JPS6121322B2 - - Google Patents

Info

Publication number
JPS6121322B2
JPS6121322B2 JP55002475A JP247580A JPS6121322B2 JP S6121322 B2 JPS6121322 B2 JP S6121322B2 JP 55002475 A JP55002475 A JP 55002475A JP 247580 A JP247580 A JP 247580A JP S6121322 B2 JPS6121322 B2 JP S6121322B2
Authority
JP
Japan
Prior art keywords
control
gas
air
burner
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55002475A
Other languages
Japanese (ja)
Other versions
JPS56100225A (en
Inventor
Hidejiro Okita
Megumi Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Sangyo Co Ltd
Original Assignee
Sanken Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Sangyo Co Ltd filed Critical Sanken Sangyo Co Ltd
Priority to JP247580A priority Critical patent/JPS56100225A/en
Publication of JPS56100225A publication Critical patent/JPS56100225A/en
Publication of JPS6121322B2 publication Critical patent/JPS6121322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は、工業炉で使用されているミツクス
型高速ガスバーナーの制御方法及び同装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a mix-type high-speed gas burner used in industrial furnaces and improvements to the device.

従来の工業炉用ミツクス型高速ガスバーナーの
制御方法は大別して○イガス・コントロール(gas
control)または○ロオン・レイシオ・コントロー
ル(on ratio control)の2種単独制御であり、
次の通りである。
Conventional control methods for MIX-type high-speed gas burners for industrial furnaces can be roughly divided into ○IGAS control (gas control).
There are two types of independent control: control) or on ratio control.
It is as follows.

ガス・コントロールは、燃焼用空気は一定とし
燃料ガスのみを制御するものである。
Gas control keeps the combustion air constant and controls only the fuel gas.

オン・レイシオ・コントロールは、燃焼用空気
または燃料ガスの一方を制御し他方を追従させ
る方法である。
On-ratio control is a method of controlling one of the combustion air or fuel gas and having the other follow.

ガス・コントロールは、バーナーの噴出流速は
常に維持出来るが、燃料ガス量の絞りに応じて過
剰空気燃焼となり、燃料損失が大である。オン・
レイシオ・コントロールは逆に燃料損失はない
が、燃焼量の絞りに応じてバーナーの噴出流速が
失なわれ、特に均一加熱を必要とする炉設備では
温度差が発生し問題が出じる。
Gas control can always maintain the ejection flow velocity of the burner, but as the amount of fuel gas is restricted, excessive air combustion occurs, resulting in large fuel losses. on·
Ratio control, on the other hand, causes no fuel loss, but as the combustion rate is reduced, the burner jet flow velocity is lost, causing temperature differences and problems, especially in furnace equipment that requires uniform heating.

本発明はガス・コントロールとオン・レイシ
オ・コントロールを組合せるもので低燃焼側をガ
ス・コントロールとし、高燃焼側をオン・レイシ
オ・コントロールするものである。オン・レイシ
オ・コントロールの絞りでバーナーの墳出流速が
失なわれる付近からガス・コントロールに切換え
るので、バーナーの噴出流速が維持できる。ま
た、低燃焼側のみをガス・コントロールするので
過剰空気量を大幅に減少させ、過剰空気による燃
料損損失も少なくなる。
The present invention combines gas control and on-ratio control, with gas control on the low combustion side and on-ratio control on the high combustion side. Since the burner discharge flow velocity is switched to gas control from the point where the burner discharge flow velocity is lost due to the on-ratio control throttle, the burner discharge flow velocity can be maintained. Additionally, since gas is controlled only on the low combustion side, the amount of excess air is significantly reduced, and fuel loss due to excess air is also reduced.

図面に基いてこの発明の実施例を説明する。 Embodiments of the present invention will be described based on the drawings.

エアポンプ等の空気供給源1(たとえば900mm
Aq位)からの空気は空気路2a,2bを介して
工業炉3のノズルミツクス型高速バーナー4に導
かれ、また、ガスタンク等の燃料ガス供給源5
(たとえばガス路6aにおいて通常2000mmAq位)
からの燃料ガスはガス路6a,6b,6cを介し
て前記バーナー4に導かれている。
Air supply source 1 such as an air pump (e.g. 900 mm
The air from Aq) is guided to the nozzle mix type high speed burner 4 of the industrial furnace 3 via air passages 2a and 2b, and is also introduced to a fuel gas supply source 5 such as a gas tank.
(For example, normally around 2000mmAq in gas path 6a)
The fuel gas is led to the burner 4 via gas passages 6a, 6b, and 6c.

