JPH02151247A - Manufacture of coil for electrical rotary machine - Google Patents

Manufacture of coil for electrical rotary machine

Info

Publication number
JPH02151247A
JPH02151247A JP30145288A JP30145288A JPH02151247A JP H02151247 A JPH02151247 A JP H02151247A JP 30145288 A JP30145288 A JP 30145288A JP 30145288 A JP30145288 A JP 30145288A JP H02151247 A JPH02151247 A JP H02151247A
Authority
JP
Japan
Prior art keywords
conductor
prepreg
base material
semi
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30145288A
Other languages
Japanese (ja)
Inventor
Yuzo Hagiwara
萩原 雄三
Yukimi Ishikawa
幸美 石川
Yoshiharu Sano
佐野 善春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30145288A priority Critical patent/JPH02151247A/en
Publication of JPH02151247A publication Critical patent/JPH02151247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of corona by covering the vicinity of a damaged portion of a strand insulator with prepreg insulating material and making the upper and under faces of conductor semi-conductive thereby containing sealed micro-voids in the conductor. CONSTITUTION:A prepreg fiber material 2 composed of fiber insulating material applied with thermosetting resin is inserted between rows of strand groups where strands 1 are combined in Roebel transposition, and an inorganic anti- shortcircuit insulating material 3 is inserted between a transposition strand 1a and other strand 1. A prepreg insulating material 4a composed of fiber insulating material applied with thermosetting resin by 2/4-3/4 of the overall thickness of an insulating base body 4 is buried in a recess provided through transposition. Then a semi-setting insulating material 4b composed of fiber insulating material applied with inorganic semi-conductive material and thermosetting resin by 1/4-2/4 of the overall thickness of the insulating material is laminated thereon across the upper section of the transposition strand 1a. Then it is formed by a metal dies thus producing a coil conductor. By such arrangement, generation of corona from a void in the conductor can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は導体の素線をレーベル転位した回転電機用コイ
ルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a coil for a rotating electric machine in which conductor strands are subjected to Lebel transposition.

(従来の技術) タービン発電機や水車発電機のような大容量。(Conventional technology) Large capacity like turbine generators and water wheel generators.

高電圧の回転電機のコイルは導体の素線をレーベル転位
するものが多い。このレーベル転位を行うと、第2図に
示すように素線■と転位部素線(1a)の間に凹凸部が
できる。また素線■単独では変形しやすく、絶縁テープ
の巻回に支障が生じるので、接着用ワニス類や平滑用コ
ンパウンド類を用いて素線間を接着すると共に凹部を充
填し導体の表面を平滑にしている。高電圧回転電機用絶
縁コイルにおいては、絶縁層内部のコロナ放電を防止す
るため、実用上差支えない程度の小さな空隙まで、いい
かえればできるだけ空隙のない絶豫層を得るように努力
されている。
The coils of high-voltage rotating electric machines often use Lebel transposition of conductor strands. When this Lebel transposition is carried out, as shown in FIG. 2, an uneven portion is formed between the strand 2 and the transposed strand (1a). In addition, since the strands alone are easily deformed and cause problems in winding the insulating tape, adhesive varnishes or smoothing compounds are used to bond the strands together, fill in the recesses, and smooth the surface of the conductor. ing. In insulating coils for high-voltage rotating electrical machines, efforts are being made to create a layer with as few voids as possible, in other words, to prevent corona discharge inside the insulating layer, to the extent that there are no gaps in practical use.

素線を転位して組合わせてなる導体の素線群の空隙部に
はワニスやコンパウンドを充填して加熱成形したコイル
導体上に次のような絶縁処置方式%式% (1)ドライ集成マイカテープを所定の回数巻回後、熱
硬化性樹脂を真空加圧含浸し、加熱成形して得る真空加
圧含浸方式。
(1) Dry laminated mica A vacuum pressure impregnation method in which the tape is wound a predetermined number of times, then impregnated with thermosetting resin under vacuum pressure, and then heated and molded.

