JPS58198803A - Method of producing insulated wire - Google Patents

Method of producing insulated wire

Info

Publication number
JPS58198803A
JPS58198803A JP8259282A JP8259282A JPS58198803A JP S58198803 A JPS58198803 A JP S58198803A JP 8259282 A JP8259282 A JP 8259282A JP 8259282 A JP8259282 A JP 8259282A JP S58198803 A JPS58198803 A JP S58198803A
Authority
JP
Japan
Prior art keywords
parts
insulated wire
manufacturing
mica
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8259282A
Other languages
Japanese (ja)
Inventor
地大 英毅
井上 正己
愛一郎 橋爪
幸男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8259282A priority Critical patent/JPS58198803A/en
Publication of JPS58198803A publication Critical patent/JPS58198803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は絶縁電線の製造方法に関するもので、特に高
圧回転電機コイルの素線として使用する絶縁電線の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an insulated wire, and particularly to a method for manufacturing an insulated wire used as a wire for a high-voltage rotating electrical machine coil.

従来、回転電機コイルの素線絶縁を施こす場合、低圧回
転電機に関しては、裸銅線にポリイミドフィルムやノー
メックス紙などの高分子薄葉材をテーピングする方法や
、エナメNfjL膜を焼付けた後、さらにガラス−維を
巻付ける方法が主流であり、高圧回転電機に関しては、
ガラス繊維あるいはポリエステルフィルムなどを裏打し
たマイカテープをテーピングすることが主体であった。
Conventionally, when insulating the bare wires of rotating electric machine coils, for low-voltage rotating electric machines, there are methods such as taping bare copper wires with thin polymeric materials such as polyimide film or Nomex paper, or baking an enamel NfjL film and then applying further insulation. The mainstream method is to wrap glass fibers, and for high-voltage rotating electric machines,
The main method of taping was mica tape backed with glass fiber or polyester film.

しかしながら、高分子薄葉材をテーピングする方法やエ
ナメル焼付は後ガラス繊維を巻付ける方 法はテーピン
グ工程に時間を費すことと、マイカラス繊維あるいはポ
リエステルフィルムを裏打したマイカテープを使用した
場合には、マイカと裏釘材とを接着する工程が必要とな
り、きわめて高価なものとなる欠点があった。
However, the method of taping thin polymer materials or the method of wrapping glass fiber after enamel baking requires time in the taping process, and when using mica tape backed with mica fiber or polyester film, This method requires a process of gluing the mica and the back nail material, which has the disadvantage of being extremely expensive.

この発明の発明者らは上記の方法の欠点を排除するべく
、例えば特開昭り/−1!:9部7g、特開昭り/−7
79402号及び特開昭、夕/ −//1I403号で
マイカ鱗片を混入した水分散フェノを用いた電着塗装法
を提案してきたが、これらの発明は、マイカ含有率が比
較的高い範囲(70%〜95%)のした裸銅線に絶縁を
施した場合、フォームドコイルに成形する際、亀裂、剥
れなどの損傷を生じるなどして実用には不適当であった
In order to eliminate the drawbacks of the above-mentioned method, the inventors of the present invention have attempted to eliminate the drawbacks of the above-mentioned method, for example, by using the method described in Japanese Patent Application Publication No. 2003-120002. :9 parts 7g, Tokukai Akira/-7
No. 79402 and JP-A No. 11-403 have proposed an electrodeposition coating method using a water-dispersed phenol mixed with mica scales. When insulation is applied to bare copper wires with a thickness of 70% to 95%, damage such as cracking and peeling occurs when molded into a formed coil, making it unsuitable for practical use.