工業炉3に設置した温度検出器7の炉温fの炉
温信号Fは温度調節計8に入力され、且つ炉内温
度設定用プログラム設定器9からの設定温gの設
定温信号Gも温度調節計8に入力されている。温
度調節計8は設定温信号Gに対する炉温信号Fを
比較し、両者の温度差g−fを温度差信号Hとし
て比較設定器10に入力する。
The furnace temperature signal F of the furnace temperature f from the temperature detector 7 installed in the industrial furnace 3 is input to the temperature controller 8, and the set temperature signal G of the set temperature g from the program setting device 9 for setting the furnace temperature is also input to the temperature controller 8. It is input to controller 8. The temperature controller 8 compares the furnace temperature signal F with the set temperature signal G, and inputs the temperature difference g−f between the two to the comparison setting device 10 as a temperature difference signal H.

ガス路6a,6b,6cに挿入してガスコント
ロール用ガス制御弁11は電々ポジシヨナー12
によりその開度状態が制御され、また空気路2
a,2bに挿入したオン・レイシオ・コントロー
ル用空気制御弁13は電電ポジシヨナー14によ
りその開度状態が制御されるようになつている。
The gas control valve 11 inserted into the gas paths 6a, 6b, 6c for gas control has an electric positioner 12.
The opening state of the air passage 2 is controlled by
The opening state of the on-ratio control air control valve 13 inserted in ports a and 2b is controlled by an electroelectric positioner 14.

比率設定器10は温度差信号Hに基づき、工業
炉3の炉温fと炉内温度設定用プログラム設定器
9の設定温gとの差g−fが所定値△H以下のと
き、電々ポジシヨナー12を介して工業炉3内を
所定温度に保つのに最適な燃料ガス量を送る如く
ガス制御弁11の開度を制御すると共に、電電ポ
ジシヨナー14を介して空気制御弁13を所定最
小開状態に保持する。また比率設定器10は、工
業炉3の炉温fと炉内温度設定用プログラム設定
器9の設定温gとの差g−fが所定値△H以上の
とき、電々ポジシヨナー12を介してガス制御弁
11の開度を最大開状態に保つと共に、、電電ポ
ジシヨナー14を介して空気制御弁13を、最小
開状態と最大開状態との間で開度調整を行い、そ
の調整は後述するダイヤフラム装置16を介して
均圧弁17の開度を調整し、工業炉3内を所定温
度に保つのに最適な燃料ガス量を制御する。すな
わち空気制御弁13とバーナー4との間の空気路
2bは導圧管15を介してダイヤフラム装置16
へ導かれ、燃料ガス供給源5とガス制御弁11と
の間のガス路6a,6bに挿入された均質弁17
の開度を、最小開状態と最大開状態との間で、空
気制御弁13とバーナー4との間の空気路2bの
空気圧(圧力計18に表われる)と、ガス制御弁
11の最大開状態における該ガス制御弁11とバ
ーナー4との間におけるガス路6cのガス圧(圧
力計19に表われる)とが等しくなる如く制御す
る。それ故、空気制御弁13が最小開状態のとき
は均圧弁17も最小開状態となつているが、この
状態においてガス制御弁11が最大開位置にない
ときは圧力計18の表示より圧力計19の表示は
低いが、ガス制御弁11が最大開状態にあるとき
は圧力計18と圧力計19とは同一圧力を表示
し、同一圧力の空気及びガスをバーナー4に送る
ようになつている。
Based on the temperature difference signal H, the ratio setting device 10 sets the electric positioner when the difference g−f between the furnace temperature f of the industrial furnace 3 and the set temperature g of the program setting device 9 for setting the furnace temperature is less than a predetermined value ΔH. The opening degree of the gas control valve 11 is controlled so as to send the optimum amount of fuel gas to maintain the interior of the industrial furnace 3 at a predetermined temperature via the electrostatic positioner 14, and the air control valve 13 is controlled to a predetermined minimum open state via the electric positioner 14. to hold. Further, when the difference g−f between the furnace temperature f of the industrial furnace 3 and the set temperature g of the program setting device 9 for setting the furnace temperature is equal to or higher than a predetermined value ΔH, the ratio setting device 10 controls the While maintaining the opening degree of the control valve 11 at the maximum open state, the opening degree of the air control valve 13 is adjusted between the minimum open state and the maximum open state via the electric positioner 14, and the adjustment is performed using a diaphragm described later. The opening degree of the pressure equalizing valve 17 is adjusted via the device 16 to control the optimal amount of fuel gas to maintain the interior of the industrial furnace 3 at a predetermined temperature. That is, the air passage 2b between the air control valve 13 and the burner 4 is connected to the diaphragm device 16 via the pressure guiding pipe 15.
a homogeneous valve 17 inserted into the gas passages 6a, 6b between the fuel gas supply source 5 and the gas control valve 11;
The opening degree of the gas control valve 11 is determined between the minimum open state and the maximum open state by the air pressure in the air passage 2b between the air control valve 13 and the burner 4 (shown on the pressure gauge 18) and the maximum open state of the gas control valve 11. The gas pressure in the gas passage 6c between the gas control valve 11 and the burner 4 (as shown on the pressure gauge 19) in this state is controlled to be equal. Therefore, when the air control valve 13 is in the minimum open state, the pressure equalizing valve 17 is also in the minimum open state, but if the gas control valve 11 is not in the maximum open position in this state, the pressure gauge 19 is low, but when the gas control valve 11 is in the maximum open state, the pressure gauges 18 and 19 display the same pressure, and air and gas at the same pressure are sent to the burner 4. .