(■)あらかじめ熱硬化性樹脂を多量に含有するプリプ
レグ集成マイカテープを所定の回数巻回後、減圧・加熱
・加圧して得る真空プリプレグ方式。
(■) Vacuum prepreg method, which is obtained by winding a pre-preg assembly mica tape containing a large amount of thermosetting resin a predetermined number of times, followed by vacuuming, heating, and pressurization.

の2通りの方式が採用されている。Two methods have been adopted.

このような従来の方法のワニスやコンパウンドで成形製
造した導体は内部の空隙を完全に充填できず、その結果
対地絶縁層として施こしたマイカテープ絶縁の製造工程
が完全であっても導体の素線間に空隙があれば、コイル
絶縁の実使用下においてコロナの発生を伴い、最終的に
は絶縁性能の低下を招いてしまう。
Conductors molded and manufactured using conventional methods such as varnish or compounds cannot completely fill the internal voids, and as a result, even if the manufacturing process of the mica tape insulation applied as the ground insulation layer is perfect, the conductor's element If there is a gap between the wires, corona will occur during actual use of coil insulation, which will ultimately lead to a decline in insulation performance.

上述の絶縁性能の低下を防止するため、半導電性プリプ
レグ絶縁材を転位部特に凹部に充填する方法が採用され
始めた。
In order to prevent the above-mentioned deterioration of insulation performance, a method of filling dislocations, particularly recesses, with a semiconductive prepreg insulating material has begun to be adopted.

(発明が解決しようとする課題) しかし素線転位部で鋭角に折り曲げられた部分の素線被
覆絶縁は損傷される。素線絶縁の損傷箇所が多くなると
、凹部の半導電性部分を媒体として循環電流が流れコイ
ル絶縁が発熱するという問題点がある。
(Problem to be Solved by the Invention) However, the insulation of the wire covering at the portion bent at an acute angle at the wire dislocation portion is damaged. When the number of damaged parts of the wire insulation increases, a problem arises in that a circulating current flows through the semiconductive portion of the recess as a medium and the coil insulation generates heat.

本発明の目的は上述の欠点を排除できる絶縁コイルを提
供するために1機械的、電気的、熱的特性にもすぐれた
回転電機用コイルの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an insulated coil that can eliminate the above-mentioned drawbacks, and to provide a method for manufacturing a coil for a rotating electric machine that has excellent mechanical, electrical, and thermal properties.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては。 (Means for solving problems) In order to achieve the above object, in the present invention.

転位部の素線被覆絶縁の損傷箇所近傍はプリプレグ絶縁
基材で覆われ、さらに空隙をなくすることが回連な導体
上下面は半導電性とし、シールされた微小ボイドを導体
内に包含させ、導体内ボイドからのコロナ発生を排除し
たことを特徴とするものである。
The vicinity of the damaged part of the wire coating insulation at the dislocation part is covered with a prepreg insulating base material, and the upper and lower surfaces of the conductor, which are necessary to eliminate voids, are made semiconductive, and the sealed microvoids are included in the conductor. , which is characterized by eliminating corona generation from voids within the conductor.

尚、本発明の説明において、プリプレグと半硬化性とは
同−意義語であるが、部材の区別を明らかにするために
使い分ける。
In the description of the present invention, the terms "prepreg" and "semi-curable" have the same meaning, but they will be used differently to clearly distinguish between the members.

