JPH02101316A - Combustion control method for burning furnace - Google Patents

Combustion control method for burning furnace

Info

Publication number
JPH02101316A
JPH02101316A JP25215188A JP25215188A JPH02101316A JP H02101316 A JPH02101316 A JP H02101316A JP 25215188 A JP25215188 A JP 25215188A JP 25215188 A JP25215188 A JP 25215188A JP H02101316 A JPH02101316 A JP H02101316A
Authority
JP
Japan
Prior art keywords
fuel
control
valve
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25215188A
Other languages
Japanese (ja)
Other versions
JPH0512616B2 (en
Inventor
Kazuo Nakaeki
中浴 運雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP25215188A priority Critical patent/JPH02101316A/en
Publication of JPH02101316A publication Critical patent/JPH02101316A/en
Publication of JPH0512616B2 publication Critical patent/JPH0512616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/027Regulating fuel supply conjointly with air supply using mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To automatically control the fuel feed rate so as to obtain a constant air-fuel ratio by a method wherein fuel is sent to a fuel control equalizer valve through a fuel differential pressure control equalizer valve, and the fuel differential pressure control equalizer valve is controlled according to the outlet pressure of the fuel control equalizer valve. CONSTITUTION:Air is supplied to a burner 1 through an air temperature control valve V1, and a fuel control equalizer valve V2 is brought into action by a fuel control pressure Px which is taken between the burner 1 and the air temperature control valve V1 to control the fuel feed rate to the burner 1. Fuel is supplied through a fuel differential pressure control equalizer valve V4 to the fuel control equalizer valve V2. The fuel differential pressure control equalizer valve V4 is controlled according to the outlet pressure P4 of the fuel control equalizer valve V2. By this constitution, a desired air-fuel ratio can be kept constant by automatic control over the entire operation range from the high temperature region to the low temperature region, so that ease of operation and combustion efficiency are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は焼成炉等の燃焼制御方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a combustion control method for a firing furnace, etc.

(従来の技術) 一般に焼成炉等においてはバーナに空気と燃料とを所要
の一定の空燃比で供給することが必要である。そのため
従来の焼成炉等の燃焼制御方法としては、第2図に示す
ようにバーナIへの空気供給管路2に空気用温度制御弁
v1が設けられ、燃料供給管路3に調整可能の燃料制御
用均圧弁v2と手動弁v3とが設けられ、空気用温度制
御弁V、とバーナ1との間の空気供給管路部分2aから
燃料制御用均圧弁v2にパイロット圧管路4により燃料
制御圧Pxを供給するよう構成された燃焼制御系を用い
、例えば、焼成炉の温度を上昇させる場合には、温度上
昇指令により空気用温度制御弁V、を開いてバーナ1に
空気を送り、これにより空気供給管路部分2aの空気2
次圧が上昇し、管路部分2aからパイロット圧管路4を
経て燃料制御圧Pxが燃料制御用均圧弁v2に導入され
、これによりバーナへの空気供給量の変化に応じて燃料
の供給量を変化させている。
(Prior Art) Generally, in a firing furnace or the like, it is necessary to supply air and fuel to a burner at a required constant air-fuel ratio. Therefore, as shown in FIG. 2, as a conventional combustion control method for firing furnaces, etc., an air temperature control valve v1 is provided in the air supply pipe 2 to the burner I, and an adjustable fuel supply pipe is provided in the fuel supply pipe 3. A control pressure equalization valve v2 and a manual valve v3 are provided, and the fuel control pressure is supplied from the air supply pipe section 2a between the air temperature control valve V and the burner 1 to the fuel control pressure equalization valve v2 through a pilot pressure pipe 4. For example, when increasing the temperature of the firing furnace using a combustion control system configured to supply Px, open the air temperature control valve V in response to a temperature increase command and send air to the burner 1. Air 2 in air supply pipe section 2a
The next pressure rises, and the fuel control pressure Px is introduced from the pipe section 2a through the pilot pressure pipe 4 to the fuel control pressure equalizing valve v2, thereby adjusting the amount of fuel supplied according to the change in the amount of air supplied to the burner. It's changing.

