JPH02122111A - Combustion and cooling control system for firing furnace - Google Patents

Combustion and cooling control system for firing furnace

Info

Publication number
JPH02122111A
JPH02122111A JP27329688A JP27329688A JPH02122111A JP H02122111 A JPH02122111 A JP H02122111A JP 27329688 A JP27329688 A JP 27329688A JP 27329688 A JP27329688 A JP 27329688A JP H02122111 A JPH02122111 A JP H02122111A
Authority
JP
Japan
Prior art keywords
flow rate
valve
combustion
air
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27329688A
Other languages
Japanese (ja)
Other versions
JPH0449007B2 (en
Inventor
Yoshihide Goto
後藤 好秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27329688A priority Critical patent/JPH02122111A/en
Publication of JPH02122111A publication Critical patent/JPH02122111A/en
Publication of JPH0449007B2 publication Critical patent/JPH0449007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/06Regulating air supply or draught by conjoint operation of two or more valves or dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To simplify a control system and to reduce a cost by a method wherein valve characteristics of a control valve for a flow rate of tertiary air for combustion and cooling are reversed to those of an air flow rate control valve. CONSTITUTION:A fuel feed pipe 2 for feeding fuel and primary, secondary, and tertiary air to a burner 1 for firing, a primary air feed pipe 3 for atomization, a secondary air feed pipe 4 for combustion, and a tertiary air feed pipe 5 for cooling are provided, and flow rate control valves V1, V2, V3, and V4 are mounted in the fed pipes. Valve characteristics of the flow rate control valve V2 for primary air for atomization and the flow rate control valve V3 for secondary air for combustion produce valve characteristics in which a flow rate is increased in proportion to the increase of a valve opening, and valve characteristics of the flow rate control valve V4 for tertiary air for combustion and cooling produce valve characteristics in which a flow rate is decreased in proportion to a valve opening. The flow rate control valves V1-V4 are coupled to a common monitor M for interlocking with each other. This constitution provides a total air flow rate proportioning a valve opening and enables provision of a desired air-fuel ratio. The motor M is connected so that it is controlled in one train by means of a controller CR1 connected to a temperature programmer PR1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼成炉等の燃焼および冷却を3次空気を用い
て制御する制御系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control system for controlling combustion and cooling of a firing furnace or the like using tertiary air.

(従来の技術) 従来、焼成炉において、第8図に示すように、焼成用バ
ーナ1に燃料および空気を燃料供給管2、霧化用1次空
気供給管3、燃焼用2次空気供給管4および燃焼および
冷却用3次空気供給管5によりそれぞれの流量制御弁V
+、■z、VzおよびV4を経て供給し、アクチュエー
タとして電動モータを用いて流量制御弁■1〜v4を制
御して焼成および冷却を行なうことが既知である。
(Prior Art) Conventionally, in a firing furnace, as shown in FIG. 8, fuel and air are supplied to a firing burner 1 through a fuel supply pipe 2, a primary air supply pipe 3 for atomization, and a secondary air supply pipe for combustion. 4 and a tertiary air supply pipe 5 for combustion and cooling to each flow control valve V.
It is known that firing and cooling are carried out by supplying the liquid via the +, ■z, Vz and V4, and controlling the flow rate control valves ■1 to v4 using an electric motor as an actuator.

上述した従来の3次空気を用いて燃焼および冷却を制御
する制御系では、流量制御弁V、、V2゜■3および■
4の全てが弁開度の増大にしたがって流量が増大する弁
特性を有するものを使用している。
In the above-mentioned conventional control system that controls combustion and cooling using tertiary air, the flow control valves V, , V2゜■3 and ■
All of No. 4 use valves having a characteristic that the flow rate increases as the valve opening increases.

したがって、燃焼時に第10図に示すヒートカーブへの
ように焼成炉の温度を徐々に昇温しで所定の焼成温度に
加熱するために空燃比mを破線曲線Bで示すように制御
するには、制御弁V、、V2および■、を1個の共通モ
ータM、によって連動制御し、3次空気流量制御弁■4
を別個のモータM2により制御する必要があった。
Therefore, in order to gradually raise the temperature of the firing furnace to a predetermined firing temperature as shown in the heat curve shown in Figure 10 during combustion, it is necessary to control the air-fuel ratio m as shown by the broken line curve B. , control valves V, , V2 and ■ are interlocked and controlled by one common motor M, and a tertiary air flow control valve ■4
had to be controlled by a separate motor M2.

