KR930012177B1 - Method of making steel for spring - Google Patents

Method of making steel for spring Download PDF

Info

Publication number
KR930012177B1
KR930012177B1 KR1019910010243A KR910010243A KR930012177B1 KR 930012177 B1 KR930012177 B1 KR 930012177B1 KR 1019910010243 A KR1019910010243 A KR 1019910010243A KR 910010243 A KR910010243 A KR 910010243A KR 930012177 B1 KR930012177 B1 KR 930012177B1
Authority
KR
South Korea
Prior art keywords
weight
temperature
rolled sheet
steel
annealing
Prior art date
Application number
KR1019910010243A
Other languages
Korean (ko)
Other versions
KR920000959A (en
Inventor
쯔네토시 수자키
토오요시 이와이
데주오 다나카
도시로오 야마다
Original Assignee
닛신세이코오 가부시키가이샤
카이 미키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15879090A external-priority patent/JP2961666B2/en
Priority claimed from JP2507791A external-priority patent/JP2823965B2/en
Priority claimed from JP2507691A external-priority patent/JP2952862B2/en
Application filed by 닛신세이코오 가부시키가이샤, 카이 미키 filed Critical 닛신세이코오 가부시키가이샤
Publication of KR920000959A publication Critical patent/KR920000959A/en
Application granted granted Critical
Publication of KR930012177B1 publication Critical patent/KR930012177B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Abstract

내용 없음.No content.

Description

스프링용 강 및 그 제조방법Spring steel and its manufacturing method

제1도는 가열온도와 강의 경도와의 관계를 나타내는 그래프.1 is a graph showing the relationship between the heating temperature and the hardness of the steel.

본 발명은 자동차의 클러치등에 설치되어 다이어프램스프링(diaphragm spring)으로서 사용되는 강 및 그 강을 제조하는 방법에 관한 것이다. 최근, 장치의 대형화, 고출력화에 따라서, 장치에 설치된 스프링은, 온간(溫間)분 위기에 놓여지게 되고 있다. 예를 들어서, 자동차의 클러치에는 다이어프램스프링등의 접시스프링이 설치되어 있는데, 자동차용 엔진의 고출력화, 차량의 4륜구동화등에 따라 클러치에 가해지는 부하가 증대하고 있다. 그 결과, 사용분위기 온도는, 종래 최고 150℃이었던 것이 온간(溫間)이라고 말할 수 있는 250―350℃까지 상승하고 있다. 이러한 종류의 다이어프램스프링은 SK5(일본공업규격)등과 같은 탄소공구강이 종래부터 사용되고 있다. 그러나, 탄소공구강에서는, 온도의 상승에 따라 이완(스프링에 있어서 피로에 의한 영구변형)이 급격하게 진행한다. 이러한 점에서, 온간에 있어서의 내이완성(relaxation resistance)이 우수한 강이 강력히 요구되고 있고, 또한 스프링으로서 사용되므로, 반복하중에 견디는 피로강도도 요구되고 있다. 내이완성을 재질면에서 개선하기 위해서는, 강에 대한 Si 함유량을 증가시키면 좋다. 예를 들어서, JIS G4801에 규정되어 있는 SUP6이나 더욱 Si를 중량한 SUP7등이, 내이완성이 요구되는 스프링으로서 사용되고 있다. 또, 일본특개평 2―240240호 공보에는, Si와 Mn등을 중량함과 아울러, Mo의 첨가에 의해서 퀀칭성 (quenchability)을 높인 강이 소개되어 있다. 열처리 등으로 내이완성을 향상시키는 수단으로서는, 퀀칭·템퍼링 후에 소성변형을 부여하고, 250―350℃에서 변형시효(strain aging)를 행하는 것이 알려져 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a steel provided in a clutch of an automobile and the like used as a diaphragm spring and a method for producing the steel. In recent years, with the increase in the size of the device and the increase in output, the springs provided in the device are in danger of warming. For example, a clutch of an automobile is provided with a diaphragm spring such as a diaphragm spring. The load on the clutch is increasing due to the high output of the automobile engine, the four-wheel drive of the vehicle, and the like. As a result, the use-ambient temperature rises to 250-350 degreeC which can be said that what was conventionally the highest 150 degreeC is warm. As for this type of diaphragm spring, carbon steel balls such as SK5 (Japanese Industrial Standard) have been conventionally used. However, in the carbon tool steel, the relaxation (permanent deformation due to fatigue in the spring) proceeds rapidly as the temperature rises. In this respect, a steel having excellent relaxation resistance in warm weather is strongly demanded, and also used as a spring, so that fatigue strength to withstand repeated loads is also required. In order to improve the relaxation resistance in terms of materials, the Si content of the steel may be increased. For example, SUP6 prescribed | regulated to JIS G4801, SUP7 which weighted Si further, etc. are used as a spring to which relaxation resistance is calculated | required. Japanese Unexamined Patent Application Publication No. 2-240240 discloses a steel in which weight of Si, Mn, and the like is increased, and quenchability is increased by addition of Mo. As means for improving the relaxation resistance by heat treatment or the like, it is known to give plastic deformation after quenching and tempering and to perform strain aging at 250 to 350 ° C.

