JPS6121298B2 - - Google Patents

Info

Publication number
JPS6121298B2
JPS6121298B2 JP56126284A JP12628481A JPS6121298B2 JP S6121298 B2 JPS6121298 B2 JP S6121298B2 JP 56126284 A JP56126284 A JP 56126284A JP 12628481 A JP12628481 A JP 12628481A JP S6121298 B2 JPS6121298 B2 JP S6121298B2
Authority
JP
Japan
Prior art keywords
steel
steels
spring
resistance
sup7
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56126284A
Other languages
Japanese (ja)
Other versions
JPS5827958A (en
Inventor
Toshiro Yamamoto
Ryohei Kobayashi
Mamoru Kurimoto
Toshio Kosone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP12628481A priority Critical patent/JPS5827958A/en
Publication of JPS5827958A publication Critical patent/JPS5827958A/en
Publication of JPS6121298B2 publication Critical patent/JPS6121298B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐へたり性のすぐれたばね用鋼に関す
るものである。 従来、自動車等の懸架装置に用いられるばね用
鋼としてはSUP6,SUP9が主なものであつた。近
年自動車の軽量化が要請され、懸架装置自体の軽
量化も強く求められるようになつてきた。これに
対して、懸架装置全般にわたつて各種の手段が試
みられているが、その中でもばねの設計応力を上
昇させる手段が効果的とされている。このように
高応力設計にともない、従来の上記ばね用鋼を素
材としばねを製作した場合、へたりが増大すると
いう問題が発生した。特に乗用車に用いた場合へ
たりの増大はバンパ高さの低下につながり安全上
大きな問題となつた。そこで、各種の研究がなさ
れた結果、ばね用鋼中のSi含有量を増加させると
耐へたり性が向上するということを見い出し近
時、SUP6よりもさらにSi含有量が多く、
JISG4801に規定されるばね用鋼中では最も高Si
のSUP7が乗用車懸架ばね用鋼として広く使用さ
れるに至つている。 しかるに、懸架ばねの軽量化に対する要求は厳
しいものがあり、SUP7よりもさらに耐へたり性
のすぐれたばね用鋼の開発が強く望まれていた。 本発明はこのような背景の下に、本発明者等が
研究を重ねた結果、高Siばね用鋼に適量のW,
Taを1種ないし2種あるいはそれにさらにV,
あるいはV,Nb、あるいはさらにAlあるいは
Al,Tiを添加することにより、SUP7よりも耐へ
たり性が優れ、かつ、ばね用鋼として必要な耐疲
労性、靭性についてもSUP7と同等の性能を有す
るばね用鋼を開発したものである。 W,Ta及びV,Nbは鋼中において炭化物を形
成し、これらの合金炭化物は焼入れ時の加熱に際
して、オーステナイト中に溶解する。これを急冷
して焼入するとこれら元素を過飽和に固溶したマ
ルテンサイトが得られる。これを焼もどしすると
その過程で微細な合金炭化物が再析出を始め、こ
れが鋼中において転位の動きを阻止し、二次硬化
を生じ、W,Ta及びJ,Nbを添加しないばね用
鋼よりも硬さを上昇させ、さらに耐へたり性を向
上させる働きをする。 またAl,Tiは鋼中において、多くの場合Nと
結合して合金窒化物を形成し、オーステナイト結
晶粒を微細化するとともに、その粗大化を防止す
る。このように微細化した結晶粒は転位の移動量
を少なくすることにより耐へたり性を向上させ
る。 また、前述のように二次硬化を生じるというこ
とは、同一焼もどし硬さ範囲を狙う場合、従来鋼
に比較して焼もどし温度範囲をより広い範囲とす
ることが可能であり、狙いの硬さが安定して得ら
れることになる。このことをさらに明らかにする
ため、後述の0.81%のWを含有させたA1鋼、0.31
%のTaを含有させたA鋼、0.45%のWと0.20%
のTaを含有させたA3鋼とSUP7であるB1鋼とを
300〜650℃の間でも焼もどしを行ない、その硬さ
を測定した結果を第1図に示した。WとTaを適
宜に含有させたA1〜A3鋼の本発明鋼は第1図か
ら明らかなように硬さに対応する焼もどし温度範
囲は従来鋼に比べ広いことが認められると同時
に、2次硬化の生起を示す硬さの上昇が550℃の
焼もどし温度で見られる。 また0.64%のWと0.058%のAlを添加したA8
鋼、0.59%のWと0.071%のAlと0.05%のTiを添
加したA9鋼、0.25%のTa、0.058%のAl、0.06%
のTiを添加したA10鋼、0.22%のTaと0.067%の
Alを添加したA11鋼と従来鋼でSUP7のB1鋼につ
いて実施した酸化法によるオーステナイト結晶粒