この発明は従来の方法の以上のような欠点を除去するた
めになされたもので、直線状に連続して得られ、コイル
に成形する際破損の生じない絶縁電線が得られる製造方
法を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional methods, and provides a manufacturing method that allows insulated wires to be obtained continuously in a straight line and without breakage when formed into a coil. The purpose is to

!1 この発明は以上の目的を達成するために、電着塗料を用
いて回転電機コイルに使用する絶縁電線を製作するのに
、鱗片状マイカ粉末と、加熱後の皮膜の熱軟化温度が6
0℃以下である可撓性の高分子粒子とを水中に分散させ
た液を電着塗料とし、電着塗装法により直線状の連続銅
線に電着析出層を形成させた後、加熱することを特徴と
している。
! 1. In order to achieve the above object, the present invention uses electrodeposition paint to produce insulated wires for use in rotating electric machine coils, and uses scaly mica powder and a film whose thermal softening temperature after heating is 6.
An electrodeposition coating is prepared by dispersing flexible polymer particles at a temperature of 0°C or lower in water, and an electrodeposition layer is formed on a straight continuous copper wire using the electrodeposition coating method, followed by heating. It is characterized by

ここで使用される鱗片状マイカとしては、天然マイカが
好適であり、軟質、軟質マイカともに適用可能である。
As the flaky mica used here, natural mica is suitable, and both soft mica and soft mica are applicable.

また鱗片状マイカの粒径としては3Sメツシユ篩を通過
したものが好適であり、35メツシュ通過のものより粒
径が太きいと電着析出層の外観が悪くなり、その結果剥
れなどが生じる。
In addition, the particle size of the flaky mica is preferably one that has passed through a 3S mesh sieve; if the particle size is larger than that that has passed through a 35 mesh sieve, the appearance of the electrodeposited layer will deteriorate, resulting in peeling. .

また35メツシュ通過のものより小さい粒径のものでは
、得られた電着析出層の機械的強度が弱く、かつ最終的
にコイル絶縁とした場合の絶縁特性が悪くなる。
Further, if the particle size is smaller than that passing through 35 meshes, the mechanical strength of the electrodeposited layer obtained will be weak, and the insulation properties will be poor when it is finally used as coil insulation.

使用される高分子粒子としては水中に分散させたものが
好適に使用されるが、高分子粒子単独で加熱により皮膜
を、臂成させたものの熱軟化温度が60℃以下のものが
好ましく、単独皮膜の熱軟化温度が60′G以上のもの
であると、得られた電着(3) 析出層の機械的強度が弱くコイルの成形などの衝撃に酎
ええない。好適な水分散液としてはブタジェン変性エポ
キシエマルジョン、ポリエーテルアクリレートを主成分
とするエマルジョンなどが挙げられる。また上記のよう
な粒径の鱗片状マイカと高分子粒子との比率は、鱗片状
マイカioo重量部に対し、高分子粒子が25〜100
重量部、好ましくは、2S〜75重量部である。25重
量部以下では、得られた電着析出層の機械的強度が弱く
、コイル成形などの衝撃に耐ええず、また100重量部
以上であると、後工程での含浸レジンの含浸度が十分で
なく、得られた回転電機コイルの絶縁破壊電圧、−δな
どの絶縁特性が悪くなる。
The polymer particles to be used are preferably those dispersed in water, but it is preferable to use polymer particles alone to form a film by heating and have a heat softening temperature of 60°C or less. If the thermal softening temperature of the film is 60'G or higher, the mechanical strength of the electrodeposited layer (3) obtained is so low that it cannot withstand shocks such as when forming a coil. Suitable aqueous dispersions include butadiene-modified epoxy emulsions, emulsions containing polyether acrylate as a main component, and the like. In addition, the ratio of the scale-like mica having the above particle size and the polymer particles is 25 to 100 parts by weight of the scale-like mica to 100 parts by weight of the scale-like mica.
Parts by weight, preferably 2S to 75 parts by weight. If it is less than 25 parts by weight, the mechanical strength of the electrodeposited layer obtained is weak and cannot withstand the impact of coil forming, etc. If it is more than 100 parts by weight, the degree of impregnation of the impregnated resin in the subsequent process may be insufficient. However, the insulation characteristics such as dielectric breakdown voltage and -δ of the obtained rotating electric machine coil deteriorate.

電着電圧としては、極間距離にもよるが、好適な電圧と
してはコθ〜10θVである。また得られた電着析出層
を加熱して、含有水分を揮発させる場合の温度としては
、70080〜300℃の範囲が好適であり、100℃
以下であると乾燥時間が長くなり、実用的には不適当で
あり1.7000℃以上であると、急激な水分の揮発に
より、幾分か(ll) 繊 の発泡作用が起り、実用に麻し得ない。
Although the electrodeposition voltage depends on the distance between the electrodes, a suitable voltage is from θ to 10 θV. In addition, the temperature when heating the obtained electrodeposited layer to volatilize the water content is preferably in the range of 70,080 to 300°C, and 100°C.
If the temperature is lower than 1.7000℃, the drying time will be long and it is not suitable for practical use. I can't.