그러나, Si를 다량으로 함유하는 SUP6,SUP7등의 강온, 실온에서의 내이완성은 우수하지만, 승온(昇溫)에 따라 내이완성이 열화하여서, 온간에서 충분한 특성을 나타내지 않는다. 또, 소성변형을 부여한 후에 변형시효를 행할 때, 스프링 제조공정에 다수의 열처리가 필요하게 되므로, 제조코스트가 상승한다.However, although the temperature-resistance at room temperature, such as SUP6 and SUP7 which contains a large amount of Si, and relaxation resistance at room temperature are excellent, the relaxation resistance deteriorates with temperature rise, and it does not show sufficient characteristic in warm temperature. In addition, when strain aging is performed after imparting plastic strain, a large number of heat treatments are required in the spring manufacturing process, so that the manufacturing cost rises.

이러한 점에서, 특수한 열처리를 필요로 하지 않고, 퀀칭·템퍼링된 그대로 내온간이완성이 우수한 재료가 요망되고 있다.In view of this, a material that does not require special heat treatment and has excellent heat resistance and ease of quenching and tempering is desired.

본 발명은, 이와 같은 요구에 응하고자 창안된 것으로, 템퍼링후의 강도를 상승시키고 또 템퍼링시에 미세한 탄화물을 석출시키도록 합금성분 및 제조조건에 개량을 가하는 것에 의해서, 내온간이완성, 피로강도, 템퍼링연화저항 등이 우수한 스프링용 강 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention was devised to meet such demands, and by improving the alloying components and manufacturing conditions so as to increase the strength after tempering and to deposit fine carbides during tempering, it is easy to relax, fatigue strength and tempering. An object of the present invention is to provide a spring steel excellent in softening resistance and the like and a manufacturing method thereof.

본 발명자들은 내온간이완성에 미치는 강중의 합금원소의 작용 및 제조조건의 영향 등을 종합적으로 연구한 결과, C,Si,Mn,Cr,Mo 등을 적당량 함유시킨 강에 대해서, 그 탄화물의 고용, 석출의 형태제어를 적절하게 행하는 것에 의해 온간에서의 내이완성이 대단히 우수한 강을 제조할 수 있음을 알았다. 즉, 본 발명은, C : 0.4―0.8중량%, Si : 0.5―2.5중량%, Mn : 0.3―2.0중량%, Cr : 0.1―1.5중량%, Mo : 0.1―0.5중량%를 함유하고 나머지부가 Fe 및 불가피불순물로 이루어지는 강재를 열간압연하여 열연판을 제조하고, 전기한 열연판을 어니일링한 후 10―80%의 압연율로 냉간압연하고, 이어서 전기한 냉연판을 Acl 변태점 이하의 온도에서 어니일링한 다음 이 어니일링된 냉연판을 Acl 변태점 이상의 온도에서 탄화물을 오오스테나이트화하기에 충분한 시간동안 가열유지하고, 전기한 가열유지된 냉연판을 하부임계냉각속도 이상으로 냉각한 후 이 냉각된 냉연판을 탄화물을 석출하기에 충분한 시간동안 가열한 다음 상온까지 냉각시키는 것으로 이루어지는 스프링강의 제조방법을 제공하는 것이다.The present inventors have comprehensively studied the effects of alloying elements in steel and the effects of manufacturing conditions on the temperature and heat resistance, and found that the solid solution of carbides for steels containing an appropriate amount of C, Si, Mn, Cr, Mo, etc. By appropriately controlling the shape of the precipitation, it was found that steel having excellent relaxation resistance at warm temperature can be produced. That is, this invention contains C: 0.4-0.8 weight%, Si: 0.5-2.5 weight%, Mn: 0.3-2.0 weight%, Cr: 0.1-1.5 weight%, Mo: 0.1-0.5 weight%, and remainder Hot rolled steel made of Fe and unavoidable impurities is manufactured to produce a hot rolled sheet, and after annealing the hot rolled sheet, it is cold rolled at a rolling rate of 10 to 80%, and then the cold rolled sheet is subjected to a temperature below the Acl transformation point. After annealing, the annealed cold rolled plate is heated for a time sufficient to austenitize carbides at temperatures above the Acl transformation point, and the heated heated cold rolled plate is cooled above the lower critical cooling rate and then cooled. It is to provide a method for producing a spring steel consisting of heating the cold rolled sheet to a temperature sufficient to precipitate carbide and then cooled to room temperature.

여기서, 하부임계냉각속도(lower critical cooling speed)란, 오오스테나이트상(相)이 마르텐사이트상으로 변태하는지 아닌지의 경계로되는 냉각속도를 의미하며, 하부임계냉각속도 이상이면 마르텐사이트로 변태한다. 본 발명에 의하면, 최종가열공정에서 탄화물 특히 Mo 탄화물이 미세하게 석출되어서, 이것에 의해 온간이완의 원인인 전위(轉位)의 이동이 저지된다.Here, the lower critical cooling speed means a cooling rate at the boundary of whether or not the austenite phase transforms into a martensite phase, and the lower critical cooling speed is converted into martensite if the lower critical cooling speed is higher than the lower critical cooling speed. . According to the present invention, carbides, in particular Mo carbides, are finely precipitated in the final heating step, thereby preventing the displacement of dislocations, which causes warm relaxation.

이 최종가열공정은, 450―600℃의 온도범위에서 미세탄화물을 석출하기에 충분한 시간동안 실시한다.This final heating step is carried out for a time sufficient to precipitate the fine carbide in the temperature range of 450-600 ° C.

또, Si 및 Cr함량은 다음의 조건을 만족하도록 선택된다.In addition, the Si and Cr contents are selected to satisfy the following conditions.