度の測定結果を第2図に示す。第2図から明らか
なように結晶粒の微細化元素であるAl,Tiを添
加することにより、従来鋼のSUP7に比べ、粒度
番号で約3程度結晶粒が微細化することがわか
る。 本発明鋼の化学組織は、C0.50〜0.80%,
Si1.50〜2.50%,Mn0.50〜1.50%を含有し、さら
にW0.05〜1.0%,Ta0.05〜0.50%のうち1種ない
し2種を含有し、使用目的によつてはさらに
V0.05〜0.50%あるいはV0.05〜0.50%,Nb0.05〜
0.50%,あるいはさらにAl0.03〜0.10%あるいは
Al0.03〜0.10%、Ti0.02〜0.10%を含有し、残り
実質的にFeよりなるものである。 以下に本発明鋼の成分限定理由について説明す
る。 C量を0.50〜0.80%としたのは、0.50%以下で
は焼入れ、焼もどしにより高応力ばね用鋼として
十分な強度が得られないためであり、0.80%を越
えて含有させると過共析鋼となり靭性の低下が著
しくなるためである。 Si量を1.50〜2.50%としたのは、1.50%以下で
はSiの有するフエライト中に固溶することにより
素地の強度を上げ、耐へたり性を改善するという
効果が十分に得られないためであり、2.50%を越
えて含有させても耐へたり性向上の効果が飽和
し、かつ、熱処理により遊離炭素を生じる恐れが
あるためである。 Mn量を0.50〜1.50%としたのは、0.50%以下で
はばね用鋼としての強度が不足し、さらに焼入性
の点でも不十分であるためであり、1.50%を越え
て含有させると靭性を阻害するためである。 W,Ta及びV,Nbはいずれも本発明鋼におい
ては耐へたり性を改善する元素である。 このような働きをするTa及びV,Nb,の含有
量を0.05〜0.50%とし、Wの含有量を0.05〜1.00
%としたのは、0.05%以下では上記の効果が十分
に得られないためであり、Ta及びV,Nb,につ
いては0.50%、Wについては1.00%を越えて含有
させてもその効果が飽和し、かつ、オーステナイ
ト中に溶解されない合金炭化物量が増加し、大き
な塊となることにより非金属介在物的な作用が働
いて鋼の疲労強度を低下させる恐れがあるためで
ある。 これらのW,Ta及びV,Nb,それぞれを単独
で添加するほかに、2種ないし3種を複合添加す
ることより、それらを単独で添加した場合に比
べ、より低い温度でオーステナイト中への溶解を
開始させ、また焼もどし過程において微細な合金
炭化物の析出は、二次硬化をより促進させること
により耐へたり性をさらに向上させるものであ
る。 また、結晶粒を微細化して耐へたり性を向上さ
せるAl,Ti,の含有量をAlについては、0.03〜
0.10%、Tiについては0.02〜0.10%としたのは、
それ以下でこれらの窒化物の分布が疎らで結晶粒
の微細化に寄与しないからであり、0.10%を越え
て含有させると熱間圧延時に割れを発生したり、
非金属介在物として鋼の靭性を劣化させる恐れが
あるためである。 つぎに本発明の特徴を従来鋼と比べ実施例でも
つて明らかにする。 第1表は、これらの供試鋼の化学成分を示すも
のである。
The present invention relates to a spring steel with excellent resistance to fatigue. Conventionally, SUP6 and SUP9 have been the main spring steels used in suspension systems for automobiles and the like. In recent years, there has been a demand for lighter automobiles, and there has also been a strong demand for lighter suspension systems themselves. In response to this problem, various measures have been attempted for suspension systems in general, and among them, a measure of increasing the design stress of the spring is considered to be effective. As described above, with the high stress design, when a spring is manufactured using the above-mentioned conventional spring steel as a material, a problem arises in that the sag increases. Particularly when used in passenger cars, increased sag leads to a reduction in bumper height, posing a major safety problem. As a result of various studies, it was discovered that increasing the Si content in spring steel improves the fatigue resistance.