制御方法を説明する。プログラム設定器9によ
る設定温度gに対し温度検出器7による実測温度
fの差が温度調節計8で偏差となり、制御信号H
が比率設定器10へ送られる。比率設定器10は
温度調節計8からの入力信号Hの範囲内でのガ
ス・コントロールとオン・レイシオ・コントロー
ルの切換点設定ダイヤルを有するもので、あらか
じめガス・コントロールとオン・レイシオ・コン
トロールの切換点(バーナー4の噴出流速維持必
要点)を設定しておく。
The control method will be explained. The difference between the temperature g set by the program setting device 9 and the actual temperature f measured by the temperature detector 7 becomes a deviation in the temperature controller 8, and the control signal H
is sent to the ratio setter 10. The ratio setting device 10 has a dial for setting the switching point between gas control and on-ratio control within the range of the input signal H from the temperature controller 8, and the switch between gas control and on-ratio control can be set in advance. A point (a point at which it is necessary to maintain the ejection flow velocity of the burner 4) is set in advance.

温度調節計8から比率設定器10への制御信号
がガス・コントロール内であるときは比率設定器
10からはガス制御弁11を操作させる信号が
電々ポジシヨナー12を経由して出され、空気制
御弁13へはガス・コントロールとオン・レイシ
オ・コントロールの切換点の出力が電電ポジシヨ
ナー14を経由して出される。すなわち、ガス・
コントロール時の空気制御弁13はガス・コント
ロールとオン・レイシオ・コントロールの切換点
位置の最小開状態を維持しガス制御弁11のみそ
の開度調整をするものである。また、ガス制御弁
11はガス・コントロールとオン・レイシオ・コ
ントロールの切換設定点で最大開状態となるよう
比率設定器10の計器はガス制御弁11への出力
信号が自動的に調整出来る構造となつている。
When the control signal from the temperature controller 8 to the ratio setter 10 is within the gas control range, the ratio setter 10 outputs a signal to operate the gas control valve 11 via the electric positioner 12, and the air control valve 13, the output of the switching point between gas control and on-ratio control is outputted via an electric positioner 14. In other words, gas
During control, the air control valve 13 maintains the minimum open state at the switching point between gas control and on-ratio control, and only the gas control valve 11 adjusts its opening degree. In addition, the instrument of the ratio setting device 10 has a structure that allows the output signal to the gas control valve 11 to be automatically adjusted so that the gas control valve 11 is in the maximum open state at the switching setting point between gas control and on-ratio control. It's summery.

