JPS5941502B2 - Spring steel with excellent fatigue resistance - Google Patents

Spring steel with excellent fatigue resistance

Info

Publication number
JPS5941502B2
JPS5941502B2 JP10802080A JP10802080A JPS5941502B2 JP S5941502 B2 JPS5941502 B2 JP S5941502B2 JP 10802080 A JP10802080 A JP 10802080A JP 10802080 A JP10802080 A JP 10802080A JP S5941502 B2 JPS5941502 B2 JP S5941502B2
Authority
JP
Japan
Prior art keywords
steel
steels
present
spring
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10802080A
Other languages
Japanese (ja)
Other versions
JPS5732353A (en
Inventor
俊郎 山本
良平 小林
衛 栗本
敏夫 小曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP10802080A priority Critical patent/JPS5941502B2/en
Priority to US06/289,852 priority patent/US4448617A/en
Priority to DE19813130914 priority patent/DE3130914A1/en
Publication of JPS5732353A publication Critical patent/JPS5732353A/en
Priority to US06/585,479 priority patent/US4574016A/en
Publication of JPS5941502B2 publication Critical patent/JPS5941502B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は、耐へたり性のすぐれたばね用銅に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to copper for springs having excellent resistance to fatigue.

従来、自動車等の懸架装置に用いられるばね用銅とし
てはSUP6、SUP9が主なものであった。
Conventionally, SUP6 and SUP9 have been the main spring copper used in suspension systems for automobiles and the like.

近年自動車の軽量化が要請され、懸架装置自体の軽量化
も強く求められるようになってきた。これに対して、懸
架装置全般にわたって各種の手段が試みられているが、
その中でもばねの設計応力を上昇させる手段が効果的と
されている。このように高応力設計にともない、従来の
上記はね用銅を素材としばねを製作した場合、へたりが
増大するという問題が発生した。特に乗用車に用いた場
合へたりの増大はバンパ高さの低下につながり安全上人
きな問題となった。そこで、各種の研究がなされた結果
、ばね用鋼中のSi含有量を増加させると酬へたり性が
向上するということを見い出し近時、SUP6よりもさ
らにSi含有量が多く、JISG4801に規定される
ばね用鋼中では最も高SiのSUP7が乗用車懸架ばね
用銅として広く使用されるに至っている。 しかるに、
懸架ばねの軽量化に対する要求は厳しいものがあり、S
UP7よりもさらに耐へたり性のすぐれたばね用銅の開
発が強く望まれていた。
In recent years, there has been a demand for lighter automobiles, and there has also been a strong demand for lighter suspension systems themselves. To deal with this, various methods have been tried for suspension systems in general, but
Among them, means to increase the design stress of the spring are considered to be effective. As described above, with the high stress design, when a spring is manufactured using the above-mentioned conventional spring material, a problem arises in that the set-off increases. Particularly when used in passenger cars, increased sag leads to a reduction in bumper height, posing a serious safety problem. As a result of various studies, it was discovered that increasing the Si content in spring steel improves the fatigue properties. Among the steels for springs, SUP7, which has the highest Si content, has come to be widely used as copper for suspension springs for passenger cars. However,
There are strict requirements for reducing the weight of suspension springs, and S
There has been a strong desire to develop copper for springs that is even more resistant to fatigue than UP7.

本発明はこのような背景の下に、本発明者等が研究を
重ねた結果、高Siばね用銅に適量のV、Nb、Moを
1種ないし2種以上添加することにより、SUP7より
も耐へたり性がすぐれ、かつ、ばね用銅として必要な耐
疲労性、靭性についてもSUP7と同等の性能を有する
ばね用銅を開発したものである。 V、Nb、Moは鋼
中において炭化物を形成し、このバナジウム・カーバイ
ト、ニオブ・カーバイトおよびモリブデン・カーバイト
(以下、合金炭化物という)は焼入れ時の加熱に際して
、オーステナイト中に溶解する。
Against this background, as a result of repeated research by the present inventors, the present invention has been developed by adding appropriate amounts of one or more of V, Nb, and Mo to copper for high-Si springs. We have developed copper for springs that has excellent fatigue resistance and also has the same performance as SUP7 in terms of fatigue resistance and toughness required for copper for springs. V, Nb, and Mo form carbides in steel, and vanadium carbide, niobium carbide, and molybdenum carbide (hereinafter referred to as alloy carbides) are dissolved in austenite during heating during quenching.