Highest Si among spring steels specified in JISG4801
SUP7 has come to be widely used as a steel for passenger car suspension springs. However, there are strict requirements for reducing the weight of suspension springs, and there has been a strong desire to develop a steel for springs that is even more resistant to fatigue than SUP7. Against this background, the present invention was developed as a result of repeated research by the present inventors, and was developed by adding an appropriate amount of W to high-Si spring steel.
One or two Ta or more V,
Or V, Nb, or even Al or
By adding Al and Ti, we have developed a spring steel that has better fatigue resistance than SUP7, and also has the same performance as SUP7 in terms of fatigue resistance and toughness required for spring steel. . W, Ta, V, and Nb form carbides in steel, and these alloy carbides dissolve into austenite during heating during quenching. When this is rapidly cooled and quenched, martensite containing these elements in a supersaturated solid solution is obtained. When this is tempered, fine alloy carbides begin to re-precipitate during the process, which prevents the movement of dislocations in the steel and causes secondary hardening, making it stronger than spring steel without the addition of W, Ta, J, or Nb. It works to increase hardness and further improve resistance to settling. In addition, Al and Ti often combine with N to form alloy nitrides in steel, thereby refining austenite crystal grains and preventing them from becoming coarser. The crystal grains refined in this manner improve the resistance to settling by reducing the amount of movement of dislocations. In addition, the fact that secondary hardening occurs as mentioned above means that when aiming for the same tempering hardness range, it is possible to set the tempering temperature range to a wider range compared to conventional steel, and the desired hardness can be achieved. This means that a stable amount of energy can be obtained. In order to clarify this further, A1 steel containing 0.81% W, 0.31
A steel containing % Ta, 0.45% W and 0.20%
A 3 steel containing Ta and B 1 steel which is SUP7
Tempering was also performed at temperatures between 300 and 650°C, and the hardness was measured. The results are shown in Figure 1. As is clear from Fig. 1, the steels of the present invention, which are A1 to A3 steels containing W and Ta appropriately, have a wider tempering temperature range corresponding to hardness than conventional steels. An increase in hardness indicating the occurrence of secondary hardening is seen at a tempering temperature of 550°C. A 8 which also added 0.64% W and 0.058% Al
Steel, A9 steel with addition of 0.59% W and 0.071% Al and 0.05% Ti, 0.25% Ta, 0.058% Al, 0.06%
A 10 steel with addition of Ti, 0.22% Ta and 0.067%
Figure 2 shows the results of measuring austenite grain size using the oxidation method on A 11 steel with Al added and conventional steel SUP7 B 1 steel. As is clear from Fig. 2, by adding Al and Ti, which are grain refining elements, the grain size becomes finer by about 3 compared to the conventional steel SUP7. The chemical structure of the steel of the present invention is C0.50~0.80%,
Contains 1.50 to 2.50% Si, 0.50 to 1.50% Mn, and further contains one or two of W0.05 to 1.0% and Ta 0.05 to 0.50%.