更にその手段を第1図および第2図を参照して詳述する
ならば、通常用いられる素線(ト)は銅線に図示しない
ガラス繊維等の無機質基材と熱硬化性樹脂で絶5黴処理
して成り、第2図のようにレーベル転位した形状に組合
わされる。このように組合わせた素線群を一体化させ、
更に対地絶縁を施こすことになる。この時の材料組合構
成は第1図の断面図に示される。すなわち左右の素線群
の列間には繊維質絶縁材に熱硬化性樹脂を処理したプリ
プレグ繊維絶縁材■を挿入し、転位部素線(1a)と他
の索線(ト)との間の層間短絡を防止するためにマイカ
材等の無機質絶縁材と薄葉絶縁材を組合わせて熱硬化性
樹脂で処理してなる無機質絶縁材■を挿入する。転位に
よる凹部には絶縁性基材■全体厚さの2/4〜3/4が
繊維質絶縁材に熱硬化性樹脂を処理したプリプレグ絶縁
基材(4a)を埋入し、その上部と転位部素線(1a)
の上部にわたって絶縁性基材(イ)全体厚さの1/4〜
2/4が繊維質絶縁基材に半導電性粉末無機質材料と熱
硬化性樹脂とを混合加熱処理し゛た半硬化性絶縁基材(
4b)を重ねる。これを所定の金型にて加熱加圧成形し
てコイル用導体を得る。その後の対地絶縁は従来の通り
である。
Further, to explain the means in detail with reference to FIGS. 1 and 2, the commonly used wire (G) is made of a copper wire, an inorganic base material such as glass fiber (not shown), and a thermosetting resin. It is mold-treated and combined into a Leber transposed shape as shown in Figure 2. By integrating the wire groups combined in this way,
Furthermore, ground insulation will be provided. The material combination structure at this time is shown in the sectional view of FIG. In other words, between the rows of the left and right wire groups, a prepreg fiber insulation material ■ made of fiber insulation treated with a thermosetting resin is inserted, and between the dislocation portion wire (1a) and the other cable wire (G). In order to prevent interlayer short circuits, an inorganic insulating material (2) made of a combination of an inorganic insulating material such as mica material and a thin insulating material and treated with a thermosetting resin is inserted. In the recesses caused by dislocations, embed an insulating base material (2/4 to 3/4 of the total thickness of the prepreg insulating base material (4a) made of fibrous insulating material treated with thermosetting resin), and then Partial wire (1a)
1/4 to 1/4 of the total thickness of the insulating base material (A) over the top of the
2/4 is a semi-hardened insulating base material (2/4) is a fibrous insulating base material mixed with a semi-conductive powder inorganic material and a thermosetting resin and heated.
Overlap 4b). This is molded under heat and pressure in a predetermined mold to obtain a coil conductor. The subsequent ground insulation is the same as before.

(作用) このようにして得たコイル用導体の転位部素線(1a)
と他の素線■との間の層間短絡の生じやすい箇所、すな
わちプリプレグ絶縁基材(4a)部分は加熱加圧成形時
、半導電性粉末樹脂が流れこむのを防止するプリプレグ
絶縁基材(4a)層で覆われる素線の外方、すなわち半
硬化性絶縁基材(4b)の部分は実使用下における高電
圧印加時にも導体の素線と同電位とし、包含される微少
ボイドによる部分放電の発生をなくするため1体積抵抗
率を102〜106Ωdに仕上げられる。 また半硬化
性絶縁基材(4b)の半導電性樹脂の流れ出し量は、プ
リプレグ絶縁基材(4a)と半硬化性絶縁基材(4b)
とが完全に密着する程度である。その後ドライマイカテ
ープを巻回し、これに熱硬化性樹脂を真空含浸し、加熱
加圧成形し、硬化した対地絶縁層■を形成するか、また
は予め多量のエポキシ樹脂を含むプリプレグマイカテー
プを導体に巻回し、減圧加熱加圧成形し硬化した対地絶
縁層■を形成する。
(Function) Transposed element wire of conductor for coil obtained in this way (1a)
The part where interlayer short circuit between the wire and the other wire (■) is likely to occur, that is, the prepreg insulating base material (4a) part, is covered with a prepreg insulating base material (4a) that prevents the semiconductive powder resin from flowing in during hot press molding. 4a) The outer part of the wire covered with layer 4b, that is, the part of the semi-hardened insulating base material (4b), has the same potential as the conductor wire even when high voltage is applied in actual use, and the part due to the included microvoid In order to eliminate the occurrence of discharge, the 1 volume resistivity can be adjusted to 102 to 106 Ωd. In addition, the amount of semiconductive resin flowing out of the semi-curing insulating base material (4b) is the same as that of the semi-curing insulating base material (4a) and the semi-curing insulating base material (4b).
This is the extent to which the two are completely in close contact with each other. Thereafter, a dry mica tape is wound, vacuum impregnated with a thermosetting resin, and molded under heat and pressure to form a hardened ground insulation layer, or a prepreg mica tape containing a large amount of epoxy resin is used as a conductor. Roll it up and heat and pressurize it under reduced pressure to form a hardened ground insulating layer (2).