燃料制御用均圧弁V、は第3図に示すように、ダイヤフ
ラム10をはさんで上下のハネケース11とダイヤフラ
ムケース12とが気密に連結され、ダイヤフラムケース
12に弁本体13が固着され、燃料供給管路3に接続さ
れた弁本体13の入口14および出口15間の通路16
に弁座17が設けられ、この弁座17と協働する弁体1
8がダイヤフラム10に取付けられて調整可能のスプリ
ング19により閉止位置に保持され、バネケース11内
にパイロット圧管路4を経て導入される燃料制御圧PX
により弁体18が開放位置となり、バーナ1に供給され
る燃料の量を空気2次圧P2の増減に対応し、て増減す
るよう構成されている。したがって燃料制御用均圧弁v
2から燃料が燃料2次圧P、でバーナ1に送られ、バー
ナ1に供給される燃料の量が空気2次圧の増減に対応し
て増加し、温度が上昇される。
As shown in FIG. 3, the fuel control pressure equalizing valve V has an upper and lower wing case 11 and a diaphragm case 12 airtightly connected with a diaphragm 10 in between, and a valve body 13 is fixed to the diaphragm case 12 to control the fuel supply. A passage 16 between the inlet 14 and the outlet 15 of the valve body 13 connected to the line 3
A valve seat 17 is provided on the valve body 1 , which cooperates with the valve seat 17 .
8 is attached to the diaphragm 10 and held in the closed position by an adjustable spring 19, and the fuel control pressure PX is introduced into the spring case 11 via the pilot pressure line 4.
This causes the valve body 18 to be in the open position, and the amount of fuel supplied to the burner 1 is increased or decreased in accordance with the increase or decrease in the secondary air pressure P2. Therefore, the pressure equalization valve for fuel control v
2 is sent to the burner 1 at a secondary fuel pressure P, and the amount of fuel supplied to the burner 1 increases in accordance with the increase/decrease in the secondary air pressure, raising the temperature.

(発明が解決しようとする課題) しかしながら、上述した均圧弁を用いて燃料を制御する
方法では、均圧弁の入口側の燃料元圧P3と燃料2次圧
P、との差圧が異なると第5図に示すように同し弁開度
でも流量が異なり、第7図に破線曲線Aで示すように空
気用温度制御弁V、の低開度領域において燃料の量を絞
りきれず、低温域の制御が困難で、低温域において空燃
比を所定値に一定に保持することができず、所定値より
上昇し、その結果、発煙や煤の発生が激しいばかりでな
く、炉温度が低下し、また火が消えてしまうという問題
がある。このように従来方法では、低温域において空気
供給量に比例して燃料供給量を自動制御することが不可
能であったため、従来は手動弁V。
(Problem to be Solved by the Invention) However, in the method of controlling fuel using the pressure equalizing valve described above, if the differential pressure between the fuel source pressure P3 and the fuel secondary pressure P on the inlet side of the pressure equalizing valve differs, As shown in Figure 5, the flow rate differs even with the same valve opening, and as shown by the broken line curve A in Figure 7, the amount of fuel cannot be reduced in the low opening range of the air temperature control valve V, and the amount of fuel cannot be reduced in the low temperature range. It is difficult to control the air-fuel ratio in the low temperature range, and the air-fuel ratio cannot be kept constant at a predetermined value, and it rises above the predetermined value.As a result, not only is smoke and soot generated intensely, but the furnace temperature also decreases. There is also the problem of the fire going out. As described above, in the conventional method, it was impossible to automatically control the fuel supply amount in proportion to the air supply amount in a low temperature range, so conventionally a manual valve V was used.

を操作して燃料の元圧P3を調整しており、これがため
炉の操業が容易でなく、全温度域で燃焼制御を全自動で
効率良く行なうことができないという問題がある。
The source pressure P3 of the fuel is adjusted by operating the furnace, which makes it difficult to operate the furnace, and there is a problem that combustion control cannot be performed fully automatically and efficiently over the entire temperature range.