V0.05~0.50% or V0.05~0.50%, Nb0.05~
0.50%, or even Al0.03~0.10% or
It contains 0.03 to 0.10% Al, 0.02 to 0.10% Ti, and the remainder essentially consists of Fe. The reasons for limiting the composition of the steel of the present invention will be explained below. The reason why the C content is set at 0.50 to 0.80% is that if it is less than 0.50%, sufficient strength cannot be obtained as a steel for high stress springs through quenching and tempering. This is because the decrease in toughness becomes significant. The reason why the amount of Si is set at 1.50 to 2.50% is because if it is less than 1.50%, the effect of increasing the strength of the base material and improving the resistance to settling cannot be obtained sufficiently by solid solution of Si in the ferrite. This is because even if the content exceeds 2.50%, the effect of improving the resistance to settling is saturated, and there is a risk that free carbon may be generated by heat treatment. The reason for setting the Mn content to 0.50 to 1.50% is that if it is less than 0.50%, the strength as a spring steel is insufficient, and the hardenability is also insufficient.If the Mn content exceeds 1.50%, the toughness This is to inhibit the W, Ta, V, and Nb are all elements that improve the sag resistance in the steel of the present invention. The content of Ta, V, and Nb, which function in this way, is set to 0.05 to 0.50%, and the content of W is set to 0.05 to 1.00%.
% because the above effects cannot be obtained sufficiently if the content is less than 0.05%, and even if the content exceeds 0.50% for Ta, V, and Nb, and 1.00% for W, the effect is saturated. In addition, the amount of alloy carbides that are not dissolved in the austenite increases and becomes large lumps, which may act like nonmetallic inclusions and reduce the fatigue strength of the steel. In addition to adding W, Ta, V, and Nb individually, by adding two or three of them in combination, they can be dissolved into austenite at a lower temperature than when they are added alone. In addition, the precipitation of fine alloy carbides during the tempering process promotes secondary hardening and further improves the set resistance. In addition, the content of Al and Ti, which refine crystal grains and improve resistance to settling, is 0.03 to 0.03 for Al.
0.10% and 0.02 to 0.10% for Ti.
This is because if the content is less than 0.10%, the distribution of these nitrides will be sparse and they will not contribute to grain refinement.If the content exceeds 0.10%, cracks may occur during hot rolling.
This is because nonmetallic inclusions may deteriorate the toughness of steel. Next, the features of the present invention will be clarified through examples in comparison with conventional steel. Table 1 shows the chemical composition of these test steels.

【表】 第1表においてA1〜A17は本発明鋼で、B1は
従来鋼でSUP7である。 これらは、いずれも鋳造後、圧延比50以上で熱
間圧延を施して供試材とした。 本発明鋼の耐へたり特性をみるために前記供試
鋼を素材として第2表に示す諸元を有するコイル
バネを成形し、最終硬さがHRC45〜55となるよ
うに焼入・焼もどし処理を行なつた後、素線の剪
断応力τ=115Kg/mm2となるようにセツチングを
加えてへたり試験を作製した。そしてこの試験片
を20℃の一定温度で、素線の剪断応力τ=105
Kg/mm2となる荷重を加え、96時間経過(以下、こ
れを長期荷重という)した後のコイルばねのへた
り量を測定した。
[Table] In Table 1, A1 to A17 are the steels of the present invention, and B1 is the conventional steel SUP7. After casting, these were all hot-rolled at a rolling ratio of 50 or more to obtain test materials. In order to examine the fatigue resistance properties of the steel of the present invention, a coil spring having the specifications shown in Table 2 was formed using the above-mentioned test steel as a raw material, and was quenched and tempered to have a final hardness of HRC45 to 55. After performing this, setting was added so that the shear stress of the wire was τ = 115 Kg/mm 2 to prepare a fatigue test. Then, this test piece was heated at a constant temperature of 20℃, and the shear stress of the strand τ = 105
A load of Kg/mm 2 was applied, and the amount of fatigue of the coil spring was measured after 96 hours (hereinafter referred to as long-term load).