温度調節計8から比率設定器10への制御信号
Hがオン・レイシオ・コントロール内であるとき
は比率設定器10からは空気制御弁13を操作さ
せる信号が電電ポジシヨナー14を経由して出さ
れる。燃料ガス側の制御は空気制御弁13の制御
動作により導圧管15により均圧弁17を調整
し、圧力計18と圧力計19が同一圧力となるよ
う制御する均圧弁方式のオン・レイシオ・コント
ロールとなつている。この時のガス制御弁11は
前述の如くガス・コントロールとオン・レイシ
オ・コントロールの切換点ですでに全開となつて
いるので、均圧弁17以降の圧力損失を生じる抵
抗部とならず、オン・レイシオ・コントロールに
支障は生じない。
When the control signal H from the temperature controller 8 to the ratio setter 10 is within the on-ratio control range, the ratio setter 10 outputs a signal to operate the air control valve 13 via the electric positioner 14. The control on the fuel gas side is an equalization valve type on-ratio control in which the pressure equalization valve 17 is adjusted by the pressure conduit 15 by the control operation of the air control valve 13, and the pressure gauges 18 and 19 are controlled to have the same pressure. It's summery. At this time, the gas control valve 11 is already fully open at the switching point between gas control and on-ratio control as described above, so it does not become a resistance part that causes pressure loss after the pressure equalization valve 17, and the on-ratio There will be no problem with ratio control.

上述した如くこの発明に係る工業炉用ガスバー
ナーの制御方法は、空気と燃料ガスとをバーナー
へ別々に送るミツクス型高速ガスバーナーを備え
た工業炉において、低燃焼側においては一定量の
空気と所望量の燃料ガスとを送るガス・コントロ
ール型制御を行い、高燃焼側においては前記一定
量を越える空気量とその空気量に対応して増減す
るガス量とを送るオン・レイシオ・コントロール
型制御を行い、且つガスコントロール型制御とオ
ン・レイシオ・コントロール型制御の切換点をオ
ン・レイシオ・コントロール型制御におけるバー
ナーからの流体噴出速度が不足し始める点近傍に
設定したものである。
As described above, the method for controlling a gas burner for an industrial furnace according to the present invention is to control an industrial furnace equipped with a mix-type high-speed gas burner that separately sends air and fuel gas to the burner. A gas control type control is performed to send a desired amount of fuel gas, and on the high combustion side, an on-ratio control type control is performed to send an air amount that exceeds the above-mentioned certain amount and a gas amount that increases or decreases in response to the air amount. In addition, the switching point between the gas control type control and the on-ratio control type control is set near the point where the fluid ejection speed from the burner starts to become insufficient in the on-ratio control type control.

また、この発明に係る工業炉用ミツクス型高速
ガスバーナーの制御装置は、空気供給源1を空気
路2a,2bを介してノズルミツクス型高速バー
ナー4に導くと共に該空気路2a,2bの流れに
沿つて空気制御弁13と導圧管15とを設け、燃
料ガス供給源5をガス路6a,6b,6cを介し
て前記バーナー4に導くと共に該ガス路6a,6
b,6cの流れに沿つて均圧弁17とガス制御弁
11とを設け、炉内温度設定用プログラム設定器
9からの設定温信号Gと工業炉3に設置した温度
検出器7の炉温信号Fとが温度調節計8に入力さ
れる如く配線し、温度調節計8は設定温信号Gと
炉温信号Fとを比較し設定温gと炉温fとの温度
差g−fを温度差信号Hとして比率設定器10に
入力する如く構成し、ガスコントロール型制御と
オン・レイシオ・コントロール型制御の切換点以
下の低燃焼側においては比率設定器10の出力に
より空気制御弁13を最小開状態に保ち且つ前記
切換点以上の高燃焼側においては空気制御弁13
の開度を調整する電電ポジシヨナー14を設け、
また前記切換点以下の低燃焼側においては比率設
定器10の出力によりガス制御弁11の開度を調
整し且つ前記切換点以上の高燃焼側においてはガ
ス制御弁11を最大開状態に保つ電々ポジシヨナ
ー12を設け、更に導圧管15をダイヤフラム装
置16を介して均圧弁17に接続したものであ
る。
Further, the control device for a mix-type high-speed gas burner for industrial furnaces according to the present invention guides the air supply source 1 to the nozzle mix-type high-speed burner 4 through the air passages 2a, 2b, and guides the air supply source 1 along the flow of the air passages 2a, 2b. An air control valve 13 and a pressure guiding pipe 15 are provided, and the fuel gas supply source 5 is guided to the burner 4 through gas passages 6a, 6b, 6c, and the gas passages 6a, 6
A pressure equalizing valve 17 and a gas control valve 11 are installed along the flow of steps b and 6c, and the set temperature signal G from the program setting device 9 for setting the furnace temperature and the furnace temperature signal from the temperature detector 7 installed in the industrial furnace 3 are provided. The temperature controller 8 compares the set temperature signal G and the furnace temperature signal F, and calculates the temperature difference g−f between the set temperature g and the furnace temperature f. The configuration is such that the signal H is input to the ratio setter 10, and on the low combustion side below the switching point between gas control type control and on-ratio control type control, the air control valve 13 is opened to the minimum by the output of the ratio setter 10. state and on the high combustion side above the switching point, the air control valve 13
An electric positioner 14 is provided to adjust the opening degree of the
Further, on the low combustion side below the switching point, the opening degree of the gas control valve 11 is adjusted by the output of the ratio setting device 10, and on the high combustion side above the switching point, the electric current is used to keep the gas control valve 11 in the maximum open state. A positioner 12 is provided, and a pressure guiding pipe 15 is further connected to a pressure equalizing valve 17 via a diaphragm device 16.