本発明の目的は、上述した問題を解決して低温域におい
ても、一定の空燃比が得られるよう燃料の流量を自動制
御する方法を提供しようとするものである。
An object of the present invention is to provide a method for automatically controlling the flow rate of fuel so that a constant air-fuel ratio can be obtained even in a low temperature range by solving the above-mentioned problems.

(課題を解決するための手段) 本発明によれば、焼成炉等のバーナに空気を空気用温度
制御弁V、を経て供給し、バーナと温度制御弁V、との
間から取出した燃料制御圧PXにより燃料制御用均圧弁
v2を動作させてバーナに供給される燃料の量を制御す
る焼成炉等の燃焼制御方法において、燃料制御用均圧弁
v2に燃料差圧制御用均圧弁v4を経て燃料を送り、こ
の燃料差圧制御用均圧弁V、を燃料制御用均圧弁v2の
出口側圧力により制御することを特徴とするもである。
(Means for Solving the Problems) According to the present invention, air is supplied to a burner such as a kiln through an air temperature control valve V, and the fuel is controlled by being taken out between the burner and the temperature control valve V. In a combustion control method for a firing furnace, etc., in which the fuel control pressure equalization valve v2 is operated by the pressure PX to control the amount of fuel supplied to the burner, the fuel control pressure equalization valve v2 is operated via the fuel differential pressure control pressure equalization valve v4. It is characterized in that fuel is sent and the pressure equalizing valve V for fuel differential pressure control is controlled by the pressure on the outlet side of the fuel controlling pressure equalizing valve v2.

(作 用) 本発明によれば、燃料制御用均圧弁v2の人口側圧力P
3と出口側圧力P4との差圧が第6図に実線Bで示すよ
うに温度制御弁V、の全開度に対し一定となり、これに
より制?ffl弁v1の開度に対し、バーナに供給され
る燃料の量が、第7図に破線曲線Aで示す従来方法とは
異なり、実線曲線Bで示すように、温度制御弁v1の開
度に実質的に正比例し、これにより、従来の自動制御可
能の燃焼範囲aに比べ本発明による自動制御可能の燃焼
範囲すは、温度制御弁V、の10χ〜100χの開度に
まで増大され、全域自動制御により−・定の所要空燃比
で燃焼させることが可能である。
(Function) According to the present invention, the population side pressure P of the fuel control pressure equalizing valve v2
The differential pressure between the temperature control valve V and the outlet pressure P4 becomes constant with respect to the full opening of the temperature control valve V, as shown by the solid line B in FIG. Unlike the conventional method shown by the broken line curve A in FIG. The automatically controllable combustion range according to the present invention is substantially directly proportional to that of the conventional automatically controllable combustion range a. Through automatic control, it is possible to perform combustion at a predetermined required air-fuel ratio.

(実施例) 本発明方法の実施例を第1図につき説明する。(Example) An embodiment of the method of the invention will be explained with reference to FIG.

容量100iの焼成炉において、第1図に示す燃焼制御
装置を用い、100°C〜500 ’Cの低温度領域に
おいて、炉内温度を100°Cから250°Cに昇温す
るため、空気用温度制御弁弁■1の開度を15%に制御
し、燃焼空気の空気元圧P1を空気2次圧P2とした、
これにより各バーナに空気が220Im’/hrの流量
で、灯油が201 /hrの流量で供給され、所要の空
燃料比が一定に維持され、炉内温度が250 ’Cに昇
温された。
In a firing furnace with a capacity of 100 i, the combustion control device shown in Figure 1 is used to raise the temperature inside the furnace from 100°C to 250°C in the low temperature range of 100°C to 500'C. The opening degree of the temperature control valve ■1 was controlled to 15%, and the primary air pressure P1 of the combustion air was set to the secondary air pressure P2.
As a result, air was supplied to each burner at a flow rate of 220 Im'/hr, kerosene was supplied at a flow rate of 201 Im'/hr, the required air-fuel ratio was maintained constant, and the temperature inside the furnace was raised to 250'C.