【表】 そして、上記試験片の硬さに対するへたり量を
第3〜7図に示した。第3〜7図より明らかなよ
うに、本発明鋼である実質的にSUP7にW,Taを
1種ないし2種添加したA1〜A3鋼(第3図)
SUP7にW,Taを1種ないし2種添加し、さらに
VあるいはV,Nbを添加したA4〜A7鋼(第4
図)、SUP7にW,Taを1種ないし2種添加し、
さらにAlあるいはAl,Tiを添加したA8〜A11鋼
(第5図)、SUP7にW,Taを1種ないし2種と、
さらにVあるいはV,Nbと、さらにAlあるいは
Al,Tiを添加したA12〜A15鋼(第6図)、いず
れにおいても従来鋼で実質的にSUP7であるB1鋼
に比べて本発明鋼は優れた耐へたり性を有してい
ることが認められる。 また、本発明鋼のなかでも析出強化元素である
W,Ta,V,Nb等を単独で添加したものよりも
それらを複合添加したもの、さらに結晶粒の微細
化元素であるAl,Ti等を添加した鋼の方がより
優れた耐へたり性を有していることが分かる。な
お、へたり量は前記長期荷重を加える前にコイル
ばねを一定の高さまで圧縮するに要した荷重P1
と、前記長期荷重を加えた後に同一の高さまで圧
縮するに要した荷重P2とを測定し、その差△P
(=P1−P2)より次式を用いて算出したもので、剪
断ひずみの単位を有し、残留剪断ひずみと称する
値をもつて評価した。 γR=1/G・K8D/πd△P G;横弾性率(Kgf/mm) D;コイル中心径(mm) d;素線径(mm) K;ワールの修正係数(コイルばねの形状によ
り定まる定数) また本発明鋼のA1〜A17鋼、B1鋼について前
記と同じ諸元を有するコイルバネ素線に、剪断応
力が10〜110Kgf/mm2と変動する負荷を繰返し与
え疲労試験を行つた結果、いづれのコイルばねも
20万回繰り返しをしても折損しなかつた。 上述の如く本発明鋼は従来の高Siばね用鋼に適
量のW,Taを単独あるいは複合して添加させさ
らにV,Nb,を単独あるいは複合して添加さ
せ、あるいはまたさらにAl,Ti,を単独あるい
は複合して添加させることにより、従来の高Siば
ね用鋼のすぐれた耐へたり性をさらに改善するこ
とに成功したもので、かつ、ばね用鋼として必要
な耐疲労性、靭性についても従来鋼と比べそん色
のないもので、特に乗用車懸架ばね用鋼として極
めて高い実用性を有するものである。
[Table] Figures 3 to 7 show the amount of set in relation to the hardness of the test pieces. As is clear from Figs. 3 to 7, A 1 to A 3 steels (Fig. 3) are obtained by adding one or two types of W and Ta to SUP7, which is the steel of the present invention.
A4 to A7 steel (No. 4
Figure), one or two types of W and Ta are added to SUP7,
Furthermore, A8 to A11 steels with Al or Al and Ti added (Fig. 5), SUP7 with one or two types of W and Ta,
Furthermore, V or V, Nb, and further Al or
In all of the A12 to A15 steels containing Al and Ti (Fig. 6), the steel of the present invention has superior sag resistance compared to the conventional B1 steel, which is essentially SUP7. Is recognized. In addition, among the steels of the present invention, those with precipitation-strengthening elements such as W, Ta, V, and Nb added in combination rather than those added alone, and those with additions of precipitation-strengthening elements such as Al, Ti, etc. It can be seen that the added steel has better resistance to settling. The amount of setback is the load P 1 required to compress the coil spring to a certain height before applying the long-term load.