すなわち、第3図において、ガスコントロール
単独の従来のものは空気制御弁がD−Eの如く開
いていたので全燃焼域で空気過剰となり燃焼効率
を下げていた。また、オン・レイシオ・コントロ
ール単独の従来のものは、空気制御弁がA−C−
Eの如く開いていたので低燃焼側でガス噴出流速
が不速し、炉の均一加熱が困難であつた。しかる
に本発明のものはB−C−Eの如く空気が送り込
まれるので、低燃焼側における過剰空気のみの使
用でその過剰空気量を大幅に減少させ燃焼効率を
大きく損うことなく、而も墳出流速ガスが不足す
ることなく、炉の均一加熱を行うことが出来るも
のである。
That is, in FIG. 3, in the conventional type with only gas control, the air control valve was open as indicated by D-E, resulting in excess air in the entire combustion range and lowering the combustion efficiency. In addition, in the conventional type with on-ratio control alone, the air control valve is A-C-
Since the opening was as shown in E, the gas jetting flow rate was slow on the low combustion side, making uniform heating of the furnace difficult. However, in the case of the present invention, since air is fed in as in B-C-E, the amount of excess air can be significantly reduced by using only the excess air on the low combustion side, and the combustion efficiency can be greatly reduced without significantly reducing the combustion efficiency. It is possible to uniformly heat the furnace without running out of outflow gas.

なお均圧弁17の最小開状態とは、所望最小量
の燃料ガスを通過させる如く完閉しないように、
構成することも出来るし、第2図に示す如く、均
圧弁本体17Cが完閉しミニマム量調整バルブ1
7aを有するバイパス路17bを介してガスが流
れるようにしてもよい。
Note that the minimum open state of the pressure equalizing valve 17 is defined as a state in which the pressure equalizing valve 17 is not completely closed so as to allow a desired minimum amount of fuel gas to pass through.
As shown in FIG. 2, the pressure equalizing valve body 17C is completely closed and the minimum amount adjusting valve
The gas may also flow through a bypass path 17b having 7a.

また、ガス制御弁11の最小開状態とは、所望
最小量の燃料ガスを通過させる如く完閉しないよ
うに構成することも出来るし、第2図に示す如
く、ガス制御弁本体11Cが完閉しミニマム量調
整バルブ11aを有するバイパス路11bを介し
てガスが流れるようにしてもよい。
Further, the minimum open state of the gas control valve 11 may be configured such that it is not completely closed so that a desired minimum amount of fuel gas passes through, or the gas control valve main body 11C is completely closed as shown in FIG. Alternatively, the gas may flow through a bypass passage 11b having a minimum amount adjustment valve 11a.