第4図は本発明方法に用いられる燃料差圧制御用均圧弁
v4の詳細構造を示す。図示の弁ν4は、ダイヤフラム
20をはさんで上下の弁本体21とバネケース22とが
気密に連結され、バネケース22内に設けられた調整ね
じ23により調整可能のスプリング24によりダイヤプ
ラム20が弁本体21内の流体圧に対して支持され、ダ
イヤフラム20に取付けられたヨーク25にブリッジ2
6が取付けられ、燃料供給管路3に燃料制御用均圧弁v
2より上流側で接続された弁本体21の入口27および
出口28間の通路29に設けられた弁座30に弁体31
をブリッジ26により着座させるようにし、バネケース
22内に燃料制御用均圧弁v2の出口側圧力P4すなわ
ち、燃料2次圧を導入口32を経て導入してその差圧に
より弁の開度を増減して燃料を人口27から出口28に
通過させて燃料供給管路3を経て燃料制御用均圧弁V、
に送るよう構成されている。
FIG. 4 shows the detailed structure of the pressure equalizing valve v4 for fuel differential pressure control used in the method of the present invention. In the illustrated valve ν4, upper and lower valve bodies 21 and a spring case 22 are airtightly connected with a diaphragm 20 in between. The bridge 2 is mounted on a yoke 25 that is supported against fluid pressure within the diaphragm 21 and is attached to the diaphragm 20.
6 is attached to the fuel supply pipe 3, and a fuel control equalizing valve v
A valve body 31 is attached to a valve seat 30 provided in a passage 29 between an inlet 27 and an outlet 28 of the valve body 21 connected on the upstream side of the valve body 21.
is seated by the bridge 26, and the outlet side pressure P4 of the fuel control pressure equalizing valve v2, that is, the fuel secondary pressure, is introduced into the spring case 22 through the inlet 32, and the opening degree of the valve is increased or decreased by the differential pressure. The fuel is passed from the port 27 to the outlet 28 through the fuel supply pipe 3 to the fuel control pressure equalizing valve V,
It is configured to be sent to

(発明の効果) 本発明によれば、低温域から高温域まで、所要の空燃比
を一定に保持して全域自動制御して燃焼させることが可
能となり、これにより焼成炉での操業を容易とし、燃焼
効率を著しく向上させることができる。
(Effects of the Invention) According to the present invention, it is possible to keep the required air-fuel ratio constant and automatically control combustion over the entire range from a low temperature range to a high temperature range, thereby facilitating operation in a kiln. , combustion efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃焼制御方法を実施する燃焼制御
系の概略図、 第2図は従来の燃焼制御系の概略図、 第3図は燃料制御用均圧弁の縦断面図、第4図は燃料差
圧制御用均圧弁の縦断面図、第5図は従来の制御方法に
よる空気用温度制御弁v1の種々の開度での燃料元圧P
3と燃料2次圧P4との差圧と燃料制御用均圧弁の出口
流量との関係を示すグラフ、 第6図は従来方法Aと本発明方法Bとの温度制御弁ν1
の開度と差圧(P4− P3)との関係を示すグラフ、 第7図は従来方法Aと本発明方法B、!:の温度制御弁
v1の開度とバーナへの燃料供給量との関係を示すグラ
フである。 1・・・バーナ     2・・・空気供給管路3・・
・燃料供給管路  4・・・パイロット圧管路V、・・
・空気用温度制御弁 v2・・・燃料制御用均圧弁 v3・・・燃料差圧制御用均圧弁 第2図 L〜 第5図 一差圧(P4−Pa) 第6図 ■ 開度 !00%
Fig. 1 is a schematic diagram of a combustion control system implementing the combustion control method according to the present invention, Fig. 2 is a schematic diagram of a conventional combustion control system, Fig. 3 is a vertical cross-sectional view of a pressure equalization valve for fuel control, and Fig. 4 is a vertical cross-sectional view of the pressure equalization valve for fuel differential pressure control, and FIG. 5 is the fuel source pressure P at various opening degrees of the air temperature control valve v1 according to the conventional control method.
6 is a graph showing the relationship between the differential pressure between 3 and secondary fuel pressure P4 and the outlet flow rate of the pressure equalizing valve for fuel control.
A graph showing the relationship between the opening degree and the differential pressure (P4-P3), Figure 7 shows conventional method A and method B of the present invention. It is a graph which shows the relationship between the opening degree of the temperature control valve v1 of : and the amount of fuel supplied to the burner. 1...Burner 2...Air supply pipe 3...
・Fuel supply pipe 4...Pilot pressure pipe V,...
・Air temperature control valve v2...Fuel control pressure equalization valve v3...Pressure equalization valve for fuel differential pressure control Fig. 2L~ Fig. 5 - Differential pressure (P4-Pa) Fig. 6 ■ Opening degree! 00%