以下、比較例、実施例をあげて説明するが、高分子粒子
の水分散液の製造例を述べる。
Hereinafter, explanation will be given with reference to comparative examples and examples, and an example of manufacturing an aqueous dispersion of polymer particles will be described.

水分散液Aの製造 エヒコート/θθ/(シェル化学社製) 100θ部、
テトラヒドロ無水フタル酸22g部、エチレングリコー
ル37部、キシ2フフ00部、を四つロフラスコに仕込
み窒素ガスを通じながら/lIO〜/り左℃で/S時間
反応させ、酸価約SOの酸付加エポキシ樹脂を得る。次
いで四つ目フラスコにラウリA(j[エステルソーダ7
0部、アンモニア水(X、t%)−0部を含むイオン交
換水100部を仕込み、り0℃に昇温し、酸付加エポキ
シ゛樹脂ioo部を加え、窒素を通じ、過剰なアンモニ
ア及び水分を揮発させながら3部ダ時間攪拌し、pH2
&、固形公約/g%の水分散液を得る。この水分散液を
通常の方法で銅板に電着し、電着析出層をエチルセロソ
ルブに約30秒浸漬後gθ℃で3θ分、/Sθ    
”℃で1時間加熱すれば、焼付皮膜の熱軟化温度は約/
/θ℃であった。
Production of aqueous dispersion A Ehicoat/θθ/(manufactured by Shell Chemical Co., Ltd.) 100θ parts,
22 g of tetrahydrophthalic anhydride, 37 parts of ethylene glycol, and 0.00 parts of oxidized phthalic anhydride were charged into four flasks and reacted with nitrogen gas at /lIO to /l°C for /S hours to form an acid-added epoxy with an acid value of about SO. Get resin. Next, add lauri A (j [ester soda 7
Pour 100 parts of ion-exchanged water containing 0 parts of ammonia water (X, t%), raise the temperature to 0°C, add 100 parts of acid-added epoxy resin, and remove excess ammonia and water by passing nitrogen through. Stir for 3 hours while evaporating, and adjust pH to 2.
&, obtain an aqueous dispersion of % solids/g%. This aqueous dispersion was electrodeposited on a copper plate by a conventional method, and the electrodeposited layer was immersed in ethyl cellosolve for about 30 seconds, then at gθ℃ for 3θ minutes, /Sθ
” If heated for 1 hour at ℃, the thermal softening temperature of the baked film will be approximately /
/θ°C.

水分散液Bの製造 四つロフラスコに水酸基末端ポリブタジェン(G−/θ
θθ日曹製) /31Iθ部、無水トリメリット酸3g
11部、ハイドロキノンθθθ/左部を仕込み、窒素ガ
スを通じなから190℃で約30分間攪拌し、酸付加エ
ポキシ樹脂を得る。次いで温度を/!IO”(:、に下
ケタ後、エピコートざコg(シェル化学社製)gSθ部
、エピコートlOO/(シェル化学社製)qso部、テ
トラヒドロ無水フタル酸1000部、エチレングリコー
ル30部、キシレン、200部を加え、/ダθ〜/4’
タ℃で約/時間反応させて酸価的、4−.5−のブタジ
ェン変性エポキシ樹脂を得る。続いて別の三つロフラス
コにラウリル硫酸エステルソーダ10部、アンモニヤ水
(X、t%)20部、イオン交換水’yoo部を加え、
約70℃に昇温し、上記樹脂700部を加え、窒素ガス
を通じ、過剰のアンモニア及び水分を揮発させながら、
約3〜グ時間攪拌し、pI(約1t、固形公約l?%の
水分散液を得る。この水分散液を水分散液Aと同様にし
て得た焼付皮膜の熱軟化温度は約SO℃であった。
Preparation of aqueous dispersion B In a four-loaf flask, hydroxyl-terminated polybutadiene (G-/θ
θθ manufactured by Nisso) / 31 Iθ parts, 3 g of trimellitic anhydride
11 parts of hydroquinone θθθ/left part were charged, and the mixture was stirred at 190° C. for about 30 minutes while passing nitrogen gas to obtain an acid-added epoxy resin. Next, the temperature/! IO” (:, after the lower digit, Epicoat Zako g (Shell Chemical Co., Ltd.) gSθ part, Epicoat lOO/(Shell Chemical Co., Ltd.) qso part, tetrahydrophthalic anhydride 1000 parts, ethylene glycol 30 parts, xylene, 200 , /daθ~/4'
The acid value is 4-. 5-butadiene-modified epoxy resin is obtained. Next, 10 parts of lauryl sulfate sodium ester, 20 parts of ammonia water (X, t%), and 'yoo parts of ion exchange water were added to another three-bottle flask.
The temperature was raised to about 70°C, 700 parts of the above resin was added, and while nitrogen gas was passed through to volatilize excess ammonia and moisture,
Stir for about 3 to 30 minutes to obtain an aqueous dispersion with pI (about 1 t, approximately 1% solids). This aqueous dispersion was prepared in the same manner as aqueous dispersion A, and the thermal softening temperature of the baked film was about SO°C. Met.