-74×Si(%)-10×Cr(%)5-7 4 x Si (%)-10 x Cr (%) 5

그리고, 상기한 최종가열공정에서 냉각된 냉연판의 가열은 HV400―HV550사이의 어니일링 경도를 보유하도록 실시된다. 또한, 냉연판의 어니일링이 550―730℃에서 수행되어서, 평균탄화물입경이 2㎛이하이다. 여기서 사용하는 강소재에는, 전술한 합금성분 이외에, V 및 Nb의 1종 또는 2종을 합계로 0.05―0.5중량% 더 함유시킬 수가 있고, 또한 0.02중량% 이하의 Al을 함유시킬수도 있다.And, the heating of the cold rolled sheet cooled in the final heating step is carried out to retain the annealing hardness between HV400-HV550. Further, annealing of the cold rolled sheet is carried out at 550-730 ° C., so that the average carbide particle diameter is 2 μm or less. In addition to the alloy components described above, the steel material used herein may further contain 0.05 to 0.5% by weight of one or two of V and Nb in total, and may contain 0.02% by weight or less of Al.

본 발명자 등은, 퀀칭성 및 내온간이완성에 미치는 합금원소의 작용 및 제조조건의 영향등에 대해서, 광범위하게 검토를 행함과 아울러, 수많은 실험을 행하였다. 그 결과, 내온간이완성을 향상시키기 위해서는, 템퍼링후의 강도를 향상시킴과 아울러, 템퍼링시에 미세한 탄화물을 석출시키는 것이 유효하다는 것을 해명하였다. 그래서, 이들 2점을 동시에 달성하도록 SK5등의 탄소공구강에 비교해서 보다 고온에서 템퍼링하고, 또 템퍼링시에 스프링으로서 필요한 강도를 갖도록 템퍼링 연화저항(軟化抵抗)을 높이고, 동시에 템퍼링시에 미세한 탄화물이 석출하도록 합금성분을 조정하는 것에 의해서, 내온간이완성이 극히 우수한 강이 얻어지는 것을 알았다.The inventors of the present invention extensively studied the effects of alloying elements on the quenchability and the ease of temperature resistance, the influence of the manufacturing conditions, and conducted numerous experiments. As a result, in order to improve the temperature-relaxability, it was found that it is effective to improve the strength after tempering and to deposit fine carbides at the time of tempering. Therefore, in order to achieve these two points at the same time, it is tempered at a higher temperature than carbon steel balls such as SK5, and the tempering softening resistance is increased to have the strength required as a spring at the time of tempering, and at the same time, fine carbides at the time of tempering It was found that by adjusting the alloy component so as to precipitate, steel with extremely high temperature-relaxability was obtained.

피로강도에 관해서는, 강중의 산소와 결합하여 개재물을 형성하는 Al을 일정량 이하로 억제하는 것에 의해서, 피로강도의 기점으로 되는 경질개재물의 대표적인 것인 알루미나의 양을 저감시킨다.Regarding the fatigue strength, the amount of alumina which is representative of the hard inclusions, which is the starting point of the fatigue strength, is reduced by suppressing Al, which binds to oxygen in the steel to form inclusions, below a certain amount.

또, 이것에 의해서, 경도가 상승했을때의 피로강도의 열화를 방지할 수가 있다.In addition, it is possible to prevent the deterioration of the fatigue strength when the hardness rises.

이하, 본 발명을 구체적으로 설명한다. 본 발명에 있어서는, 종래의 강에 비교해서 보다 고온에서 템퍼링 했을때에 스프링으로서 필요한 경도를 확보하기 위해서, 템퍼링 연화저항의 개선에 큰 작용을 발휘하는 Si를 첨가하고 있다.Hereinafter, the present invention will be described in detail. In this invention, in order to ensure the hardness required as a spring when tempering at high temperature compared with the conventional steel, Si which has a big effect in the improvement of a tempering softening resistance is added.

그리고, Si 첨가에 기인하는 흑연화의 발생은, Cr의 첨가에 의해 억제하고 있다.And generation | occurrence | production of the graphitization resulting from Si addition is suppressed by addition of Cr.

이 조건하에서 Mo를 첨가할 때, Mo 탄화물을 석출시키는 것이 가능하게 된다.When Mo is added under these conditions, it becomes possible to precipitate Mo carbide.

Mo 탄화물은, 이완의 원인인 전위의 이동을 저지해서, 내온간이완성을 향상시키는 데에 유효한 석출물이다. 또, V,Nb를 첨가하는 것에 의해서, 오오스테나이트입자 조대화(祖大化)방지가 도모됨과 아울러, Mo과 마찬가지로 템퍼링 탄화물의 생성에 의해 내온간이완성이 향상한다. 또, Al 함유량을 0.020중량% 이하로 억제할 때, 피로강도에 대한 알루미나계 개재물의 악영향이 없어진다.Mo carbide is a precipitate that is effective in preventing the shift of dislocations that causes relaxation and improving the temperature-relaxation resistance. In addition, by adding V and Nb, coarsening of austenite particles can be prevented, and similarly to Mo, temperature-relaxation resistance is improved by generating tempering carbides. Moreover, when suppressing Al content to 0.020 weight% or less, the bad influence of an alumina type interference | inclusion with respect to fatigue strength disappears.