Claims (1)

【特許請求の範囲】[Claims] 1、焼成炉等のバーナに空気を温度制御弁V_1を経て
供給し、バーナと温度制御弁V_1との間から取出した
燃料制御圧P_xにより燃料制御用均圧弁V_2を動作
させてバーナに供給される燃料の量を制御する焼成炉等
の燃焼制御方法において、燃料制御用均圧弁V_2に燃
料差圧制御用均圧弁V_4を経て燃料を送り、この燃料
差圧制御用均圧弁V_4を燃料制御用均圧弁V_2の出
口側圧力により制御することを特徴とする焼成炉等の燃
焼制御方法。
1. Air is supplied to a burner such as a firing furnace through a temperature control valve V_1, and the fuel control pressure equalization valve V_2 is operated by the fuel control pressure P_x taken out from between the burner and the temperature control valve V_1, and the air is supplied to the burner. In a combustion control method for a firing furnace, etc., in which the amount of fuel is controlled, fuel is sent to a fuel control pressure equalization valve V_2 via a fuel differential pressure control equalization valve V_4, and this fuel pressure difference control pressure equalization valve V_4 is used for fuel control. A combustion control method for a firing furnace, etc., characterized in that the control is performed by the outlet side pressure of a pressure equalizing valve V_2.
JP25215188A 1988-10-07 1988-10-07 Combustion control method for burning furnace Granted JPH02101316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25215188A JPH02101316A (en) 1988-10-07 1988-10-07 Combustion control method for burning furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25215188A JPH02101316A (en) 1988-10-07 1988-10-07 Combustion control method for burning furnace

Publications (2)

Publication Number Publication Date
JPH02101316A true JPH02101316A (en) 1990-04-13
JPH0512616B2 JPH0512616B2 (en) 1993-02-18

Family

ID=17233189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25215188A Granted JPH02101316A (en) 1988-10-07 1988-10-07 Combustion control method for burning furnace

Country Status (1)

Country Link
JP (1) JPH02101316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089036A (en) * 2012-10-03 2014-05-15 Aichi Tokei Denki Co Ltd Air ratio control device and combustion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089036A (en) * 2012-10-03 2014-05-15 Aichi Tokei Denki Co Ltd Air ratio control device and combustion system

Also Published As

Publication number Publication date
JPH0512616B2 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US4756688A (en) Apparatus and method for the flow control of flue gas to combustion air in a regenerative heating system
CA2229129C (en) A differential pressure modulated gas valve for single stage combustion control
JPH02101316A (en) Combustion control method for burning furnace
JP3072412B2 (en) Combustion furnace combustion control system
US4644904A (en) Gas fired heating boiler
JP3187991B2 (en) Furnace atmosphere control device
JPS6411689B2 (en)
JPS5833024A (en) Gas combustion controller
JP7073025B1 (en) Combustion equipment
JPH034810B2 (en)
JPH05256515A (en) Hot water feeder and control method thereof
JPS6114773Y2 (en)
JP3142460B2 (en) Pressure control method for burner combustion air
JPH0740834Y2 (en) Furnace atmosphere temperature control device
KR910004775B1 (en) Controller for gas fueled heating apparatus
JPH024122Y2 (en)
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
JPH0427444B2 (en)
JPS6069420A (en) Combustion controller
EP1184767B1 (en) Control method of thermostatic system
JPS5912228A (en) Controlling method of furnace temperature of heating furnace and its device
JPS58178117A (en) Proportioning controller for gas combustion
JP2635676B2 (en) Boiler burner air register opening control method
JPH0578730B2 (en)
JPS62284108A (en) Airflow rate controller for boiler