and the load P2 required to compress to the same height after applying the long-term load, and calculate the difference △P
(=P 1 −P 2 ) using the following formula, and has a unit of shear strain, and was evaluated using a value called residual shear strain. γR=1/G・K8D/πd 3 △PG G: Transverse elastic modulus (Kgf/mm) D: Coil center diameter (mm) d: Wire diameter (mm) K: Whirl correction coefficient (depending on the shape of the coil spring) Also, the results of a fatigue test in which a load with varying shear stress of 10 to 110 kgf/mm 2 was repeatedly applied to coil spring wires having the same specifications as above for A1 to A17 steels and B1 steels of the steels of the present invention. , any coil spring
It did not break even after being repeated 200,000 times. As mentioned above, the steel of the present invention is made by adding appropriate amounts of W and Ta, singly or in combination, to conventional high-Si spring steels, adding V, Nb, singly or in combination, or further adding Al, Ti, etc. By adding it alone or in combination, we succeeded in further improving the excellent fatigue resistance of conventional high-Si spring steels, and also improved the fatigue resistance and toughness required for spring steels. It is comparable to conventional steels and has extremely high practicality, especially as a steel for passenger car suspension springs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼と従来鋼について焼入れ後、
300〜650℃の間で焼もどしを行い、その硬さを示
した線図で、第2図は本発明鋼と従来鋼において
850〜1100℃の間の各オーステナイト化温度にお
けるオーステナイト結晶粒度を酸化法によつて測
定した結果を示した線図、第3〜第7図は本発明
鋼と従来鋼の焼入・焼もどし処理後HRC45〜55
の硬さの試験片のへたり量を示した線図である。
Figure 1 shows the inventive steel and conventional steel after quenching.
Figure 2 is a diagram showing the hardness of the steel after tempering between 300 and 650℃.
Diagrams showing the results of measuring the austenite grain size by oxidation method at various austenitizing temperatures between 850 and 1100°C. Figures 3 to 7 show the results of quenching and tempering of the inventive steel and conventional steel. After HRC45~55
FIG.

Claims (1)

【特許請求の範囲】 1 重量比にしてC0.50〜0.80%、Si1.50〜2.50
%、Mn0.50〜1.50%と、W0.05〜1.00%、Ta0.05
〜0.50%のうち1種ないし2種を含有し、残り実
質的にFeよりなることを特徴とする耐へたり性
の優れたばね用鋼。 2 重量比にしてC0.50〜0.80%、Si1.50〜2.50
%、Mn0.50〜1.50%と、W0.05〜1.00%、Ta0.05
〜0.50%のうち1種ないし2種を含有し、さらに
V0.05〜0.50%あるいはV0.05〜0.50%、Nb0.05〜
0.50%を含有し、残り実質的にFeよりなること
を特徴とする耐へたり性の優れたばね用鋼。 3 重量比にしてC0.50〜0.80%、Si1.50〜2.50
%、Mn0.50〜1.50%と、W0.05〜1.00%、Ta0.05
〜0.50%のうち1種ないし2種を含有し、さらに
Al0.03〜0.10%あるいはAl0.03〜0.10%、Ti0.02
〜0.10%を含有し、残り実質的にFeよりなるこ
とを特徴とする耐へたり性の優れたばね用鋼。 4 重量比にしてC0.50〜0.80%、Si1.50〜2.50
%、Mn0.50〜1.50%と、W0.05〜1.00%、Ta0.05
〜0.50%のうち1種ないし2種と、V0.05〜0.50
%あるいはV0.05〜0.50%、Nb0.05〜0.50%と、
さらにAl0.03〜0.10%あるいはAl0.03〜0.10%、
Ti0.02〜0.10%を含有し、残り実質的にFeよりな
ることを特徴とする耐へたり性の優れたばね用
鋼。
[Claims] 1. C0.50-0.80%, Si1.50-2.50 in terms of weight ratio
%, Mn0.50~1.50%, W0.05~1.00%, Ta0.05
1. A spring steel with excellent fatigue resistance, characterized in that it contains one or two of ~0.50%, with the remainder essentially consisting of Fe. 2 C0.50~0.80%, Si1.50~2.50 by weight
%, Mn0.50~1.50%, W0.05~1.00%, Ta0.05
Contains one or two of ~0.50%, and
V0.05~0.50% or V0.05~0.50%, Nb0.05~
A spring steel with excellent fatigue resistance characterized by containing 0.50% Fe with the remainder essentially consisting of Fe. 3 C0.50~0.80%, Si1.50~2.50 by weight
%, Mn0.50~1.50%, W0.05~1.00%, Ta0.05
Contains one or two of ~0.50%, and
Al0.03~0.10% or Al0.03~0.10%, Ti0.02
A spring steel with excellent fatigue resistance characterized by containing up to 0.10% Fe, with the remainder essentially consisting of Fe. 4 C0.50~0.80%, Si1.50~2.50 by weight
%, Mn0.50~1.50%, W0.05~1.00%, Ta0.05
1 or 2 of ~0.50% and V0.05~0.50
% or V0.05~0.50%, Nb0.05~0.50%,
Furthermore, Al0.03~0.10% or Al0.03~0.10%,
A spring steel with excellent fatigue resistance, characterized by containing 0.02 to 0.10% Ti, with the remainder substantially consisting of Fe.