これを急冷して焼入れするとこれら元素を過飽和に固溶
したマルテンサイトが得られる。これを焼もどしすると
その過程で微細な合金炭化物が再析出を始め、これが鋼
中において転位の動きを阻止し、二次硬化を生じ、V、
Nb、Moを添加しないばね用銅よりも硬さを上昇させ
、さらに耐へたり性を向上させる働きをする。また、焼
入れ時の加熱においてオーステナイト中に溶解されない
合金炭化物は、オーステナイト結晶粒を微細化するとと
もにその粗大化を防止し得る。また、このような微細な
結晶粒は転位の移動量を少なくすることにより耐へたり
性を向上させる。また、前述のように二次硬化を生じる
ということは、同一焼もどし硬さ範囲を狙う場合、従来
鋼に比較して焼もどし温度範囲をより広い範囲とするこ
とが可能であり、狙いの硬さが安定して得られることに
なる。
When this is rapidly cooled and quenched, martensite containing these elements in a supersaturated solid solution is obtained. When this is tempered, fine alloy carbides begin to re-precipitate during the process, which blocks the movement of dislocations in the steel and causes secondary hardening, resulting in V,
It works to increase the hardness compared to copper for springs that does not contain Nb or Mo, and also improves the resistance to fatigue. In addition, alloy carbides that are not dissolved in austenite during heating during quenching can refine austenite crystal grains and prevent them from becoming coarser. Moreover, such fine crystal grains improve the resistance to settling by reducing the amount of movement of dislocations. In addition, the fact that secondary hardening occurs as mentioned above means that when aiming for the same tempering hardness range, it is possible to set the tempering temperature range to a wider range compared to conventional steel, and the desired hardness can be achieved. This means that a stable amount of energy can be obtained.

このことを、さらに明らかにするため後述の0.20%
のVを含有させたA2鋼、0.25係のVと、0.22
係のNbを含有させたA6鋼、0.23%のV、0.2
1%(7)Nb、0.22係のMOを含有させたA9と
SUP7であるBl鋼とを300〜600℃の間で焼も
どしを行い、その硬さを測定した結果を第1図に示した
。なお、同図には自動車規格JASO72ll「自動車
懸架コイルはね」中に規定されているばねの硬さ範囲H
B4l5〜495に相当する範囲を併示した。V,Nb
,MOを適宜に含有させたA2鋼、A6鋼、A9鋼の本
発明鋼は第1図から明らかなように硬さに対応する焼も
どし温度範囲は従来鋼に比べ広いことが認められる。つ
ぎに、上記のA2鋼、A6鋼、A9鋼と、Bl鋼の焼入
れ性を第2図に示す。
To clarify this further, the 0.20%
A2 steel containing V of 0.25, V of 0.22
A6 steel containing Nb, 0.23% V, 0.2
Figure 1 shows the results of tempering A9 and SUP7 Bl steel containing 1% (7) Nb and 0.22% MO at 300 to 600°C and measuring their hardness. Indicated. The figure also shows the spring hardness range H specified in the automobile standard JASO72ll "Automotive suspension coil springs".
The range corresponding to B4l5-495 is also shown. V,Nb
As is clear from FIG. 1, the tempering temperature range corresponding to hardness of the A2 steel, A6 steel, and A9 steel of the present invention containing appropriate amounts of MO is found to be wider than that of conventional steels. Next, FIG. 2 shows the hardenability of the above-mentioned A2 steel, A6 steel, A9 steel, and Bl steel.