したがって、従来のモータM、およびM2の制御回路は
第9図に示すように温度プログラマ−PRIと弁開度プ
ログラマ−PR2からモータM、用コントローラCRI
およびモータM2用コントローラCR2にそれぞれ制御
信号を入力するよう接続するとともに温度プログラマ−
PRIおよび弁開度プログラマ−PR2をコントローラ
切り換えリレーR1を介してコントローラCRIおよび
CR2に接続するよう構成され、焼成工程においては温
度プログラマ−PRIをモータM1用コントローラCR
Iに接続するとともに弁開度プログラマ−PR2をモー
タM2用コントローラCR2に接続し、焼成工程から冷
却工程に移行する際に、コントローラ切り換えリレーR
1により接続を切り換えて温度プログラマ−PRIをモ
ータM2用コントローラに接続し、弁開度プログラマ−
PR2をモータM1用コントローラCRIに接続し、さ
らにモータM1用コントローラの特性を逆転させる必要
があった。
Therefore, the conventional control circuit for motors M and M2 is as shown in FIG.
and controller CR2 for motor M2 to input control signals, and a temperature programmer.
PRI and valve opening degree programmer-PR2 are configured to be connected to controllers CRI and CR2 via controller switching relay R1, and in the firing process, temperature programmer-PRI is connected to controller CR for motor M1.
I and connect the valve opening programmer PR2 to the controller CR2 for motor M2, and when moving from the firing process to the cooling process, the controller switching relay R
1, switch the connection, connect the temperature programmer PRI to the controller for motor M2, and connect the valve opening programmer.
It was necessary to connect PR2 to the controller CRI for motor M1 and to reverse the characteristics of the controller for motor M1.

(発明が解決しようとする課題) 上述したように従来の制御系は、焼成時および冷却時に
、燃料および1次、2次空気流量制御弁の制御と3次空
気流量制御弁の制御とを別個のモタによってそれぞれ行
なうようにし、両モークの制御を相違させる必要がある
ため、その制御系が複雑となり、高価となる問題があっ
た。
(Problem to be Solved by the Invention) As described above, the conventional control system separately controls the fuel and primary and secondary air flow control valves and the tertiary air flow control valve during firing and cooling. Since it is necessary to control the two motors separately and to control the two motors differently, there is a problem that the control system becomes complicated and expensive.

本発明は上述した問題を解決し、制御系の構成を簡単に
して安価に提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and to simplify the configuration of a control system and provide it at low cost.

(課題を解決するだめの手段) 本発明によれば、 焼成用バーナに燃料および1次、2
次および3次空気をそれぞれの供給管に設けた流量制御
弁V 1. V 2+ V 3および■4により制御し
て供給し、これらの流量制御弁■1〜■4を温度プログ
ラマ−により制御する燃焼冷却制御系において、3次空
気流量制御弁の弁開度と流量との関係の弁特性を燃料お
よび1次、2次空気流量制御弁V、、V2.V3の弁開
度と流量との関係の弁特性の逆にし、3次空気流量弁を
少なくとも他の空気流量制御弁と共通のアクチュエータ
により制御することを特徴とする。
(Means for Solving the Problem) According to the present invention, a firing burner is provided with fuel and primary and secondary
Flow rate control valve V provided in each supply pipe for secondary and tertiary air 1. In a combustion cooling control system in which V 2+ is controlled and supplied by V 3 and ■ 4, and these flow rate control valves ■ 1 to ■ 4 are controlled by a temperature programmer, the valve opening degree and flow rate of the tertiary air flow control valve are The valve characteristics related to the fuel and primary and secondary air flow rate control valves V, , V2. The valve characteristic of the relationship between the valve opening and the flow rate of V3 is reversed, and the tertiary air flow valve is controlled by an actuator common to at least other air flow control valves.