강도의 상승에 따라서, 내온간이완성은 향상한다. 그러나, 과도하게 강도가 높게될 때, 피로강도는 오히려 저하한다. 그래서, 높은 내이완성과 고피로강도를 양립시키기 위해서, 템퍼링후의 강도나 경도 등을 소정의 범위로 하는 것이 불가결하다. 이와 같은 이유 때문에, 합금성분 및 성분조건을 특정화하였다.In accordance with the increase in strength, the warm-temperature relaxation property is improved. However, when the strength is excessively high, the fatigue strength is rather lowered. Therefore, in order to make both high relaxation resistance and high fatigue strength compatible, it is indispensable to set the strength, hardness, etc. after tempering to a predetermined range. For this reason, alloy components and component conditions were specified.

이하, 본 발명에서 사용하는 강의 성분 및 제조조건에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the component and manufacturing conditions of the steel used by this invention are demonstrated.

C : C는, 강의 강도를 높이는 데에 중요한 원소이다. 그리고, 퀀칭·템퍼링에 의해 스프링용 강으로서 필요한 강도를 얻기 위해서, 적어도 0.4중량% 함유시키는 것이 필요하다. 그러나, C의 함유량이 지나치게 많으면, 퀀칭균열이 발생하기 쉽게 될 뿐아니라. 인성(靭性)이 열화한다. 그래서, C함유량의 상한을 0.8중량%로 설정하였다.C: C is an important element for increasing the strength of steel. And in order to acquire the strength required as steel for springs by quenching and tempering, it is necessary to contain at least 0.4 weight%. However, if the content of C is excessively large, quenching cracks are likely to occur. Toughness deteriorates. Therefore, the upper limit of C content was set to 0.8 weight%.

Si : 탄소공구강과 비교하여 고온에서 템퍼링을 행했을때에, 스프링으로서 필요한 강도를 확보시킴과 아울러, 템퍼링 연화저항을 높이는 데에 중요한 원소이다. 이 작용을 발휘시키기 위해서, Si를 0.5중량% 이상의 함유량으로 함유시킨다. 그러나, Si 함유량이 2.5중량%를 넘으면, 스프링용 강으로서 유해한 내부산화나 탈탄 등이 생기기 쉽게 될 뿐아니라, 열간압연이나 어니일링시에 흑연화가 촉진된다. 그래서, Si의 상한을 2.5중량%을 설정하였다.Si: When tempering at a high temperature compared with carbon steel, it is an important element for securing the strength required as a spring and increasing tempering softening resistance. In order to exhibit this effect, Si is contained in content of 0.5 weight% or more. However, when the Si content exceeds 2.5% by weight, not only harmful internal oxidation, decarburization, etc. are easily generated as spring steel, but also graphitization is promoted during hot rolling or annealing. Therefore, 2.5 weight% of upper limits of Si were set.

Mn : Mn은, 강의 탈산에 유효함과 아울러, 퀀칭성을 향상시키는 원소이다. 이들 효과를 얻기 위해서는, Mn을 0.3중량% 이상 함유시키는 것이 필요하다. 그러나, Mn 함유량이 2.0중량%를 넘으면, 퀀칭·템퍼링후에 인성의 열화가 현저하게 된다. 그래서 Mn 함유량의 상한을 2.0중량%로 설정하였다.Mn: Mn is an element which is effective for deoxidation of steel and which improves quenchability. In order to acquire these effects, it is necessary to contain 0.3 weight% or more of Mn. However, when Mn content exceeds 2.0 weight%, deterioration of toughness will become remarkable after quenching and tempering. Therefore, the upper limit of Mn content was set to 2.0 weight%.

Cr : 다량의 Si를 함유시키는 것에 의해 촉진되는 흑연화 및 내부산화를 억제함과 동시에, Mn과 마찬가지로 퀀칭성을 향상시키는데에 중요한 원소이다. Cr의 작용을 유효하게 발휘시키기 위해서는, 0.1중량% 이상의 함유량이 필요하다. 그러나, Cr 함유량이 1.5중량%를 넘으면, 퀀칭·템퍼링 후의 인성의 열화가 현저하게 되므로, Cr 함유량의 상한을 1.5중량%로 설정하였다. 또한, Si 함유량과 Cr 함유량은, 탈탄 및 흑연화를 방지하기 위해 하기의 식을 만족시키도록 결정된다.Cr: It is an important element for suppressing graphitization and internal oxidation promoted by containing a large amount of Si and improving quenchability like Mn. In order to exert the effect of Cr effectively, content of 0.1 weight% or more is required. However, when Cr content exceeds 1.5 weight%, since the toughness after quenching and tempering becomes remarkable, the upper limit of Cr content was set to 1.5 weight%. In addition, Si content and Cr content are determined so that the following formula may be satisfy | filled in order to prevent decarburization and graphitization.