第2図から明らかなように0.22%のMOを含有させ
たA9鋼はA2鋼、A6鋼、Bl鋼に比べてすぐれた焼
入れ性を有していることが分る。本発明鋼の化学組成は
CO.5O〜0.80%、Sil.5O〜2.50%、
MnO.5O〜1.50を含有し、これにVO.O5〜
0.50%、NbO.O5〜0.50係、MOO.O5
〜0.50%のうち1種ないし2種以上を含有し、残り
実質的にFeよりなるものである。
As is clear from FIG. 2, A9 steel containing 0.22% MO has superior hardenability compared to A2 steel, A6 steel, and Bl steel. The chemical composition of the steel of the present invention is CO. 5O~0.80%, Sil. 5O~2.50%,
MnO. 5O to 1.50, and VO. O5~
0.50%, NbO. O5-0.50 section, MOO. O5
-0.50% of one kind or two or more kinds, and the rest consists essentially of Fe.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

C量を0.50〜0.80%としたのは、0.50%以
下では焼入れ、焼もどしにより高応力はね用鋼として十
分な強度が得られないためであり、0.S0係を越えて
含有させると過共析鋼となり靭性の低下が著しくなるた
めである。
The reason why the amount of C is set to 0.50 to 0.80% is because if it is less than 0.50%, sufficient strength as a high stress spring steel cannot be obtained by quenching and tempering. This is because if the content exceeds the S0 coefficient, the steel will become hypereutectoid and the toughness will be significantly lowered.

Si量を1.50〜2,50係としたのは、1.50係
以下ではSiの有するフエライト中に固溶することによ
り素地の強度を上げ、耐へたり性を改善するという効果
が十分に得られないためであり、2.50%を越えて含
有させても耐へたり性向上の効果が飽和し、かつ、熱処
理により遊離炭素を生じる恐れがあるためである。
The reason why the amount of Si is set to 1.50 to 2,50 is that if it is less than 1.50, Si dissolves in the ferrite, which increases the strength of the substrate and improves the resistance to settling. This is because even if the content exceeds 2.50%, the effect of improving the sagging resistance will be saturated, and there is a risk that free carbon will be generated by heat treatment.

Mn量を0.50−1.50%としたのは、0.50係
以下ではばね用鋼としての強度が不足し、さらに焼入性
の点でも不十分であるためであり、1.50係を越えて
含有させると靭性を阻害するためである。
The reason why the Mn content is set to 0.50-1.50% is because if the modulus is less than 0.50, the strength as a spring steel is insufficient, and the hardenability is also insufficient. This is because if the content exceeds the range, the toughness will be impaired.

V,Nb.MOはいずれも本発明鋼においては耐へたり
性を改善する元素である。
V, Nb. Both MOs are elements that improve the sag resistance in the steel of the present invention.

このような働きを奏するV,Nb,MOの含有量をそれ
ぞれ0.05〜0.50係としたのは、0.05係以下
では上記の効果が十分に得られないためであり、0.5
0%を越えて含有させてもその効果が飽和し、かつオー
ステナイト中に溶解されない合金炭化物量が増加し、大
きな塊となることにより非金属介在物的な作用により鋼
の疲労強度を低下させる恐れがあるためである。
The reason why the content of V, Nb, and MO, which have such functions, is set at 0.05 to 0.50 is that the above effects cannot be obtained sufficiently if the content is less than 0.05. 5
Even if the content exceeds 0%, the effect will be saturated, and the amount of alloy carbide that is not dissolved in austenite will increase, forming large lumps, which may reduce the fatigue strength of steel due to the action of nonmetallic inclusions. This is because there is.

これらのV,Nb,MOはそれぞれを単独で添加するほ
かに、2種ないし3種を複合添加することより、V,N
b,MOを単独で添加した場合に比べ、より低い温度で
オーステナイト中への溶解を開始させ、また焼もどし過
程において微細な合金炭化物の析出は、二次硬化をより
促進させることにより耐へたり性をさらに向上させるも
のである。
These V, Nb, and MO can be added individually, or by adding two or three types in combination.
b. Compared to the case where MO is added alone, it starts dissolving into austenite at a lower temperature, and the precipitation of fine alloy carbides during the tempering process promotes secondary hardening, making it more resistant to fatigue. This will further improve the quality of the product.