(作 用) 本発明によれば、燃焼および冷却用3次空気の流量制御
弁V4の弁特性を他の燃料、空気流量制御弁の弁特性の
逆にしたことによって、燃料および空気供給管に設けら
れる流量制御弁■1〜■4の全てを共通のモータMによ
って連動制御して焼成を行なうことができ、また焼成工
程から冷却工程への移行に際しても、コントローラの切
り換えを行なうことなく、温度プログラマ−によりモー
タM用コントローラを介してモータMを1系列で制御し
て所望の燃焼および冷却制御を行なうことができる。
(Function) According to the present invention, by making the valve characteristics of the combustion and cooling tertiary air flow rate control valve V4 opposite to those of other fuel and air flow rate control valves, the fuel and air supply pipes are controlled. All of the flow control valves (1 to 4) provided can be controlled in conjunction with a common motor M to perform firing, and even when transitioning from the firing process to the cooling process, the temperature can be adjusted without switching the controller. The programmer can control the motor M in one series via the motor M controller to perform desired combustion and cooling control.

(実施例) 本発明の1実施例を第1図〜第6図に示す。図示の例で
は、焼成用バーナ1に燃料および1次、2次および3次
空気を供給する燃料供給管2、霧化用1次空気供給管3
、燃焼用2次空気供給管4および燃焼および冷却用3次
空気供給管5が設けられ、これらの供給管に流量制御弁
V、、V2.V。
(Example) An example of the present invention is shown in FIGS. 1 to 6. In the illustrated example, a fuel supply pipe 2 that supplies fuel and primary, secondary, and tertiary air to the firing burner 1, and a primary air supply pipe 3 for atomization are shown.
, a combustion secondary air supply pipe 4 and a combustion and cooling tertiary air supply pipe 5 are provided, and these supply pipes are provided with flow rate control valves V, , V2 . V.

および■4がそれぞれ設けられている。and ■4 are provided respectively.

これらの流量制御弁の内、3次空気流量制御弁■4の弁
開度と流量との関係の弁特性を1次、2次空気流量制御
弁V2、V3の弁開度と流量との関係の弁特性の逆にし
ており、例えば、霧化用1次空気の流量制御弁■2およ
び燃焼用2次空気の流量制御弁■3の弁特性を第2図お
よび第3図にそれぞれ示すように弁開度の増大に比例し
て流量が増大する弁特性とし、これに反し、燃焼および
冷却用3次空気の流量制御弁■4の弁特性を第4図に示
すように弁開度の増大に比例して流量が減少する弁特性
としている。
Among these flow rate control valves, the valve characteristics of the relationship between the valve opening and flow rate of the tertiary air flow control valve ■4 and the relationship between the valve opening and flow rate of the primary and secondary air flow control valves V2 and V3 are shown below. For example, the valve characteristics of the atomization primary air flow control valve ■2 and the combustion secondary air flow control valve ■3 are shown in Figures 2 and 3, respectively. In contrast, the valve characteristics of the combustion and cooling tertiary air flow rate control valve ■4 are set to increase in proportion to the valve opening as shown in Figure 4. The valve characteristic is such that the flow rate decreases in proportion to the increase.

図示の例では、流量制御弁■1〜■4を1個の共通モー
タMにリンク連結して連動させ、これにより第5図に示
すように弁開度に比例した合計空気流量が得られ、所望
の空燃比を得ることができる。
In the illustrated example, the flow rate control valves (1) to (4) are linked and operated by one common motor M, and as a result, a total air flow rate proportional to the valve opening degree is obtained as shown in FIG. A desired air-fuel ratio can be obtained.

モータMは第6図に示すように、温度プログラマ−PR
Iに接続されたコントローラCRIによって一系列で制
御するよう接続される。
The motor M is connected to a temperature programmer-PR as shown in FIG.
They are connected to be controlled in series by a controller CRI connected to I.

上述の構成によれば焼成炉の焼成時には:〔りMを制御
して全流量制御弁■、〜■4の弁開度の増大させること
より、その弁開度の増大に比例して焼成炉の燃焼ガス温
度を150°Cから1500°Cまで上昇させることが
でき、また、冷却時には、モータMを制御して弁■1〜
■4の弁開度を減小させることによりその弁開度の減小
に比例して空気量を増大させて焼成炉内を冷却させるこ
とができる。これがため、1系列の制御設備で150°
C〜1500°Cの燃焼ガスを連続的に得ることができ
る。
According to the above-mentioned configuration, when firing in the firing furnace: [M is controlled to increase the valve openings of the total flow control valves ①, 〜■4, and the firing furnace increases in proportion to the increase in the valve openings. The temperature of the combustion gas can be raised from 150°C to 1500°C, and during cooling, the motor M can be controlled to
(2) By reducing the opening degree of the valve 4, the amount of air can be increased in proportion to the decrease in the opening degree of the valve, thereby cooling the inside of the firing furnace. For this reason, 150° with one series of control equipment
Combustion gas at a temperature of 1500°C to 1500°C can be obtained continuously.

第7図は本発明による燃焼および冷却制御系の他の実施
例を示しており、本例では、燃料ポンプ(図示せず)に
より焼成用バーナlに燃料を供給する燃料供給管2に調
整可能の燃料流量制御用均圧弁■、を設け、燃焼用2次
空気流量制御弁■3と焼成用バーナ1との間の2次空気
供給管部分から燃料流量制御用均圧弁■、にパイロット
圧管6を経て燃料制御圧力PXを供給して、燃料流量制
御用均圧弁V5による焼成用バーナ1への燃料供給量を
焼成用バーナへの空気供給量の変化に応じて変化させる
よう構成されている。なお図中、第1図におけると同様
の部分を同じ符号で示しており、第1図に示す燃焼およ
び冷却制御系と同様の作用効果を有する。
FIG. 7 shows another embodiment of the combustion and cooling control system according to the invention, in which the fuel supply pipe 2 can be adjusted to supply fuel to the firing burner l by means of a fuel pump (not shown). A pilot pressure pipe 6 is provided from the secondary air supply pipe between the combustion secondary air flow control valve ■3 and the firing burner 1 to the fuel flow control equalization valve ■. The fuel control pressure PX is supplied through the fuel flow rate control equalizing valve V5 to change the amount of fuel supplied to the firing burner 1 in accordance with the change in the amount of air supplied to the firing burner. In the figure, the same parts as in FIG. 1 are indicated by the same reference numerals, and have the same effects as the combustion and cooling control system shown in FIG. 1.

(発明の効果) 本発明によれば制御系の構成を従来のものに比べ著しく
簡単かつ安価にすることができる。
(Effects of the Invention) According to the present invention, the configuration of the control system can be made significantly simpler and cheaper than the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃焼および冷却制御系の環路線図、 第2図は霧化用1次空気の流量制御弁の特性を示すグラ
フ、 第3図は燃焼用2次空気の流量制御弁の特性を示すグラ
フ、 第4図は燃焼および冷却用3次空気の流量制御弁の特性
を示すグラフ、 第5図は1次、2次および3次空気の流量制御弁を通る
合計空気流量を示すグラフ、 第6図は第1図に示すモータMの制御用ブロック回路図
、 第7図は本発明の燃焼および冷却制御系の他の実施例を
示す環路線図、 第8図は従来の燃焼および冷却制御系の環路線図、 第9図は第3図に示ずモータM1およびM2の制御用ブ
ロンク回路図、 第10図は焼成炉の焼成および冷却時間と温度との関係
を示すグラフである。 1・・・焼成用バーナ  2・・・燃料供給管3・・・
1次空気供給管 4・・・燃焼用2次空気供給管5・・
・燃焼および冷却用3次空気供給管■、〜■4・・・流
量制御弁
Figure 1 is a loop diagram of the combustion and cooling control system of the present invention, Figure 2 is a graph showing the characteristics of the flow rate control valve for the primary air for atomization, and Figure 3 is the flow rate control valve for the secondary air for combustion. Figure 4 is a graph showing the characteristics of the combustion and cooling tertiary air flow control valve. Figure 5 is the total air flow rate through the primary, secondary and tertiary air flow control valves. 6 is a block circuit diagram for controlling the motor M shown in FIG. 1, FIG. 7 is a ring diagram showing another embodiment of the combustion and cooling control system of the present invention, and FIG. 8 is a conventional A circular diagram of the combustion and cooling control system. Figure 9 is a bronch circuit diagram for controlling motors M1 and M2 (not shown in Figure 3). Figure 10 is a graph showing the relationship between firing and cooling times of the firing furnace and temperature. It is. 1... Burner for firing 2... Fuel supply pipe 3...
Primary air supply pipe 4... Secondary air supply pipe for combustion 5...
・Tertiary air supply pipe for combustion and cooling■, ~■4...Flow rate control valve