更に、空気制御弁13の最小開状態とは、所望
最小量の空気を通過させる如く完閉しないように
構成することも出来るし、第2図に示す如く空気
制御弁13が完閉しミニマム量調整バルブ13a
を有するバイパス路13bを介して空気が流れる
ようにしてもよい。
Furthermore, the minimum open state of the air control valve 13 can be configured so that it is not completely closed so as to allow a desired minimum amount of air to pass through, or it can be configured such that the air control valve 13 is completely closed and the minimum amount of air is allowed to pass through, as shown in FIG. Adjustment valve 13a
Air may be made to flow through the bypass path 13b having the following.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施態様を説明するためのも
ので、第1図は全体の原理図、第2図は一部変形
要部原理図、第3図はバーナーに送られる燃料ガ
ス量と空気制御弁の開度の関係を示すグラフであ
る。 1……空気供給源、2a,2b……空気路、3
……工業炉、4……バーナー、5……燃料ガス供
給源、6a,6b,6c……ガス路、7……温度
検出器、8……温度調節計、10……比率設定
器、11……ガス制御弁、12……電々ポジシヨ
ナー、13……空気制御弁、14……電電ポジシ
ヨナー、15……導圧管、16……ダイヤフラム
装置、17……均圧弁、F……温度信号、f……
炉温、G……設定温信号、g……設定温、H……
温度差信号。
The drawings are for explaining the embodiment of this invention. Fig. 1 shows the overall principle, Fig. 2 shows the principle of partially modified parts, and Fig. 3 shows the amount of fuel gas sent to the burner and air control. It is a graph which shows the relationship of the opening degree of a valve. 1... Air supply source, 2a, 2b... Air path, 3
...Industrial furnace, 4...Burner, 5...Fuel gas supply source, 6a, 6b, 6c...Gas path, 7...Temperature detector, 8...Temperature controller, 10...Ratio setting device, 11 ... Gas control valve, 12 ... Electric positioner, 13 ... Air control valve, 14 ... Electric positioner, 15 ... Impulse pipe, 16 ... Diaphragm device, 17 ... Pressure equalization valve, F ... Temperature signal, f ……
Furnace temperature, G... Set temperature signal, g... Set temperature, H...
Temperature difference signal.

Claims (1)

【特許請求の範囲】 1 空気と燃料ガスとをバーナーへ別々に送るミ
ツクス型高速ガスバーナーを備えた工業炉におい
て、低燃焼側においては一定量の空気と所望量の
燃料ガスとを送るガスコントロール型制御を行
い、高燃焼側においては前記一定量を越える空気
量とその空気量に対応して増減する燃料ガス量と
を送るオン・レイシオ・コントロール型制御を行
い、且つガスコントロール型制御とオン・レイシ
オ・コントロール型制御の切換点を、オン・レイ
シオ・コントロール型制御におけるバーナーから
の流体噴出速度が不足し始める点近傍に設定した
ことを特徴とする工業炉用ミツクス型高速ガスバ
ーナーの制御方法。 2 空気供給源1を空気路2a,2bを介してノ
ズルミツクス型高速バーナー4に導くと共に該空
気路2a,2bの流れに沿つて空気制御弁13と
導圧管15とを設け、燃料ガス供給源5をガス路
6a,6b,6cを介して前記バーナー4に導く
と共に該ガス路6a,6b,6cの流れに沿つて
均圧弁17とガス制御弁11とを設け、炉内温度
設定用プログラム設定器9からの設定温信号Gと
工業炉3に設定した温度検出器7の炉温信号Fと
が温度調節計8に入力される如く配線し、温度調
節計8は設定温信号Gと炉温信号Fとを比較し設
定温gと炉温fとの温度差g−fを温度差信号H
として比較設定器10に入力する如く構成し、ガ
スコントロール型制御とオン・レイシオ・コント
ロール型制御の切換点以下の低燃焼側において
は、比率設定器10の出力により空気制御弁13
を最小開状態に保ち且つ前記切換点以上の高燃焼
側においては空気制御弁13の開度を調整する電
電ポジシヨナー14を設け、また前記切換点以下
の低燃焼側においては比率設定器10の出力によ
りガス制御弁11の開度を調整し且つ前記切換点
以上の高燃焼側においてはガス制御弁11を最大
開状態に保つ電々ポジシヨナー12を設け、更に
導圧管15をダイヤフラム装置16を介して均圧
弁17に接続したことを特徴とする工業炉用ミツ
クス型高速ガスバーナーの制御装置。
[Claims] 1. In an industrial furnace equipped with a mix-type high-speed gas burner that separately sends air and fuel gas to the burner, gas control that sends a certain amount of air and a desired amount of fuel gas on the low combustion side. On the high combustion side, on-ratio control type control is performed to send an air amount exceeding the above-mentioned certain amount and a fuel gas amount that increases or decreases in response to the air amount, and gas control type control and on-ratio control type control are performed. - A control method for a mix-type high-speed gas burner for industrial furnaces, characterized in that the switching point of the ratio control type control is set near the point where the fluid ejection velocity from the burner starts to be insufficient in the on-ratio control type control. . 2. The air supply source 1 is guided to the nozzle mix type high-speed burner 4 through the air passages 2a, 2b, and an air control valve 13 and a pressure pipe 15 are provided along the flow of the air passages 2a, 2b. is guided to the burner 4 through gas paths 6a, 6b, and 6c, and a pressure equalizing valve 17 and a gas control valve 11 are provided along the flow of the gas paths 6a, 6b, and 6c, and a program setting device for setting the furnace temperature is provided. The wiring is such that the set temperature signal G from 9 and the furnace temperature signal F of the temperature detector 7 set in the industrial furnace 3 are input to the temperature controller 8, and the temperature controller 8 receives the set temperature signal G and the furnace temperature signal. The temperature difference g−f between the set temperature g and the furnace temperature f is determined as a temperature difference signal H.
On the low combustion side below the switching point between gas control type control and on-ratio control type control, the air control valve 13 is
An electric positioner 14 is provided to maintain the opening of the air control valve 13 in the minimum open state and adjust the opening degree of the air control valve 13 on the high combustion side above the switching point, and to adjust the opening degree of the air control valve 13 on the low combustion side below the switching point. An electric positioner 12 is provided to adjust the opening degree of the gas control valve 11 and keep the gas control valve 11 in the maximum open state on the high combustion side above the switching point. A control device for a mix-type high-speed gas burner for an industrial furnace, characterized in that it is connected to a pressure valve 17.
JP247580A 1980-01-12 1980-01-12 Method and apparatus for control of mix type high-speed gas burner for industrial furnace Granted JPS56100225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP247580A JPS56100225A (en) 1980-01-12 1980-01-12 Method and apparatus for control of mix type high-speed gas burner for industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP247580A JPS56100225A (en) 1980-01-12 1980-01-12 Method and apparatus for control of mix type high-speed gas burner for industrial furnace

