated conductor
US3775628A (en) Insulated coil for arrangement in a slot in the stator or rotor of an electric machine
JPH03236106A (en) Electric insulator
JP2009118719A (en) Nonlinear dielectric used as electrically insulating material
JPS6118411B2 (en)
US6724118B2 (en) Electrical isolation layer system strand assembly and method of forming for electrical generator
JP2000058314A (en) High temperature conductive coil and insulating sheet and manufacture thereof
US3626587A (en) Methods of constructing electrical transformers
US5674340A (en) Insulating tape for the winding of an electric machine
US4836769A (en) Water-cooled winding for electromagnetic stirrer
EP1034607B1 (en) Insulated conductor for high-voltage machine windings
JPH02151247A (en) Manufacture of coil for electrical rotary machine
JPS6277040A (en) Manufacture of insulated coil
US11605994B2 (en) Winding insulation system
JPH0638424A (en) Stator coil of high-tension rotating electric machine
JPS605211B2 (en) insulated coil
JPS6166539A (en) Stator coil
JPS63206134A (en) Winding of rotary electric machine
US3582425A (en) Method of manufacturing electric coils
JPS6268030A (en) Winding of rotary electric machine