-74×Si(%)-10×Cr(%)5-7 4 x Si (%)-10 x Cr (%) 5

Mo : Mo는 냉간압연, 어니일링 후에 강중에서 탄화물을 형성하고 있다. 이 Mo는, 강이 Ac3 변태점 이상의 온도로 가열되었을 때 오오스테나이트상으로 고용(固溶))하고 퀀칭시에 마르텐사이트상으로 고용한다. 그리고, 템퍼링시에 탄화물로서 미세하게 석출되는 것에 의해서, 내온간이완성을 현저하게 향상시킨다. 이점에서, Mo는 중요한 작용을 하는 원소이며, 0.1중량%이상 함유시키는 것이 필요하다. 그러나, Mo 함유량이 0.5중량%를 넘으면, 내이완성을 향상시키는 효과가 포화할 뿐아니라, Ac3 변태점 이상의 온도로 가열되었을때에 오오스테나이트상으로 고용하지 않는 비교적 조대한 미용해 탄화물의 양이 많게 된다. 이 미용해 탄화물은, 비금속 개재물과 마찬가지로 피로강도를 저하시킨다. 그래서, 본 발명에 있어서는, Mo 함유량의 상한을 0.5중량%로 설정하였다.Mo: Mo forms carbide in steel after cold rolling and annealing. This Mo is dissolved in an austenite phase when the steel is heated to a temperature equal to or higher than the Ac3 transformation point, and is dissolved in martensite phase at the time of quenching. In addition, fine precipitation as a carbide at the time of tempering significantly improves the ease of warming. In view of this, Mo is an element having an important function, and it is necessary to contain Mo by 0.1% by weight or more. However, when the Mo content exceeds 0.5% by weight, not only the effect of improving relaxation resistance is saturated, but also a large amount of relatively coarse undissolved carbide which is not dissolved in the austenite phase when heated to a temperature higher than the Ac3 transformation point. do. This undissolved carbide reduces fatigue strength similarly to nonmetallic inclusions. Therefore, in this invention, the upper limit of Mo content was set to 0.5 weight%.

V,Nb : V,Nb는, Mo과 마찬가지로 냉간압연, 어니일링후에 강중에서 탄화물을 형성한다. 그리고, 강이 Ac3 변태점 이상의 온도로 가열되었을때, 오오스테나이트상으로 고용하지 않는 V,Nb의 미용해 탄화물은, 오오스테나이트입자의 조대화를 방지한다. 한편, 오오스테나이트상으로 고용하고 있는 V,Nb는 Mo과 마찬가지로 템퍼링시에 미세한 탄화물로서 석출하는 것에 의해서, 내온간이완성을 현저히 향상시킨다. 이점에서, V, Nb는 중요한 역할을 담당하는 원소로서, 0.05중량%이상 함유시키는 것이 필요하다. 그러나, 0.5중량%를 초과해서 V,Nb를 함유시키면, Ac3 변태점 이상의 온도로 가열되었을때에 오오스테나이트상으로 용해하지 않는 비교적 조대한 미용해 탄화물의 양이 증가하여서, 비금속개재물과 마찬가지로 피로강도를 저하시킨다. 그래서, V,Nb 함유량의 상한을 0.5중량%로 설정하였다.V, Nb: V, Nb, like Mo, forms carbide in steel after cold rolling and annealing. When the steel is heated to a temperature equal to or higher than the Ac3 transformation point, undissolved carbides of V and Nb that are not dissolved in the austenite phase prevent coarsening of the austenite particles. On the other hand, V and Nb dissolved in an austenite phase are precipitated as fine carbides at the time of tempering similarly to Mo, thereby significantly improving the temperature-relaxing resistance. In view of this, V and Nb are important elements, and it is necessary to contain 0.05 wt% or more. However, containing V and Nb in excess of 0.5% by weight increases the amount of relatively coarse undissolved carbide which does not dissolve in the austenite phase when heated to a temperature higher than the Ac3 transformation point, so that the fatigue strength is similar to that of nonmetallic inclusions. Decreases. Therefore, the upper limit of V and Nb content was set to 0.5 weight%.

Al : 스프링으로서 사용되는 강재에는, 반복적인 굽힘피로나 비틀림피로등이 가해진다. 이러한 피로에 대해서, 경질의 개재물은 대단히 유해한 영향을 미친다. 그래서, 경질개재물의 대표적인 것인 알루미나계 개재물에 기인하는 악 영향을 억제하기 위해서, Al의 함유량을 0.020중량%이하로 제한하는 것이 필요하다.Al: Repetitive bending fatigue or torsion fatigue is applied to the steel used as a spring. For this fatigue, hard inclusions have a very detrimental effect. Therefore, in order to suppress the adverse effect resulting from the alumina type interference | inclusion which is a typical thing of hard inclusions, it is necessary to limit content of Al to 0.020 weight% or less.

이하, 본 발명의 제조조건에 대해서 설명하는데, 제조조건은 다음과 같이 스프링 특성에 영향을 미친다.Hereinafter, although the manufacturing conditions of this invention are demonstrated, a manufacturing condition affects a spring characteristic as follows.

냉간압연공정에 있어서, 압연율이 10%미만이면, Ac1 변태점 이하에서의 어니일링시에, 탄화물입경이 조대화하여서, Ac3 변태점 이상의 온도로의 가열시에 탄화물을 오오스테나이트로 고용시키는 데에 장시간을 요하기 때문에 현저하게 탈단이 진행해서, 스프링으로서의 특성이 열화한다. 또, 압연율이 80%를 넘으면, 냉간압연에 의한 가공경화가 현저하게 되어서, 에지균열(edge crack)등의 형상불량이 발생한다. 그래서, 압연율 10∼80%의 냉간압연을 행하는 것이 중요하다.In the cold rolling process, when the rolling rate is less than 10%, the carbide grain size becomes coarse at the time of annealing at the Ac1 transformation point or less, so that the carbide is dissolved into austenite during heating to a temperature above the Ac3 transformation point. Since it takes a long time, redrawing progresses remarkably and the characteristic as a spring deteriorates. When the rolling ratio exceeds 80%, work hardening by cold rolling becomes remarkable, resulting in shape defects such as edge cracks. Therefore, it is important to perform cold rolling with a rolling rate of 10 to 80%.