この発明の特徴とすることは、上述の如くプリプレグ絶
縁基材(4a)と半硬化性絶縁基材(4b)を用いるこ
とである。半硬化性絶縁基材(4b)の厚さを絶縁性基
材(イ)全体の2/4以上にすると素線間が短絡し、ま
た1/4以下にすると実使用の体積抵抗率が得られない
欠点がある。即ち、半導電性基材の体積抵抗率が102
Ωd以下の場合うず電流積が増大する欠点があり、 ま
た体積抵抗率が10“02以上の場合プリプレグ絶縁基
材(4a)の部分で包含している空隙(ボイド)から発
生する部分放電を完全に排除できず、最終的には絶縁性
能を低下させる。
A feature of the present invention is the use of the prepreg insulating base material (4a) and the semi-curable insulating base material (4b) as described above. If the thickness of the semi-hardened insulating base material (4b) is 2/4 or more of the entire insulating base material (a), short circuits will occur between the wires, and if the thickness is 1/4 or less, the volume resistivity for actual use will not be obtained. There are drawbacks that cannot be avoided. That is, the volume resistivity of the semiconductive base material is 102
If it is less than Ωd, there is a disadvantage that the eddy current product increases, and if the volume resistivity is more than 10"02, partial discharge generated from voids included in the prepreg insulating base material (4a) cannot be completely suppressed. cannot be eliminated, and ultimately deteriorates insulation performance.

半導電性基材製作時の体積抵抗率を102〜10’Ωd
にしたのは、導体に硬化絶縁層を形成した際の実使用上
の導体の素線の表面部の体積抵抗率を103〜10″Ω
dとするためである。
The volume resistivity when manufacturing semiconductive base material is 102 to 10'Ωd.
The reason for this is that when a hardened insulating layer is formed on a conductor, the volume resistivity of the surface of the conductor wire in actual use is 103 to 10''Ω.
This is to make it d.

所定の金型にて加熱加圧成形の際、半導電性樹脂流れ防
止材にはマイカ粉末を用いている。マイカ粉末を半硬化
性絶縁基材(4b)の重量比に対して30重量部以下だ
と半導電性樹脂の流れ出しを防止できず45重量部以上
にすると導体が所定の寸法とならず一体化した導体が得
られない。
Mica powder is used as a semiconductive resin flow prevention material during heating and pressure molding in a predetermined mold. If the mica powder is less than 30 parts by weight relative to the weight ratio of the semi-cured insulating base material (4b), it will not be possible to prevent the semiconductive resin from flowing out, and if it is more than 45 parts by weight, the conductor will not have the specified dimensions and will be integrated. conductor cannot be obtained.