Publications (2)

Publication Number Publication Date
JPS56100225A JPS56100225A (en) 1981-08-12
JPS6121322B2 true JPS6121322B2 (en) 1986-05-27

Family

ID=11530350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP247580A Granted JPS56100225A (en) 1980-01-12 1980-01-12 Method and apparatus for control of mix type high-speed gas burner for industrial furnace

Country Status (1)

Country Link
JP (1) JPS56100225A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190618A (en) * 1982-04-30 1983-11-07 Tokyo Gas Co Ltd Combustion device

Also Published As

Publication number Publication date
JPS56100225A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
US5263849A (en) High velocity burner, system and method
US6019593A (en) Integrated gas burner assembly
JPS6121322B2 (en)
JP7073025B1 (en) Combustion equipment
JPS63286614A (en) Combustion control of boller
JP3187991B2 (en) Furnace atmosphere control device
JP3526942B2 (en) Gas flow regulator
JPS59142328A (en) Air-fuel ratio controlling device in combustion apparatus
JP3072412B2 (en) Combustion furnace combustion control system
JP2013164648A (en) Flow rate adjustment device
JPH0683162U (en) Gas cutting machine
JPS62284108A (en) Airflow rate controller for boiler
JPH02101316A (en) Combustion control method for burning furnace
SU1425222A1 (en) Device for regulating pressure in furnace
JP3564293B2 (en) Method and apparatus for controlling the number of burners in a plant
JPH05256515A (en) Hot water feeder and control method thereof
JP3091810B2 (en) Water heater
JPH02122111A (en) Combustion and cooling control system for firing furnace
JPH05187629A (en) Controlling method of furnace temperature
JPS6067724A (en) Double gas fuel controller
JP2019143834A (en) Combustion device
JPS61152913A (en) Control device of steam turbine
JPH05248774A (en) Atmosphere control device for gas combustion furnace
JPH10175066A (en) Cutting machine
JPS626602B2 (en)