또, 730℃를 넘는 고온에서 어니일링을 행하면, 구상화(球狀化)한 탄화물이 조대화하여서, Ac3 변태점 이상의 온도로의 가열시에, 오오스테나이트상으로 탄화물을 고용시키기 위해 장시간을 요하여 경제적이지 않다. 역으로, 어니일링 온도가 550℃를 하회하면, 냉간압연에 의해 가공경화한 페라이트가 충분히 회복되지 않아서, 어니일링후의 경도가 높게되어 가공성을 열화시킨다. 그래서, 어니일링 온도는 550∼730℃의 온도범위를 설정하였다.When annealing is performed at a temperature higher than 730 ° C., spheroidized carbides coarsen and require a long time to solidify the carbides in the austenite phase when heated to a temperature higher than the Ac3 transformation point. Not economical Conversely, when the annealing temperature is lower than 550 ° C., the ferrite hardened by cold rolling cannot be sufficiently recovered, and the hardness after annealing becomes high to degrade workability. Therefore, the annealing temperature set the temperature range of 550-730 degreeC.

어니일링후의 상태에 있어서 탄화물의 평균입경이 2㎛이하이면, 퀀칭에 따른 오오스테나이트화시에 탄화물이 용이하게 고용한다. 이 점에서, 탄화물의 평균입경을 2㎛이하로 유지하는 것이 퀀칭을 효율좋게 행하는 데에 필요하다.In the state after annealing, when the average particle diameter of the carbide is 2 µm or less, carbides are easily dissolved in austenitization due to quenching. In this regard, it is necessary to maintain the average particle diameter of carbide at 2 mu m or less for efficient quenching.

그리고, 냉간압연, 어니일링을 거쳐 제조된 냉연판은, 스프링으로서 필요한 강도를 얻기 위해서, Ac3 변태점 이상의 온도에서 그 구상탄화물이 고용하기에 충분한 시간동안 가열유지한 후 하부임계냉각속도 이상으로 냉각(퀀칭)하고, 이어서 450∼699℃의 온도범위에서 미세탄화물이 석출하기에 충분한 시간동안 가열유지한 후 상온으로 냉각한다(템퍼링한다). 퀀칭에 있어서는, Ac3 변태점 이상으로 가열하는 것에 의해 모상(母相)의 조직을 오오스테나이트로 해서, 구상탄화물을 고용시키고, 하부임계냉각속도 이상의 냉각속도로 냉각하는 것에 의해서, C와 합금원소를 고용한 마르텐사이트를 얻을 수가 있다. 이어서 450℃이상에서 템퍼링하면 내온간이완성에 유효한 Mo,V,Nb의 탄화물이 마르텐사이트로부터 미세하게 석출한다. 그러나 600℃를 초과한 온도에서 템퍼링을 행하면 Mo,V,Nb의 탄화물은 조대화하여서, 이완의 원인인 전위의 이동을 저지할 수 없고, 동시에 강도의 저하도 현저하게 되므로 그 상한은 600℃로 한다.The cold rolled sheet manufactured through cold rolling and annealing is heated and maintained at a temperature higher than Ac3 transformation point for a sufficient time for the spherical carbide to be dissolved to obtain the required strength as a spring, and then cooled above the lower critical cooling rate. Quenching), and then the heating is maintained for a sufficient time for the precipitation of the fine carbide in the temperature range of 450 ~ 699 ℃ and then cooled to room temperature (tempering). In quenching, C and alloying elements are formed by heating at an Ac3 transformation point or more to form austenite to form austenite, solid solution of spherical carbide, and cooling at a cooling rate equal to or lower than the lower critical cooling rate. You can get hired martensite. Subsequently, when tempered at 450 ° C. or higher, carbides of Mo, V, and Nb, which are effective for relaxation at low temperature, are finely precipitated from martensite. However, if tempering is performed at a temperature exceeding 600 ° C, carbides of Mo, V, and Nb will coarsen and cannot prevent the displacement of dislocations that cause relaxation, and at the same time, the drop in strength will be remarkable, so the upper limit is 600 ° C. do.

이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.

[실시예 1]Example 1

표 1에 공시재(供試在)의 화학성분을 나타낸다. 기호(A)∼(F)는 본 발명에서 규정하는 화학성분 범위내의 강이고, 기호(G)∼(L)은 비교강이다.Table 1 shows the chemical components of the test materials. Symbols (A) to (F) are steels within the chemical component range defined by the present invention, and symbols (G) to (L) are comparative steels.

이들 강중 강(A)∼(F)의 각각에 대해서, 통상의 열간압연에 의해 두께 3.5mm의 열연판으로 해서, 열연판의 어니일링을 실시한 후, 압연율 5∼90%의 냉간압연을 행하고, 그후 Ac1 변태점 이하의 온도인 700℃에서 균열(均熱) 10시간의 어니일링을 행하였다. 이어서, Ac3 변태점 이상의 온도인 900℃에서 잔류탄화물율이 중량비로 1%이하로 되는 시간동안 균열한 후, 오일퀀칭을 행하였다. 냉간압연후의 에지균열발생의 유무와, 퀀칭후의 탈탄깊이를 측정한 결과를 표 2에 나타내었다.Each of these steels (A) to (F) was subjected to cold rolling with a rolling ratio of 5 to 90% after annealing the hot rolled sheet using a hot rolled sheet having a thickness of 3.5 mm by normal hot rolling. After that, annealing was performed for 10 hours at a temperature of 700 ° C. below the Ac1 transformation point. Subsequently, the oil was quenched after cracking for a time at which the residual carbide ratio became 1% or less by weight ratio at 900 ° C, the temperature of which is higher than the Ac3 transformation point. Table 2 shows the results of measuring the presence of edge crack after cold rolling and the decarburization depth after quenching.