(実施例) 実施例1 以下、本発明の第1の実施例について第1図および第2
図を参照して説明する。平角銅線に2重ガラス繊維の被
覆を施こし、ポリエステル系フェスを焼付は処理してな
る素線■をレーベル転位して2列30段(第1図、第2
図では10段に簡略化して示す)に組合わせる。この素
線の列間に第1図のようなエピコート828を40重量
部、 エピコート1001を56重量部(いずれもシェ
ル化学社商品名)に硬化材としてB F、M E A(
B F、400橋本化成社商品名)を4重量部からなる
樹脂を40重量部含む厚さ0.20nwのガラスクロス
プリプレグシートでできたプリプレグ繊維絶縁材(2)
を挿入する。
(Example) Example 1 The first example of the present invention will be described below with reference to FIGS. 1 and 2.
This will be explained with reference to the figures. A flat copper wire coated with double glass fiber and baked with a polyester face was then transposed into two rows of 30 rows (Figures 1 and 2) by Lebel rearrangement.
(In the figure, it is shown in 10 stages in a simplified manner). Between the rows of these wires, as shown in Fig. 1, 40 parts by weight of Epikote 828 and 56 parts by weight of Epicoat 1001 (both trade names of Shell Kagaku Co., Ltd.) were used as hardening agents.
Prepreg fiber insulation material (2) made of a glass cloth prepreg sheet with a thickness of 0.20 NW containing 40 parts by weight of a resin consisting of 4 parts by weight of B F, 400 (product name of Hashimoto Kasei Co., Ltd.)
Insert.

シーベル転位下には、はがしマイカにガラスクロスを貼
合わせ、前記樹脂を10重量部含む厚さ0.25mmの
マイカシートからなるs8!質絶縁材■を挿入する。次
いでシーベル転位上の絶縁性基材(イ)の厚さの578
(この場合2.5m厚)のプリプレグ絶縁基材(4a)
の製造方法は、集成マイカ箔にエピコート828を20
重量部、 エピコート1001を17重量部(いずれも
商品名)に硬化剤として BF、MEA(BF、400
橋本化成社商品名)を3重量部からなる樹脂配合物を7
5重量部含ませてプリプレグ絶縁基材(4a)とする。
Below the Siebel dislocation, a glass cloth was attached to the peeled mica, and s8 was made of a 0.25 mm thick mica sheet containing 10 parts by weight of the resin. Insert quality insulation material ■. Next, the thickness of the insulating base material (a) on the Siebel dislocation is 578
(2.5m thick in this case) prepreg insulation base material (4a)
The manufacturing method is to apply 20% of Epicoat 828 to a laminated mica foil.
17 parts by weight of Epikote 1001 (both trade names) as a curing agent BF, MEA (BF, 400
A resin compound consisting of 3 parts by weight of Hashimoto Kasei Co., Ltd. (trade name)
A prepreg insulating base material (4a) is prepared by including 5 parts by weight.

次に厚さ3/8(この場合1.5m厚)となる半硬化性
絶縁基材(4b)の製造方法は、1.0Iff11厚さ
のガラス不織布に重量比でD E N438(ダウケミ
カル社商品名)を27%、AER661(旭化成社商品
名)を12%、BF、MEAを2%を混合し、次いでデ
ンカブラック(電気化学工業商品名)を1.5%、マイ
カ粉末を37.5%から成る混合物を67%含ませて半
硬化性絶縁基材(4b)とする、この半硬化性絶縁基材
(4b)を上述の転位部素裸(1a)上からプリプレグ
絶縁基材(4a)上にわたって重ねる。
Next, the manufacturing method of the semi-cured insulating base material (4b) having a thickness of 3/8 (1.5 m in this case) is to add D E N438 (Dow Chemical Co., Ltd.) to a glass nonwoven fabric with a thickness of 1.0Iff11. Mix 27% of AER661 (trade name), 12% of AER661 (trade name of Asahi Kasei Corporation), 2% of BF and MEA, then 1.5% of Denka Black (trade name of Denki Kagaku Kogyo) and 37.5% of mica powder. This semi-cured insulating base material (4b) is made into a prepreg insulating base material (4a) from above the bare dislocation part (1a) by containing 67% of the mixture consisting of %. Layer it all over the top.