つぎに本発明鋼の特徴を従来鋼と比べ実施例でもって明
らかにする。第1表は、これらの供試鋼の化学成分を示
すものである。
Next, the characteristics of the steel of the present invention will be clarified through examples in comparison with conventional steel. Table 1 shows the chemical composition of these test steels.

第1表においてA1〜A9鋼は本発明鋼で、B1:B2
鋼は従来鋼でSUP7である。
In Table 1, A1 to A9 steels are steels of the present invention, and B1:B2
The steel is conventional steel and is SUP7.

第2表は鋳造後、圧延比50以上で熱間圧延を施した第
1表の供試鋼を、ほTl8Okgf/Mt?t程度の引
張強さが得られる温度で焼入、焼もどし処理を行い、こ
の時の0.2%耐力、伸び、絞り、衝撃値ねしり強さを
示したものである。
Table 2 shows the test steels shown in Table 1 which were hot rolled at a rolling ratio of 50 or higher after casting, and the test steels were as follows: Tl8Okgf/Mt? The 0.2% proof stress, elongation, reduction of area, and impact value and bending strength are shown after quenching and tempering at a temperature at which a tensile strength of approximately t is obtained.

引張強さ、0,2%耐力、伸び、絞りについては、I8
4号試験片を用いて測定したものであり、衝撃値はJI
83号試験片を用いて測定し、ねじりり強さは平行部9
rn7IL丸の試験片を用いて測定したものである。
For tensile strength, 0.2% proof stress, elongation, and area of area, I8
It was measured using a No. 4 test piece, and the impact value was JI
Measured using a No. 83 test piece, and the torsional strength was measured using a No. 83 test piece.
This was measured using a test piece of rn7IL circle.

第2表により明らかなように本発明鋼であるA1〜A9
鋼は、V,Nb,MOを単独添加したもの、またV,N
b,MOを複合添加したもののいずれも従来鋼であるB
l,B2鋼と同等あるいはそれ以上の値を示し、本発明
鋼についても各供試鋼間での差が殆んど認められない。
As is clear from Table 2, A1 to A9 are the steels of the present invention.
Steels include those containing V, Nb, and MO alone, and those containing V, Nb, and MO.
B and B, which are conventional steels with composite addition of MO.
1, the value is equal to or higher than that of the B2 steel, and almost no difference is observed between the steels tested in the steel of the present invention.

つぎに前記供試鋼を素材として第3表に示す諸元を有す
るコイルばねを成形し、最終硬さHRC45〜55とな
るように焼入、焼もどし処理を行った後、素線の剪断応
力τ二115kg/一となるようにセツチングを加えて
へたり試験片を作製した。
Next, a coil spring having the specifications shown in Table 3 is formed using the above-mentioned test steel as a raw material, and after being quenched and tempered to a final hardness of HRC 45 to 55, the shear stress of the strands is Setting was added so that τ2 was 115 kg/1 to prepare a fatigue test piece.

そしてこの試験片を20℃の一定温度で、素線の剪断応
力τ二105kg/MAとなる荷重を加え、96時間経
過(以下、これを長期荷重という)し夕後のコイルばね
のへたり量を測定した。そして、上記試験片の硬さに対
するへたり量を第3〜6図に示した。
Then, a load was applied to this test piece at a constant temperature of 20°C to give a shear stress τ2 of the wire of 105 kg/MA, and after 96 hours (hereinafter referred to as long-term load), the amount of fatigue of the coil spring was was measured. The amount of set in relation to the hardness of the test piece is shown in FIGS. 3 to 6.