표 2의 결과로부터 명백하듯이, 압연율이 80%를 넘으면 에지균열이 발생한다. 또 압연율이 10%미만이면, 탄화물이 조대화하므로, 탄화물을 오오스테나이트 중에 고용시키는 데에 장시간을 필요로 하여서, 그 결과 탈탄깊이가 현저하게 깊게 되는 것을 알수 있다.As is apparent from the results in Table 2, edge cracking occurs when the rolling ratio exceeds 80%. In addition, when the rolling ratio is less than 10%, the carbide becomes coarse, so that it takes a long time to solidify the carbide in austenite, and as a result, the decarburization depth becomes remarkably deep.

[표 1]TABLE 1

[표 2]TABLE 2

[실시예 2]Example 2

A∼F의 각 강에 대해서 두께 3.5mm인 열연판에 통상의 어니일링을 실시한 후, 압연을 35%의 냉간압연을 행하여 두께 2.3mm의 냉연판으로 해서, 700℃에서 10시간의 어니일링을 1회 행하였다. 이어서, Ac3 변태점 이상의 온도인 850∼900℃에서 10분간 가열후, 오일켄칭하고, 계속해서 420∼630℃의 온도에서 30분간 템퍼링한 후, 이완시험(relaxation test)에 의해 온간이완성을 평가하였다. 이완시험은, 시험온도를 350℃, 초기변형을 1.0%, 유지시간을 12시간으로 해서, 시험전후에서의 하중저하율(load reduction)을 이완율로 하였다. 결과를 표3에 나타내었다. 또, 경도(Hv)도 아울러 표시하였다. 표 3의 결과에 나타나는 바와 같이, 비교예(G)는 C 함유량이, 비교예(I)는 Si 함유량이, 비교예(J)는 Mn 함유량이, 또 비교예(K)는 Cr 함유량이 각각 본 발명에서 규정하는 것보다도 낮으므로, 강도가 낮고 이 때문에, 이완율은 높게 되었다. C 함유량이 높은 비교예(H)도 이완율은 그다지 낮은 값으로 되지 않는다. 비교예(L)는 Mo가 첨가되어 있지 않아서, 내온간이완성에 유효한 Mo 탄화물이 생성되지 않으므로, 이완율은 현저하게 높다. 또, 화학성분은 본 발명에서 규정하는 범위에 A', D', F'강에서도, 템퍼링온도가 본 발명의 범위를 벗어나는 420℃나 630℃라는 온도에서는, 이완율은 그다지 낮은 값으로는 되지 않는다.After the normal annealing is performed on the hot rolled plates having a thickness of 3.5 mm for each of the steels A to F, the rolling is performed by cold rolling at 35% to form a cold rolled sheet having a thickness of 2.3 mm, and the annealing at 700 ° C. for 10 hours is performed. It was done once. Subsequently, after heating for 10 minutes at 850-900 degreeC which is the temperature more than Ac3 transformation point, it quenched oil, and after tempering for 30 minutes at the temperature of 420-630 degreeC, the warm relaxation property was evaluated by a relaxation test. . In the relaxation test, the test temperature was 350 deg. C, the initial deformation was 1.0%, the holding time was 12 hours, and the load reduction rate before and after the test was the relaxation rate. The results are shown in Table 3. Moreover, hardness (Hv) was also displayed. As shown in the results of Table 3, Comparative Example (G) had a C content, Comparative Example (I) had a Si content, Comparative Example (J) had a Mn content, and Comparative Example (K) had a Cr content, respectively Since it is lower than what is prescribed | regulated by this invention, intensity | strength is low and for this reason, a relaxation rate became high. In Comparative Example (H) having a high C content, the relaxation rate does not become a very low value. In Comparative Example (L), since Mo was not added and Mo carbide which was effective for warm-temperature relaxation resistance was not produced, the relaxation rate was remarkably high. In addition, in the chemical composition, even in A ', D', and F 'steels within the range defined by the present invention, the relaxation rate becomes very low at a temperature of 420 ° C or 630 ° C where the tempering temperature is outside the range of the present invention. Do not.

이것에 대해서, 화학성분과, 퀀칭온도, 템퍼링온도가 모두 본 발명 범위내일 때는, 이완율이 비교예에 비해서 현저히 낮은 값으로 나타내어서, 내온간이완성이 우수함을 알 수 있다.On the other hand, when both the chemical component, the quenching temperature, and the tempering temperature are within the scope of the present invention, the relaxation rate is represented by a significantly lower value than the comparative example, and it can be seen that the temperature-relaxation resistance is excellent.

[표 3]TABLE 3

[실시예 3]Example 3

본 실시예에서는, 표 4에 나타낸 성분, 조성을 보유하는 공시재를 사용하였다. 표 4에서 기호(A)∼(G)는 본 발명에서 규정한 성분, 조성의 범위에 있는 강을 나타내고, 기호(H)∼(L)은 비교강을 나타낸다.In the present Example, the test material which has the component and composition shown in Table 4 was used. In Table 4, symbols (A) to (G) represent steel in the range of components and compositions specified in the present invention, and symbols (H) to (L) represent comparative steels.