水分散液Cの製造 四つ目フラスコにラウリル硫酸エステルソーダl0部、
イオン交換水1.230部、エチルアクリレート/!;
0部、アクリロニトリル30部、グリシジルメタクリレ
ート70部、メタクリル酸70部を仕入み、窒素ガスを
通じ、約65℃に昇温し、次いで過硫酸アンモニウム、
20部、亜硫酸水素ナトリウムθり部をイオン交換水5
0部に溶解した液を加え、70℃でグ〜5時間反応させ
て、pH約亭5、固形公約/2g%の水分散液を得る。
Preparation of aqueous dispersion C In a fourth flask, add 10 parts of lauryl sulfate ester soda.
1.230 parts of ion-exchanged water, ethyl acrylate/! ;
0 parts, 30 parts of acrylonitrile, 70 parts of glycidyl methacrylate, and 70 parts of methacrylic acid, heated to about 65°C through nitrogen gas, and then ammonium persulfate,
20 parts of sodium bisulfite, 5 parts of ion-exchanged water
Add the solution dissolved in 0 parts and react at 70°C for ~5 hours to obtain an aqueous dispersion with a pH of about 5 and a solid content of 2g%.

この水分散液を水分散液Aと同様にして得た焼付皮膜の
熱軟化温度は約10℃であった。
The thermal softening temperature of the baked film obtained by using this aqueous dispersion in the same manner as aqueous dispersion A was about 10°C.

以上、水分散液の代表例を記したが、上記のような水分
散液を用いて、比較例、実施例を説明する。
Although typical examples of aqueous dispersions have been described above, comparative examples and examples will be explained using the above aqueous dispersions.

比較例/〜3 表/に示す水分、、散液とマイカを混合し、表/に示す
マイカ/水分散液比率で不揮発公約13%の電着塗料を
得る。この電着塗料/をピーカコに入(7) れ、第1図に示すようなモデル装置を用いて、厚さ−I
Im幅Qmgの平角銅線3に約SOVの直流電圧を印加
し、電着析出層を得た後、コθθ℃で10分間加熱し、
厚さQ/2mの絶縁皮膜を得る。第1図テダはスターテ
、Sは攪拌子である。この皮膜の特性を表1に示す通り
である。次いで、得られた皮膜をエポキシ系含浸レジン
(菱電化成製サイロざ6−/)で真空含浸後/30℃で
70時間硬化して完全な絶縁皮膜を得た。得られた皮膜
の特性は表7に示す通りである。
Comparative Examples/~3 Water dispersion shown in Table/ and mica were mixed to obtain an electrodeposition paint with a non-volatility of approximately 13% at the mica/water dispersion ratio shown in Table/. This electrodeposition paint was put into the Picaco (7), and using a model device as shown in Figure 1, the thickness -I was measured.
A DC voltage of approximately SOV was applied to the rectangular copper wire 3 having a width of Im width Qmg to obtain an electrodeposited layer, and then heated at θθ°C for 10 minutes.
An insulating film with a thickness of Q/2m is obtained. In Fig. 1, ``Teda'' is a starte, and ``S'' is a stirrer. The properties of this film are shown in Table 1. Next, the obtained film was vacuum impregnated with an epoxy impregnating resin (Siloza 6-/ manufactured by Ryoden Kasei) and cured at 30° C. for 70 hours to obtain a complete insulating film. The properties of the obtained film are shown in Table 7.