JP12628481A 1981-08-11 1981-08-11 Spring steel with superior yielding resistance Granted JPS5827958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12628481A JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12628481A JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Publications (2)

Publication Number Publication Date
JPS5827958A JPS5827958A (en) 1983-02-18
JPS6121298B2 true JPS6121298B2 (en) 1986-05-26

Family

ID=14931401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12628481A Granted JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Country Status (1)

Country Link
JP (1) JPS5827958A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128152A (en) * 1986-11-18 1988-05-31 Kobe Steel Ltd Spring steel having superior settling fatigue resistance
US5453139A (en) * 1990-10-24 1995-09-26 Consolidated Metal Products, Inc. Method of making cold formed high-strength steel parts
US5538566A (en) * 1990-10-24 1996-07-23 Consolidated Metal Products, Inc. Warm forming high strength steel parts
US5496425A (en) * 1990-10-24 1996-03-05 Consolidated Metal Products, Inc. Cold formed high-strength steel structural members
US5454888A (en) * 1990-10-24 1995-10-03 Consolidated Metal Products, Inc. Warm forming high-strength steel structural members
US5704998A (en) * 1990-10-24 1998-01-06 Consolidated Metal Products, Inc. Hot rolling high-strength steel structural members
US6325874B1 (en) 1999-12-03 2001-12-04 Consolidated Metal Products, Inc. Cold forming flat-rolled high-strength steel blanks into structural members
US6852181B2 (en) 2001-10-23 2005-02-08 Consolidated Metal Products, Inc. Flattened U-bolt and method
CN111690875B (en) * 2020-06-29 2021-12-14 马鞍山钢铁股份有限公司 Spring steel with good heat-resistant and impact-resistant properties and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127422A (en) * 1976-04-19 1977-10-26 Kobe Steel Ltd Spring steel with high fatigue resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127422A (en) * 1976-04-19 1977-10-26 Kobe Steel Ltd Spring steel with high fatigue resistance

Also Published As

Publication number Publication date
JPS5827958A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
US4770721A (en) Process of treating steel for a vehicle suspension spring to improve sag-resistance
EP3640357A1 (en) Rolled wire for spring steel
US4544406A (en) Spring steel having a good sag-resistance and a good hardenability
US4448617A (en) Steel for a vehicle suspension spring having good sag-resistance
EP2746420B1 (en) Spring steel and spring
EP3885462A1 (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method therefor
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPS5941502B2 (en) Spring steel with excellent fatigue resistance
JPS6121298B2 (en)
JPS6237108B2 (en)
JPS6237109B2 (en)
JPS6338419B2 (en)
JPS6041686B2 (en) Manufacturing method for spring steel with excellent fatigue resistance
JPS6237110B2 (en)
US4711675A (en) Process for improving the sag-resistance and hardenability of a spring steel
JP2505235B2 (en) High strength spring steel
JPH0314898B2 (en)
JP3718369B2 (en) Steel for high strength bolt and method for producing high strength bolt
JPH036981B2 (en)
JPS6130653A (en) High strength spring steel
JPS6041699B2 (en) Spring steel with excellent hardenability and fatigue resistance
JP2860789B2 (en) Spring steel with excellent hardenability and durability
JPH0576522B2 (en)
GB2112810A (en) Steels for vehicle suspension springs
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance