JPH0449007B2 - - Google Patents

Info

Publication number
JPH0449007B2
JPH0449007B2 JP27329688A JP27329688A JPH0449007B2 JP H0449007 B2 JPH0449007 B2 JP H0449007B2 JP 27329688 A JP27329688 A JP 27329688A JP 27329688 A JP27329688 A JP 27329688A JP H0449007 B2 JPH0449007 B2 JP H0449007B2
Authority
JP
Japan
Prior art keywords
combustion
cooling
flow rate
valve
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27329688A
Other languages
Japanese (ja)
Other versions
JPH02122111A (en
Inventor
Yoshihide Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27329688A priority Critical patent/JPH02122111A/en
Publication of JPH02122111A publication Critical patent/JPH02122111A/en
Publication of JPH0449007B2 publication Critical patent/JPH0449007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/06Regulating air supply or draught by conjoint operation of two or more valves or dampers

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼成炉等の燃焼および冷却を3次空
気を用いて制御する制御系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control system for controlling combustion and cooling of a firing furnace or the like using tertiary air.

(従来の技術) 従来、焼成炉において、第8図に示すように、
焼成用バーナ1に燃料および空気を燃料供給管
2、霧化用1次空気供給管3、燃焼用2次空気供
給管4および燃焼および冷却用3次空気供給管5
によりそれぞれの流量制御弁V1,V2,V3および
V4を経て供給し、アクチユエータとして電動モ
ータを用いて流量制御弁V1〜V4を制御して焼成
および冷却を行なうことが既知である。
(Prior Art) Conventionally, in a firing furnace, as shown in FIG.
Fuel and air are supplied to the firing burner 1 through a fuel supply pipe 2, a primary air supply pipe 3 for atomization, a secondary air supply pipe 4 for combustion, and a tertiary air supply pipe 5 for combustion and cooling.
The respective flow control valves V 1 , V 2 , V 3 and
It is known to supply via V 4 and use an electric motor as an actuator to control the flow control valves V 1 to V 4 for firing and cooling.

上述した従来の3次空気を用いて燃焼および冷
却を制御する制御系では、燃焼時に第10図に示
すヒートカーブAのように焼成炉の温度を徐々に
昇温して所定の焼成温度に加熱するために空燃比
mを破線曲線Bで示すように制御するには、制御
弁V1,V2およびV3を1個の共通モータM1によつ
て連動制御し、3次空気流量制御弁V4を別個の
モータM2により制御する必要があつた。
In the above-mentioned conventional control system that controls combustion and cooling using tertiary air, the temperature of the firing furnace is gradually raised to a predetermined firing temperature as shown in heat curve A shown in Figure 10 during combustion. In order to control the air-fuel ratio m as shown by the broken line curve B, the control valves V 1 , V 2 and V 3 are interlocked controlled by one common motor M 1 and the tertiary air flow control valve It was necessary to control V 4 with a separate motor M 2 .

したがつて、従来のモータM1およびM2の制御
回路は第9図に示すように温度プログラマーPR
1と弁開度プログラマーPR2からモータM1用コ
ントローラCR1およびモータM2用コントローラ
CR2にそれぞれ制御信号を入力するよう接続す
るとともに温度プログラマーPR1および弁開度
プログラマーPR2をコントローラ切り換えリレ
ーR1を介してコントローラCR1およびCR2に
接続するよう構成され、焼成工程においては温度
プログラマーPR1をモータM1用コントローラ
CR1に接続するとともに弁開度プログラマーPR
2をモータM2用コントローラCR2に接続し、焼
成工程から冷却工程に移行する際に、コントロー
ラ切り換えリレーR1により接続を切り換えて温
度プログラマーPR1をモータM2用コントローラ
に接続し、弁開度プログラマーPR2をモータM1
用コントローラCR1に接続し、さらにモータM1
用コントローラの特性を逆転させる必要があつ
た。
Therefore, the conventional control circuit for motors M 1 and M 2 uses a temperature programmer PR as shown in FIG.
1 and valve opening programmer PR2 to controller CR1 for motor M1 and controller for motor M2
The temperature programmer PR1 and the valve opening degree programmer PR2 are connected to the controllers CR1 and CR2 via the controller switching relay R1, and in the baking process, the temperature programmer PR1 is connected to the motor M controller for 1
Connect to CR1 and valve opening programmer PR
2 is connected to controller CR2 for motor M2 , and when transitioning from the firing process to the cooling process, the connection is switched by controller switching relay R1 to connect temperature programmer PR1 to the controller for motor M2, and valve opening programmer PR2 is connected to controller CR2 for motor M2. The motor M 1
Connect to controller CR1 for motor M 1
It was necessary to reverse the characteristics of the controller.

(発明が解決しようとする課題) 上述したように従来の制御系は、焼成時および
冷却時に、燃料および1次、2次空気流量制御弁
の制御と3次空気流量制御弁の制御とを別個のモ
ータによつてそれぞれ行なうようにし、両モータ
の制御を相違させる必要があるため、その制御系
が複雑となり、高価となる問題があつた。
(Problem to be Solved by the Invention) As described above, the conventional control system separately controls the fuel and primary and secondary air flow control valves and the tertiary air flow control valve during firing and cooling. Since it is necessary to control the two motors separately, the control system becomes complicated and expensive.

本発明は上述した問題を解決し、制御系の構成
を簡単にして安価に提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and to simplify the configuration of a control system and provide it at low cost.

(課題を解決するための手段) 本発明によれば、焼成用バーナに燃料および1
次、2次および3次空気をそれぞれの供給管に設
けた流量制御弁V1,V2,V3およびV4により制御
して供給し、これらの流量制御弁V1〜V4を温度
プログラマーにより制御する燃焼冷却制御系にお
いて、3次空気流量制御弁V4の弁開度および流
量が燃料および1次、2次空気流量制御弁V1
V2,V3の弁開度および流量と逆になるよう空気
流量制御弁V1〜V4を共通のアクチユエータに連
結して制御することを特徴とする。
(Means for Solving the Problems) According to the present invention, the firing burner includes fuel and
Secondary, secondary and tertiary air is controlled and supplied by flow control valves V 1 , V 2 , V 3 and V 4 provided in each supply pipe, and these flow control valves V 1 to V 4 are controlled by a temperature programmer. In the combustion cooling control system, the valve opening degree and flow rate of the tertiary air flow control valve V 4 are controlled by the fuel, primary and secondary air flow control valves V 1 ,
The air flow control valves V 1 to V 4 are controlled by being connected to a common actuator so that the opening degrees and flow rates are opposite to those of V 2 and V 3 .

(作用) 本発明によれば、燃焼および冷却用3次空気の
流量制御弁V4の弁開度が他の燃料、空気流量制
御弁の弁開度の逆になるよう共通のアクチユエー
タに連結したことによつて、燃料および空気供給
管に設けられる流量制御弁V1〜V4の全てを共通
のモータMによつて連動制御して焼成を行なうこ
とができ、また焼成工程から冷却工程への移行に
際しても、コントローラの切り換えを行なうこと
なく、温度プログラマーによりモータM用コント
ローラを介してモータMを1系列で制御して所望
の燃焼および冷却制御を行なうことができる。
(Function) According to the present invention, the combustion and cooling tertiary air flow rate control valve V4 is connected to a common actuator so that the valve opening degree is opposite to the valve opening degree of the other fuel and air flow rate control valves. By this, it is possible to perform firing by controlling all the flow rate control valves V 1 to V 4 provided in the fuel and air supply pipes in conjunction with each other by a common motor M, and also to perform the firing from the firing process to the cooling process. Even during the transition, the temperature programmer can control the motor M in one series via the motor M controller to perform desired combustion and cooling control without switching the controller.

(実施例) 本発明の1実施例を第1図〜第6図に示す。図
示の例では、焼成用バーナ1に燃料および1次、
2次および3次空気を供給する燃料供給管2、霧
化用1次空気供給管3、燃焼用2次空気供給管4
および燃焼および冷却用3次空気供給管5が設け
られ、これらの供給管に流量制御弁V1,V2,V3
およびV4がそれぞれ設けられている。
(Example) An example of the present invention is shown in FIGS. 1 to 6. In the illustrated example, the firing burner 1 includes fuel and primary,
Fuel supply pipe 2 for supplying secondary and tertiary air, primary air supply pipe 3 for atomization, secondary air supply pipe 4 for combustion
A tertiary air supply pipe 5 for combustion and cooling is provided, and flow control valves V 1 , V 2 , V 3 are installed in these supply pipes.
and V 4 are provided respectively.

これらの流量制御弁の内、3次空気流量制御弁
V4の弁開度および流量を1次、2次空気流量制
御弁V2,V3の弁開度および流量の逆になるよう
共通のアクチユエータに連結されており、例え
ば、霧化用1次空気の流量制御弁V2および燃焼
用2次空気の流量制御弁V3は第2図および第3
図にそれぞれ示すようにV1弁開度の増大に比例
して流量が増大し、これと同時に、燃焼および冷
却用3次空気の流量制御弁V4は第4図に示すよ
うに弁V1開度の増大に比例して流量が減少する
よう共通のアクチユエータに連結されている。
Among these flow control valves, the tertiary air flow control valve
They are connected to a common actuator so that the valve opening and flow rate of V 4 are opposite to those of the primary and secondary air flow control valves V 2 and V 3. For example, the primary air flow control valve for atomization The air flow rate control valve V 2 and the combustion secondary air flow rate control valve V 3 are shown in Figures 2 and 3.
As shown in the figures, the flow rate increases in proportion to the increase in the opening degree of the valve V1 , and at the same time, the combustion and cooling tertiary air flow rate control valve V4 increases as the opening degree of the valve V1 increases. They are connected to a common actuator so that the flow rate decreases in proportion to the increase in opening.

図示の例では、同一構造の流量制御弁V1〜V4
を1個の共通アクチユエータであるモータMに弁
V1〜V3が全開位置になる際に弁V4が全閉位置に
なるようにリンク連結して連動させ、これにより
第5図に示すように弁開度に比例した合計空気流
量が得られ、所望の空燃比を得ることができる。
In the illustrated example, flow control valves V 1 to V 4 of the same structure
valve to motor M, which is one common actuator.
When V 1 to V 3 are in the fully open position, valve V 4 is in the fully closed position, so that they are linked and interlocked, and as a result, a total air flow rate proportional to the valve opening is obtained as shown in Figure 5. The desired air-fuel ratio can be obtained.

モータMは第6図に示すように、温度プログラ
マーPR1に接続されたコントローラCR1によつ
て一系列で制御するよう接続される。
The motor M is connected to be controlled in series by a controller CR1 connected to a temperature programmer PR1, as shown in FIG.

上述の構成によれば焼成炉の焼成時にはモータ
Mを制御して流量制御弁V1〜V3の弁開度を増大
させると同時に流量制御弁V4の弁開度が減少し、
これにより、焼成炉の燃焼ガス温度を150℃から
1500℃まで上昇させることができ、また、冷却時
には、モータMを制御して弁V1〜V3の弁開度を
減小させると同時にV4の弁開度が増大して空気
量を増大して焼成炉内を冷却させることができ
る。これがため、1系列の制御設備で150℃〜
1500℃の燃焼ガスを連続的に得ることができる。
According to the above configuration, during firing in the firing furnace, the motor M is controlled to increase the valve openings of the flow rate control valves V 1 to V 3 and at the same time decrease the valve opening of the flow rate control valve V 4 .
This allows the combustion gas temperature in the kiln to be lowered from 150℃.
It can be heated up to 1500℃, and during cooling, the motor M is controlled to reduce the valve openings of valves V 1 to V 3 and at the same time increase the valve opening of V 4 to increase the amount of air. The inside of the firing furnace can be cooled by cooling the inside of the firing furnace. For this reason, 150℃~ with one line of control equipment.
Combustion gas at 1500℃ can be obtained continuously.

第7図は本発明による燃焼および冷却制御系の
他の実施例を示しており、本例では、燃料ポンプ
(図示せず)により焼成用バーナ1に燃料を供給
する燃料供給管2に調整可能の燃料流量制御用均
圧弁V5を設け、燃焼用2次空気流量制御弁V3
焼成用バーナ1との間の2次空気供給管部分から
燃料流量制御用均圧弁V5にパイロツト圧管6を
経て燃料制御圧力PXを供給して、燃料流量制御
用均圧弁V5による焼成用バーナ1への燃料供給
量を焼成用バーナへの空気供給量の変化に応じて
変化させるよう構成されている。なお、図中、第
1図におけると同様の部分を同じ符号で示してお
り、第1図に示す燃焼および冷却制御系と同様の
作用効果を有する。
FIG. 7 shows another embodiment of the combustion and cooling control system according to the present invention, in which the fuel supply pipe 2 can be adjusted to supply fuel to the firing burner 1 by means of a fuel pump (not shown). A pilot pressure pipe 6 is provided from the secondary air supply pipe between the combustion secondary air flow control valve V 3 and the firing burner 1 to the fuel flow control pressure equalization valve V 5 . is configured to supply fuel control pressure P There is. In the figure, the same parts as in FIG. 1 are indicated by the same reference numerals, and have the same effects as the combustion and cooling control system shown in FIG. 1.

(発明の効果) 本発明によれば制御系の構成を従来のものに比
べ著しく簡単かつ安価にすることができる。
(Effects of the Invention) According to the present invention, the configuration of the control system can be made significantly simpler and cheaper than the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃焼および冷却制御系の概略
線図、第2図は霧化用1次空気の流量制御弁の特
性を示すグラフ、第3図は燃焼用2次空気の流量
制御弁の特性を示すグラフ、第4図は燃焼および
冷却用3次空気の流量制御弁の特性を示すグラ
フ、第5図は1次、2次および3次空気の流量制
御弁を通る合計空気流量を示すグラフ、第6図は
第1図に示すモータMの制御用ブロツク回路図、
第7図は本発明の燃焼および冷却制御系の他の実
施例を示す概略線図、第8図は従来の燃焼および
冷却制御系の概略線図、第9図は第3図に示すモ
ータM1およびM2の制御用ブロツク回路図、第1
0図は焼成炉の焼成および冷却時間と温度との関
係を示すグラフである。 1……焼成用バーナ、2……燃料供給管、3…
…1次空気供給管、4……燃焼用2次空気供給
管、5……燃焼および冷却用3次空気供給管、
V1〜V4……流量制御弁。
Figure 1 is a schematic diagram of the combustion and cooling control system of the present invention, Figure 2 is a graph showing the characteristics of the flow rate control valve for the primary air for atomization, and Figure 3 is the flow rate control valve for the secondary air for combustion. Figure 4 is a graph showing the characteristics of the combustion and cooling tertiary air flow rate control valve, Figure 5 is the total air flow rate through the primary, secondary and tertiary air flow rate control valves. The graph shown in FIG. 6 is a block circuit diagram for controlling the motor M shown in FIG.
Fig. 7 is a schematic diagram showing another embodiment of the combustion and cooling control system of the present invention, Fig. 8 is a schematic diagram of a conventional combustion and cooling control system, and Fig. 9 is a schematic diagram showing the motor M shown in Fig. 3. 1 and M 2 control block diagram, 1st
FIG. 0 is a graph showing the relationship between firing and cooling times of the firing furnace and temperature. 1... Burner for firing, 2... Fuel supply pipe, 3...
...Primary air supply pipe, 4...Secondary air supply pipe for combustion, 5...Tertiary air supply pipe for combustion and cooling,
V 1 to V 4 ...Flow control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 焼成用バーナに霧化用1次、燃焼用2次およ
び燃焼および冷却用3次空気をそれぞれの供給管
に設けた流量制御弁V2,V3およびV4により制御
して供給し、これらの流量制御弁V2〜V4を温度
プログラマーにより制御する燃焼および冷却制御
系において、3次空気流量制御弁V4の弁開度お
よび流量が1次および2次空気流量制御弁V2
よびV3の弁開度および流量と逆になるよう前記
空気流量制御弁V1〜V4を共通のアクチユエータ
に連結して制御することを特徴とする焼成炉等の
燃焼および冷却制御系。
1. Primary air for atomization, secondary air for combustion, and tertiary air for combustion and cooling are controlled and supplied to the firing burner by flow control valves V 2 , V 3 and V 4 provided in the respective supply pipes. In a combustion and cooling control system where the flow rate control valves V 2 to V 4 are controlled by a temperature programmer, the valve opening degree and flow rate of the tertiary air flow control valve V 4 are the same as those of the primary and secondary air flow control valves V 2 and V. A combustion and cooling control system for a firing furnace, etc., characterized in that the air flow rate control valves V 1 to V 4 are connected to a common actuator and controlled so that the opening degree and flow rate are opposite to those of No. 3 .
JP27329688A 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace Granted JPH02122111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27329688A JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27329688A JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Publications (2)

Publication Number Publication Date
JPH02122111A JPH02122111A (en) 1990-05-09
JPH0449007B2 true JPH0449007B2 (en) 1992-08-10

Family

ID=17525878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27329688A Granted JPH02122111A (en) 1988-10-31 1988-10-31 Combustion and cooling control system for firing furnace

Country Status (1)

Country Link
JP (1) JPH02122111A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552212U (en) * 1991-12-25 1993-07-13 株式会社丸山製作所 Exhaust silencer
JP7046459B2 (en) * 2019-11-15 2022-04-04 中外炉工業株式会社 Burner equipment and heat treatment equipment

Also Published As

Publication number Publication date
JPH02122111A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
US3600149A (en) Temperature control system for a glass tank forehearth
JP2008232501A (en) Air-fuel ratio control system for combustion heating furnace
JPH0449007B2 (en)
JP5519961B2 (en) Fuel air supply ratio control device
CN203550639U (en) Full-automatic control system of shuttle kiln
JP3091810B2 (en) Water heater
JP2016121851A (en) Linked hot water system
JPH09101026A (en) Combustion control system for baking furnace
JPH05248631A (en) Method for controlling furnace temperature
JPH0740834Y2 (en) Furnace atmosphere temperature control device
JPS6157969B2 (en)
US3469780A (en) Automatic temperature control
JPH0512616B2 (en)
JPH05187629A (en) Controlling method of furnace temperature
JP2635676B2 (en) Boiler burner air register opening control method
JP3078075B2 (en) Shuttle kiln
JPH0755347A (en) Burning furnace
JP2564698B2 (en) Temperature rising operation method of baking oven
SU1099205A1 (en) Automatic control system of rotary furnace aerodynamic conditions
JPH0674441A (en) Fuel-air ratio controller for burner
JPS5824924Y2 (en) Heating cover - Combustion control device for mobile furnace
JP3677797B2 (en) Heating chamber pressure control device for heating device
JPH058328B2 (en)
JPS5727302A (en) Control method for fan
JPS61250450A (en) Tap-controlled water heater