(g) 総て含浸ワニスはエポキシ系サイbgb−iイ)耐摩耗
性はJIS摩耗試験機による荷重’yoθg、口)デュ
ポン式衝撃試験機(100θ17 //−インチで亀裂
の起らない高さcIL) ハ)円柱に巻付けて亀裂、剥れの起らない円柱直径、二
)2000C:10日間熱劣化 実施例 7〜6 表/に示した水分散液を用い、かつ表/のマイカ/水分
散液の比率の電着塗料を用いて比較例1と同様にして得
られた含浸前の特性および含浸後の特性は表7に示した
通りである。
(g) All impregnated varnishes are epoxy type bgb-i) Abrasion resistance is measured using a JIS abrasion tester under load 'yoθg, mouth) DuPont impact tester (100θ17//-inch height at which no cracks occur) cIL) C) Cylindrical diameter that does not cause cracks or peeling when wrapped around a cylinder, 2) 2000C: 10-day thermal deterioration examples 7 to 6 Using the aqueous dispersion shown in Table/, and mica/ Table 7 shows the properties before and after impregnation obtained in the same manner as in Comparative Example 1 using an electrodeposition paint having the proportion of an aqueous dispersion.

表7から明かなように、この発明による製造方法により
、水分散液を用いて鱗片状マイカ粒を電着し乾燥させた
絶縁電線は機械的強度に優れており、コイル成形、組入
れなどの苛酷な衝撃に耐えうるものであり、かつ含浸レ
ジンを含浸させ硬化した絶縁皮膜の破壊電圧も優れてお
り、高圧回転機コイルの素線絶縁として充分使用できる
ものである。
As is clear from Table 7, the insulated wire produced by electrodepositing scale-like mica grains using an aqueous dispersion and drying according to the manufacturing method of the present invention has excellent mechanical strength, and is not subject to harsh conditions such as coil forming or assembly. In addition, the insulating film impregnated with impregnated resin and cured has an excellent breakdown voltage, and can be used satisfactorily as wire insulation for high-voltage rotating machine coils.

この発明の方法によって連続的に絶縁電線な製造するに
は、−例として、第一図に示すように、リール//から
ときほぐした平形導体/コを電着塗料タンク/3と連結
した電着槽/yに連続的に通しながら電着塗装し、引続
き乾燥炉/Sを通して加熱し、リール/6に巻きとるよ
う装置によって行なうことができる。このようにして得
られた絶縁電線は直流機、電車電動機、誘導電動機など
の素線絶縁に適用することができる。
In order to continuously manufacture an insulated wire by the method of the present invention, for example, as shown in FIG. Electrodeposition can be carried out by an apparatus such that the material is electrocoated while being continuously passed through a tank/y, then heated through a drying oven/S, and wound onto a reel/6. The insulated wire thus obtained can be applied to wire insulation for DC machines, electric train motors, induction motors, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法により銅線に電着塗装するモデ
ル装置の一実施例の説明図、第一図はこの発明の絶縁電
線の製造方法を連続的に行なう装置を略示する説明図で
ある。 /・・マイカ含有水分散液、コ・・ピー力、3゜/、2
・・平形導体、グ・・スター2、S・・攪拌子、//、
/A・・リール、13・・電着塗料タンク、llI・・
電着槽、/夕・・乾燥炉。 なお、各図で同一符号は同+、又は相当部分を示すO 代理人  葛  野  信  − (//) 粥1図
FIG. 1 is an explanatory diagram of an embodiment of a model device for electrocoating copper wire by the method of the present invention, and FIG. It is. /...mica-containing aqueous dispersion, copying force, 3°/, 2
・・Flat conductor, ・・・Star 2, S・・ Stirrer, //,
/A...Reel, 13...Electrodeposition paint tank, llI...
Electrodeposition bath, evening...drying oven. In addition, the same symbols in each figure indicate the same + or corresponding parts.