その上に離形材としてパルフロン(日本パルカー社商品
名)を巻回後、150℃で60分間、 15kg/aJ
の加熱加圧で成形する0次いで集成マイカドライテープ
を所定の回数巻回後、含浸タンク内に挿入し、減圧lm
mHgで酸無水物エポキシ樹脂を含浸後タンクから取り
出し90℃で3時間180℃で15時間加熱成形して対
地絶縁をした回転電機用コイルを得た。
After wrapping Parflon (trade name of Nippon Palcar Co., Ltd.) as a release material on top of it, it was heated at 150°C for 60 minutes at 15kg/aJ.
After winding the assembled mica dry tape a predetermined number of times, it is inserted into an impregnating tank and the pressure is reduced to lm.
After being impregnated with an acid anhydride epoxy resin at mHg, the coil was taken out from the tank and heated and molded at 90° C. for 3 hours and 180° C. for 15 hours to obtain a coil for a rotating electric machine with ground insulation.

次に作用について説明する。Next, the effect will be explained.

対地絶縁をする前の成形後の導体表面で側面部の素m 
(lb)側に半硬化性樹脂の流れ出しは全くみられなか
った。また転位部上で5X10’Ωdの体積抵抗率を有
する導体を得た。
The side surface of the formed conductor surface before ground insulation
No flow of semi-cured resin was observed on the (lb) side. Further, a conductor having a volume resistivity of 5×10′Ωd on the dislocation portion was obtained.

その他は前記発明の構成の作用の項で説明した通りであ
る。
The rest is as explained in the section of the operation of the structure of the invention.

実施例2 酸無水物を含むエポキシ樹脂を集成マイカ箔に45重量
部を含むプリプレグマイカテープを、実施例1で製作し
た導体に巻回し、真空加圧タンク内で減圧しながら15
0℃で25時間加熱成形して回転電機用コイルを得た。
Example 2 A prepreg mica tape containing 45 parts by weight of an epoxy resin containing an acid anhydride was wrapped around the conductor produced in Example 1 on mica foil, and was heated for 15 minutes while reducing the pressure in a vacuum pressurized tank.
The coil was heat-molded at 0° C. for 25 hours to obtain a coil for a rotating electric machine.

このようにしても実施例1と同様な作用効果が得られる
Even in this case, the same effects as in the first embodiment can be obtained.

比較例 実施例1と同様な素線配置の導体に実施例1で用いたプ
リプレグ絶縁基材(4a)の厚みを4.5nnとした絶
縁性基材をレーベル転位の凹部に埋入する。
Comparative Example An insulating base material having a thickness of 4.5 nn as compared to the prepreg insulating base material (4a) used in Example 1 for a conductor having the same wire arrangement as in Example 1 is embedded in the concave portion of the Lebel dislocation.

即ちこの導体は半硬化性絶縁基材(4b)を設けない。That is, this conductor is not provided with a semi-hardened insulating base material (4b).

その上にパルフロンテープを巻回後150℃で60分間
15kg/Jの加熱加圧をして成形する。次いで実施例
2の対地絶縁処理と同様として、比較用としての従来の
回転電機用コイルを得た。
After winding Parflon tape on top of the tape, it is heated and pressurized at 15 kg/J at 150° C. for 60 minutes to be molded. Next, a conventional coil for a rotating electric machine was obtained for comparison using the same ground insulation treatment as in Example 2.

これらの回転電機用コイルの代表的特性を第1表に示す
Typical characteristics of these coils for rotating electric machines are shown in Table 1.

第1表 Δtanδ のバラツキは実施例1および2の場合18
0本の回転電機用コイルの特性を示す、 また比較例は
従来の実績データ 144本の回転電機コイルの特性を
示す、Δtanδは二電圧間のtanδを測定した値で
15.OKV −2,OKVを示す。 これにより、実
施例1および実施例2は従来の比較例に対し、Δtan
δおよびΔtanδのバラツキが大幅に低下しており、
これは絶縁コイルが機械的、電気的、熱的に大幅に優れ
ていることを示す。
Table 1: Variations in Δtanδ are 18 in Examples 1 and 2.
The comparative example shows the characteristics of 0 rotating electrical machine coils.The comparative example is conventional performance data.The characteristics of 144 rotating electrical machine coils are shown.Δtanδ is the value of tan δ measured between two voltages, and is 15. OKV -2, indicates OKV. As a result, Example 1 and Example 2 have a lower Δtan than the conventional comparative example.
The variation in δ and Δtanδ has been significantly reduced,
This shows that the insulated coil has significant mechanical, electrical and thermal advantages.