Claims (1)

【特許請求の範囲】 1、焼成用バーナに霧化用1次、燃焼用2次および燃焼
および冷却用3次空気をそれぞれの供給管に設けた流量
制御弁V_2、V_3およびV_4により制御して供給
し、これらの流量制御弁V_2〜V_4を温度プログラ
マーにより制御する燃焼および冷却制御系において、3
次空気流量制御弁V_4の弁開度と流量との関係の弁特
性を1次および2次空気流量制御弁 V_2およびV_3の弁開度と流量との関係の弁特性の
逆にし、前記空気流量制御弁を共通のアクチュエータに
より制御することを特徴とする焼成炉等の燃焼および冷
却制御系。
[Claims] 1. Primary air for atomization, secondary air for combustion, and tertiary air for combustion and cooling are controlled in the firing burner by flow control valves V_2, V_3, and V_4 provided in respective supply pipes. In the combustion and cooling control system, which controls the flow rate control valves V_2 to V_4 by a temperature programmer,
The valve characteristic of the relationship between the valve opening degree and the flow rate of the primary air flow rate control valve V_4 is reversed to the valve characteristic of the relationship between the valve opening degree and the flow rate of the primary and secondary air flow rate control valves V_2 and V_3, and the air flow rate is A combustion and cooling control system for a firing furnace, etc., characterized in that control valves are controlled by a common actuator.
JP27329688A 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace Granted JPH02122111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27329688A JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27329688A JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Publications (2)

Publication Number Publication Date
JPH02122111A true JPH02122111A (en) 1990-05-09
JPH0449007B2 JPH0449007B2 (en) 1992-08-10

Family

ID=17525878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27329688A Granted JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Country Status (1)

Country Link
JP (1) JPH02122111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419126A (en) * 1991-12-25 1995-05-30 Maruyama Mfg. Co. Inc Exhaust silencer
JP2021081093A (en) * 2019-11-15 2021-05-27 中外炉工業株式会社 Burner device, and heat treatment facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419126A (en) * 1991-12-25 1995-05-30 Maruyama Mfg. Co. Inc Exhaust silencer
JP2021081093A (en) * 2019-11-15 2021-05-27 中外炉工業株式会社 Burner device, and heat treatment facility

Also Published As

Publication number Publication date
JPH0449007B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US3600149A (en) Temperature control system for a glass tank forehearth
CN101737797B (en) Pulse combustion control method
JP2008232501A (en) Air-fuel ratio control system for combustion heating furnace
CN112859961B (en) Heating furnace and control method and control system for temperature of heating furnace
EP2260237B1 (en) Method of operating a furnace
JPH02122111A (en) Combustion and cooling control system for firing furnace
CN212058363U (en) Combined pulse combustion system with segment adjustment
JP4191341B2 (en) Flow control device
US3469780A (en) Automatic temperature control
JPH05248631A (en) Method for controlling furnace temperature
CN217265399U (en) Auxiliary heating system of glass melting furnace
CN210219762U (en) Combined pulse combustion system with large ring pipe
JPH05187629A (en) Controlling method of furnace temperature
CN210740400U (en) Full-cross amplitude limiting and pulse adding combustion device
CN112256066A (en) Pneumatic pressure control system and control method
SU1746143A1 (en) Method of automatic control of fuel/air ratio in multizone furnace
CN115820963A (en) Oxygen-enriched burning system of hot blast stove and parallel control method
JPH1061945A (en) Furnace employing burner and control method for the same
JPH10175066A (en) Cutting machine
JPH07133957A (en) Hot water supplying device
JPS6121322B2 (en)
SU881467A2 (en) Air conditioning system
JPH09101026A (en) Combustion control system for baking furnace
RU1790778C (en) Gas mixing process automatic control system
SU1359574A1 (en) Automatic control system for fuel and air supply