Claims (1)

【特許請求の範囲】 (1)  マイカ粉末を含有する電着塗料を用いて電気
泳動塗装法で裸銅線の表面に電着析出層を形成させる工
程と、前記電着析出層を加熱する工程とを含んだことを
特徴とする絶縁電線の製造方法。 (2)電着塗料がマイカ粉末及び高分子粒子を水中に分
散させた液を含む特許請求の範囲第1項記載の絶縁電線
の製造方法。 (3)電着塗料がマイカ粉末700重量部に対して高分
子粒子を、2S〜100重量部からなる水分散液である
特許請求の範囲第1項記載の絶縁電線の製造方法。 (4t)  マイカ粉末が35メツシユの篩を通過した
ものである特許請求の範囲第1項記載の絶縁電線の製造
方法。 (5)高分子粒子が加熱後の熱軟化温度の40℃以下の
ものである特許請求の範囲第一項記載の絶縁電線の製造
方法。
[Scope of Claims] (1) A step of forming an electrodeposited layer on the surface of a bare copper wire by an electrophoretic coating method using an electrodeposition paint containing mica powder, and a step of heating the electrodeposited layer. A method for manufacturing an insulated wire, comprising: (2) The method for manufacturing an insulated wire according to claim 1, wherein the electrodeposition coating material includes a liquid in which mica powder and polymer particles are dispersed in water. (3) The method for manufacturing an insulated wire according to claim 1, wherein the electrodeposition paint is an aqueous dispersion of 2S to 100 parts by weight of polymer particles based on 700 parts by weight of mica powder. (4t) The method for manufacturing an insulated wire according to claim 1, wherein the mica powder is passed through a 35-mesh sieve. (5) The method for manufacturing an insulated wire according to claim 1, wherein the polymer particles have a thermal softening temperature of 40° C. or lower after heating.
JP8259282A 1982-05-14 1982-05-14 Method of producing insulated wire Pending JPS58198803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8259282A JPS58198803A (en) 1982-05-14 1982-05-14 Method of producing insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8259282A JPS58198803A (en) 1982-05-14 1982-05-14 Method of producing insulated wire

Publications (1)

Publication Number Publication Date
JPS58198803A true JPS58198803A (en) 1983-11-18

Family

ID=13778751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8259282A Pending JPS58198803A (en) 1982-05-14 1982-05-14 Method of producing insulated wire

Country Status (1)

Country Link
JP (1) JPS58198803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537728A1 (en) * 1979-11-10 1986-04-24 Hiroshi Tokio/Tokyo Teramachi LINEAR MOTOR DRIVEN TABLE DEVICE WITH COARSE AND FINE DRIVE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537728A1 (en) * 1979-11-10 1986-04-24 Hiroshi Tokio/Tokyo Teramachi LINEAR MOTOR DRIVEN TABLE DEVICE WITH COARSE AND FINE DRIVE

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
KR920002171B1 (en) Process for depositing an insulating coating
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
KR870000653B1 (en) Production method for insulated conductor
JPS58198803A (en) Method of producing insulated wire
KR930004730B1 (en) Electrodeposition of mica
JP2008085077A (en) Ring-shaped insulating coil board and its manufacturing method
JPS5852040B2 (en) Electrodeposition coating method
JP2003264951A (en) Motor core
JPS60180461A (en) Insulating method of field coil
JPS6121379B2 (en)
JPS6253884B2 (en)
JPS6121376B2 (en)
JPS6121377B2 (en)
JPS6036047B2 (en) Manufacturing method of self-fused electric wire
JPS62188797A (en) Production of flexible insulating film
JPS5931802B2 (en) Manufacturing method of insulated conductor
JPH03159014A (en) Manufacture of flat and square insulated cable
JPS5927970A (en) Electrodeposition coating
JPS601710A (en) Method of producing electric insulated conductor
JPS5829701B2 (en) Denchiyakuzetsuenhouhou
JPS59133271A (en) Production of electrodeposition paint
JPS59134508A (en) Method of producing bus insulating conductor
JPS63195918A (en) Manufacture of electrically insulating material
JPS59228317A (en) Method of producing flame resistant wire