〔発明の効果〕〔Effect of the invention〕

以上詳記した実施例および比較例から明らかなようにこ
の発明によって得られた回転電機コイルは導体からの部
分放電の発生を排除したため、コイルの絶縁性能が向上
し、且つ1回転電機コイル間どうしの絶縁特性のバラツ
キが殆んどなく、従って、機械的、W1気的、熱的特性
の優れた回転電機用コイルとしての寿命を著しく向上さ
せうる。
As is clear from the Examples and Comparative Examples detailed above, the rotating electrical machine coil obtained by the present invention eliminates the occurrence of partial discharge from the conductor, so the insulation performance of the coil is improved, and the coils of the rotating electrical machine are There is almost no variation in the insulation properties of the coil, and therefore, the life of the coil for rotating electric machines, which has excellent mechanical, W1 gas, and thermal properties, can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例によって製造した回転
電機用コイルの第2図のA−A線に沿う矢視横断面図、
第2図は従来および本発明の一実施例に共通した未絶縁
のレーベル転位導体を示す斜視図である。 1・・・素線      1a・・・転位部素線1b・
・・側面部製線   2・・・プリプレグ繊維絶縁材3
・・・無n質絶縁材  4・・・絶縁性基材4a・・・
プリプレグ絶縁基材 4b・・・半硬化性絶縁基材5・
・・対地絶縁層 第  1  図 ′sX  2(3 代理人 弁理士 大 胡 典 夫
FIG. 1 is a cross-sectional view taken along line A-A in FIG. 2 of a coil for a rotating electric machine manufactured by an embodiment of the method of the present invention;
FIG. 2 is a perspective view showing an uninsulated Lebel transposition conductor common to the conventional method and an embodiment of the present invention. 1... Element wire 1a... Dislocation part element wire 1b.
... Side part wire making 2 ... Prepreg fiber insulation material 3
...N-free insulating material 4...Insulating base material 4a...
Prepreg insulation base material 4b... Semi-curable insulation base material 5.
...Ground insulating layer Figure 1'sX 2 (3 Agent: Patent attorney Norio Ogo

Claims (1)

【特許請求の範囲】[Claims] 複数個の素線を有し、レーベル転位した導体の凹部と上
面に絶縁物を配設して導体の横断面を矩形状にし、その
外周に対地絶縁層を設ける回転電機用コイルの製造方法
において、素線列間には繊維質絶縁材を熱硬化性樹脂で
半硬化処理をしたプリプレグ繊維絶縁材を挿入し、転位
部素線とこれを重ねる他の素線間には熱硬化性樹脂で処
理した無機質絶縁材を挿入し、転位によって生じた素線
の横の凹部には繊維質絶縁材を熱硬化性樹脂で処理した
プリプレグ絶縁基材を埋入し、転位部素線の上部とプリ
プレグ絶縁基材の上部にわたって繊維質絶縁材に対し3
0〜45重量部のマイカ粉末を樹脂流れ防止材とし、そ
れに半導電性粉末と熱硬化性樹脂とを混合加熱処理して
体積抵抗率が10^2〜10^6Ωcm^2とした半硬
化性絶縁基材を重ね、プリプレグ絶縁基材と半硬化性絶
縁基材とを合せた絶縁性基材の厚さに対して、2/4〜
3/4をプリプレグ絶縁基材の厚さとし、1/4〜2/
4を半硬化性絶縁基材の厚さとし、これを所定の金型に
て加熱加圧成形してコイル用導体を製造し、この導体に
対地絶縁を設けることを特徴とする回転電機用コイルの
製造方法。
In a method for manufacturing a coil for a rotating electrical machine, which has a plurality of strands, has an insulator disposed in the recess and the upper surface of a conductor having Lebel transposition, so that the cross section of the conductor is rectangular, and a ground insulating layer is provided on the outer periphery of the conductor. A prepreg fiber insulation material made by semi-curing a fibrous insulation material with a thermosetting resin is inserted between the rows of strands, and a thermosetting resin is inserted between the transposed strands and the other strands on which they overlap. The treated inorganic insulation material is inserted, and a prepreg insulating base material made of fibrous insulation treated with a thermosetting resin is embedded in the recess next to the wire created by the dislocation, and the upper part of the wire at the dislocation site and the prepreg are inserted. 3 for fibrous insulation over the top of the insulation substrate
Semi-curing material using 0 to 45 parts by weight of mica powder as a resin flow prevention material, mixed with semi-conductive powder and thermosetting resin and heated to have a volume resistivity of 10^2 to 10^6 Ωcm^2. 2/4 to 2/4 to the thickness of the insulating base material, which is the sum of the prepreg insulating base material and the semi-cured insulating base material when the insulating base materials are stacked.
3/4 is the thickness of the prepreg insulation base material, 1/4 to 2/
4 is the thickness of a semi-hardened insulating base material, which is heated and press-molded in a predetermined mold to produce a coil conductor, and this conductor is provided with ground insulation. Production method.
JP30145288A 1988-11-29 1988-11-29 Manufacture of coil for electrical rotary machine Pending JPH02151247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30145288A JPH02151247A (en) 1988-11-29 1988-11-29 Manufacture of coil for electrical rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30145288A JPH02151247A (en) 1988-11-29 1988-11-29 Manufacture of coil for electrical rotary machine