第3〜6図より明らかなように本発明鋼であるV,Nb
,MOを単独で添加したA1〜A5鋼、V,Nb,MO
を複合添加した八6〜A9鋼は、いずれも従来鋼である
Bl鋼に比べすぐれた耐へたり性を有していることが認
められる。そして本発明鋼の中でもV,Nb,MOを複
合添加した鋼は、V,Nb,MOを単独添加した鋼より
さらにすぐれた耐へたり性を有していることが分る。な
お、へたり量は前記長期荷重を加える前にコイルばねを
一定の高さまで圧縮するに要した荷重P1と、前記長期
荷重を加えた後に同一の高さまで圧縮するに要した荷重
P2とを測定し、その差△I)( =P,−P2)より
次式を用いて算出したもので、剪断ひずみの単位を有し
、残留剪断ひずみと秒する値をもって評価した。
As is clear from Figures 3 to 6, V, Nb, which is the steel of the present invention,
, A1 to A5 steels with MO added alone, V, Nb, MO
It is recognized that all of the 86 to A9 steels to which B1 is added in combination have superior sag resistance compared to Bl steel, which is a conventional steel. It can be seen that among the steels of the present invention, the steel to which V, Nb, and MO are added in combination has even better resistance to stagnation than the steel to which V, Nb, and MO are added alone. In addition, the amount of settling is measured by the load P1 required to compress the coil spring to a certain height before applying the long-term load, and the load P2 required to compress the coil spring to the same height after applying the long-term load. It was calculated using the following formula from the difference ΔI) (=P, -P2), which has the unit of shear strain, and was evaluated as a value in seconds of the residual shear strain.

d:素線径<Mm) K:ワールの修正係数(コイルば
ねの形状により定まる定数)また本発明鋼のA1〜A9
鋼、Bl鋼について前記と同じ諸元を有するコイルはね
素線に、剪断応力が10〜110kgf/MAと変動す
る負荷を繰返し与え疲労試験を行った結果、いずれのコ
イルはねも20万回繰り返しをしても折損しなかった。
d: Wire diameter<Mm) K: Whirl correction coefficient (constant determined by the shape of the coil spring) and A1 to A9 of the steel of the present invention
As a result of conducting a fatigue test by repeatedly applying a load varying in shear stress of 10 to 110 kgf/MA to coil spring wires having the same specifications as above for steel and Bl steel, all coil springs were tested 200,000 times. It did not break even after repeated use.

上述の如く本発明鋼は従来の高Siばね用鋼に適量のV
,Nb,MOを単独あるいは複合して添加させることに
より、従来の高Siばね用鋼のすぐれた耐へたり性をさ
らに改善することに成功したものでかつ、ばね用鋼とし
て必要な耐疲労性、靭性についても従来鋼と比べそん色
のないもので、特に乗用車懸架ばね用鋼として極めて高
い実用性を有するものである。
As mentioned above, the steel of the present invention has an appropriate amount of V compared to conventional high-Si spring steel.
, Nb, and MO, either singly or in combination, have succeeded in further improving the excellent fatigue resistance of conventional high-Si spring steels, and have achieved the fatigue resistance necessary for spring steels. In terms of toughness, it is comparable to conventional steels, and has extremely high practicality, especially as a steel for suspension springs for passenger cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼と従来鋼について焼入れ後、300〜
600鋼Cの間で焼もどしを行い、その硬さを示した線
図で、第2図は第1図の鋼について焼入性を示した線図
、第3〜第6図は本発明鋼と従来鋼の焼入、焼もどし処
理後H?C45〜55の硬さの試験片のへたり量を示し
た線図である。
Figure 1 shows the steel of the present invention and the conventional steel after being quenched.
This is a diagram showing the hardness of tempered steel of 600 C. Figure 2 is a diagram showing the hardenability of the steel in Figure 1, and Figures 3 to 6 are diagrams showing the hardness of the steel of the present invention. And H after quenching and tempering of conventional steel? It is a diagram showing the amount of settling of test pieces with hardness of C45 to C55.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比にしてC0.50〜0.8%、Si1.50
〜2.50%、Mn0.50〜1.50%を含有し、さ
らにV0.05〜0.50%、Nb0.05〜0.50
%、Mo0.05〜0.50%のうち1種ないし2種以
上を含有し、残り実質的にFeよりなることを特徴とす
る耐へたり性のすぐれたばね用鋼。
1 C0.50-0.8% by weight, Si1.50
~2.50%, Mn0.50~1.50%, further V0.05~0.50%, Nb0.05~0.50
%, Mo0.05 to 0.50%, and the remainder is substantially Fe.
JP10802080A 1980-08-05 1980-08-05 Spring steel with excellent fatigue resistance Expired JPS5941502B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10802080A JPS5941502B2 (en) 1980-08-05 1980-08-05 Spring steel with excellent fatigue resistance
US06/289,852 US4448617A (en) 1980-08-05 1981-08-04 Steel for a vehicle suspension spring having good sag-resistance
DE19813130914 DE3130914A1 (en) 1980-08-05 1981-08-05 STEEL FOR VEHICLE SUSPENSION SPRINGS WITH HIGH RESISTANCE TO INCREASING BENDING OR BENDING. Sagging
US06/585,479 US4574016A (en) 1980-08-05 1984-03-02 Method of treating steel for a vehicle suspension spring having a good sag-resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10802080A JPS5941502B2 (en) 1980-08-05 1980-08-05 Spring steel with excellent fatigue resistance