Publications (1)

Publication Number Publication Date
JPH02151247A true JPH02151247A (en) 1990-06-11

Family

ID=17897061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30145288A Pending JPH02151247A (en) 1988-11-29 1988-11-29 Manufacture of coil for electrical rotary machine

Country Status (1)

Country Link
JP (1) JPH02151247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116113A1 (en) * 2007-03-20 2008-09-25 Electrolock, Inc. Roebel winding with conductive felt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116113A1 (en) * 2007-03-20 2008-09-25 Electrolock, Inc. Roebel winding with conductive felt
US7893357B2 (en) 2007-03-20 2011-02-22 Electrolock, Inc. Roebel winding with conductive felt

Similar Documents

Publication Publication Date Title
US4001616A (en) Grounding of outer winding insulation to cores in dynamoelectric machines
JP3721359B2 (en) Stepped electric field insulation system for dynamoelectric machine
JP3458693B2 (en) Insulation and electric winding
DE3784008D1 (en) COIL FOR ELECTRICAL MACHINES AND METHOD FOR PRODUCING THE COIL.
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
US3679925A (en) Electrical apparatus with corona suppression means
KR20010080595A (en) Method to reduce partial discharge in high voltage stator coil's roebel filler
JPS6118411B2 (en)
US3242358A (en) Encapsulated electrical members and method of making the same
US4836769A (en) Water-cooled winding for electromagnetic stirrer
US3801392A (en) Method for insulating electrical conductor components of an electrical apparatus utilizing mica tape impregnated with a hardenable synthetic resin
JPH02151247A (en) Manufacture of coil for electrical rotary machine
JP2003259589A (en) Stator coil of rotary electric machine
JPH08163838A (en) Manufacture of stator coil for high voltage electric rotating machine
JP3030162B2 (en) Rotating electric machine and method of manufacturing the same
JPS58144563A (en) Manufacture of coil conductor
JPS59117435A (en) High voltage coil for rotary electric machine
JPS5921260A (en) Manufacture of insulated coil
JPS6059951A (en) Coil insulating method of rotary electric machine
JPS5849072A (en) Manufacture of insulated coil for rotary electric machine
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
JPH0471346A (en) High-tension rotating machine coil
JPS605211B2 (en) insulated coil
JPS6268030A (en) Winding of rotary electric machine
JPS6043050A (en) Coil insulating method of rotary electric machine