Publications (2)

Publication Number Publication Date
JPS5732353A JPS5732353A (en) 1982-02-22
JPS5941502B2 true JPS5941502B2 (en) 1984-10-08

Family

ID=14473934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10802080A Expired JPS5941502B2 (en) 1980-08-05 1980-08-05 Spring steel with excellent fatigue resistance

Country Status (1)

Country Link
JP (1) JPS5941502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230069374A (en) * 2021-11-12 2023-05-19 (주)키출판사 An automatic image placement and execution method using the DTP program, an adobe indesign

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171648A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Spring steel
JPS5827955A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior hardenability and wear resistance
JPS6115951A (en) * 1984-06-29 1986-01-24 Aichi Steel Works Ltd Spring steel having superior machinability
JPS61117247A (en) * 1985-11-01 1986-06-04 Daido Steel Co Ltd Parts for machine structural use
EP1347069B1 (en) 2000-12-20 2007-11-07 Nippon Steel Corporation High-strength spring steel and spring steel wire
WO2006059784A1 (en) 2004-11-30 2006-06-08 Nippon Steel Corporation Steel and steel wire for high strength spring
KR100949373B1 (en) 2006-03-31 2010-03-25 신닛뽄세이테쯔 카부시키카이샤 High strength spring heat-treated steel
US9523404B2 (en) 2011-08-18 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Spring steel and spring
CN102994904A (en) * 2012-10-27 2013-03-27 无锡舜特精密合金板带有限公司 Cold-rolled strip for high-precision spring and production method thereof
JP6453693B2 (en) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 Heat treated steel wire with excellent fatigue characteristics
JP6436232B2 (en) 2015-05-15 2018-12-12 新日鐵住金株式会社 Spring steel
CN112251663B (en) * 2020-09-11 2021-10-26 南京钢铁股份有限公司 Automobile stabilizer bar and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230069374A (en) * 2021-11-12 2023-05-19 (주)키출판사 An automatic image placement and execution method using the DTP program, an adobe indesign

Also Published As

Publication number Publication date
JPS5732353A (en) 1982-02-22

Similar Documents

Publication Publication Date Title
US4770721A (en) Process of treating steel for a vehicle suspension spring to improve sag-resistance
CN111164230A (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
US4544406A (en) Spring steel having a good sag-resistance and a good hardenability
US4574016A (en) Method of treating steel for a vehicle suspension spring having a good sag-resistance
JPS5941502B2 (en) Spring steel with excellent fatigue resistance
US5009843A (en) Spring steel having good durability and sag-resistance
KR20220019264A (en) Heat treatment method for high-strength steel and products obtained therefrom
KR930012177B1 (en) Method of making steel for spring
JPS6237108B2 (en)
JPS6121298B2 (en)
JPS6237109B2 (en)
JPS6041686B2 (en) Manufacturing method for spring steel with excellent fatigue resistance
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS6338419B2 (en)
EP4060072A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
JPH0314898B2 (en)
JPS6237110B2 (en)
JP2505235B2 (en) High strength spring steel
JPS6041699B2 (en) Spring steel with excellent hardenability and fatigue resistance
JPS6130653A (en) High strength spring steel
JPH0576522B2 (en)
GB2112810A (en) Steels for vehicle suspension springs
JPH01184223A (en) Production of suspension spring for automobile having superior setting resistance at high temperature
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
JPS59232223A (en) Spring member