[표 4]TABLE 4

SICR값=4×Si(%)-10×Cr(%)SICR value = 4 x Si (%)-10 x Cr (%)

표 4에 나타낸 성분의 강을 열간압연하여 두께 3.5mm의 열연판으로 하고, 이 열연판에 어니일링을 실시하였다. 그리고, 압연율 35%의 냉간압연을 행하여서, 두께 2.3mm의 냉연판을 제조하였다. 이 냉연판을 650∼750℃에서 10시간 어니일링해서, 평균탄화물입경을 변화시킨 공시재를 얻었다. 퀀칭성시험으로서는, 850℃까지는 140℃/초의 속도로, 850℃로부터 900∼110℃의 시험온도까지는 30℃/초의 속도로 급속가열한후, 보존유지하는 시간없이 급냉하는 퀀칭을 행하여서, 퀀칭경도에 의해 퀀칭성을 평가하였다. 시험결과를 제1도에 나타낸다. 제1도의 그래프에서 알 수 있듯이, 성분이 본 발명에서 규정하는 범위에 있는 공시재(A)에서는, 본 발명에 따른 650℃ 및 700℃의 온도에서 어니일링했을 때, 평균탄화물입경이 2㎛ 이하로 된다. 또, 최저시험온도인 900℃에 있어서도, 최고퀀칭경도에 도달하고 있다. 그러나, 750℃에서 어니일링해서, 평균탄화물입경이 2㎛를 초과하도록 되면, 950℃정도까지 퀀칭온도를 올리지 않는한, 최고퀀칭경도에 도달하지 않는다. 이것에 대해서, 비교강(H)은, SICR값[=4×Si(%)-10×Cr (%)]이 -7.42로 본 발명에서 규정하는 범위외에 있으므로, 어니일링후의 탄화물중에 Cr이 현저하게 농축하고 있다. 그 때문에, 평균탄화물입경이 2㎛ 이하임에도 불구하고, 최고퀀칭경도에 도달하기 위해서 1000℃까지 가열할 필요가 있었다.The steel of the component shown in Table 4 was hot-rolled to make the hot rolled sheet of thickness 3.5mm, and the hot rolled sheet was annealed. And cold rolling of 35% of the rolling ratio was performed, and the cold rolled sheet of thickness 2.3mm was produced. This cold-rolled sheet was annealed at 650-750 degreeC for 10 hours, and the test material which changed the average carbide particle diameter was obtained. In the quenchability test, quenching is performed at a speed of 140 ° C./sec up to 850 ° C. and rapidly heated at a rate of 30 ° C./sec from 850 ° C. to a test temperature of 900 to 110 ° C., followed by quenching with rapid cooling without time for preservation. Quenchability was evaluated by the hardness. The test results are shown in FIG. As shown in the graph of FIG. 1, in the test material (A) whose component is in the range prescribed | regulated by this invention, when annealing at the temperature of 650 degreeC and 700 degreeC which concerns on this invention, an average carbide particle diameter is 2 micrometers or less It becomes Moreover, the highest quenching hardness is also reached even at 900 degreeC which is the minimum test temperature. However, when annealed at 750 degreeC and an average carbide particle diameter exceeds 2 micrometers, unless the quenching temperature is raised to about 950 degreeC, a maximum quenching hardness will not be reached. On the other hand, in the comparative steel H, since the SICR value [= 4 x Si (%)-10 x Cr (%)] is -7.42, which is outside the range defined by the present invention, Cr is remarkable in the carbide after annealing. It is concentrated. Therefore, in order to reach the maximum quenching hardness, it was necessary to heat up to 1000 degreeC, although the average carbide particle diameter was 2 micrometers or less.

이 비교로부터 명백하듯이, 본 발명에 의하면, 보다 저온에서 또한 단시간내에 탄화물을 오오스테나이트상으로 고용시킬 수 있음을 알 수 있다.As is apparent from this comparison, the present invention shows that carbides can be dissolved in the austenite phase at a lower temperature and within a short time.

이어서, 두께 2.3mm의 냉연판을 680℃에서 10시간 어니일링하고, 계속해서 900℃에서 가열한 후, 오일퀀칭하고, 그후 30분간 여러 온도에서 템퍼링을 실시하였다. 이 퀀칭템퍼링재를 사용해서, 피로특성 및 이완성을 다음과 같이 평가하였다.Subsequently, the cold rolled sheet having a thickness of 2.3 mm was annealed at 680 ° C. for 10 hours, subsequently heated at 900 ° C., then oil quenched, and then tempered at various temperatures for 30 minutes. Using this quenching tempering material, fatigue characteristics and relaxation were evaluated as follows.

우선, 피로시험은, 교번평면굽힘피로(alternating plane bending fatigue)시험으로 행하였다. 공시재로서, 본 발명에 따른 강(A)(G), 비교강(J) 및 Al 이외의 강(A)와 동일한 성분을 보유하는 비교강(I)을 사용하였다. 시험온도는, 250℃로 설정하였다. 시험결과를 표 5에 나타낸다.First, the fatigue test was carried out by alternating plane bending fatigue test. As the test material, steel (A) (G), comparative steel (J) and comparative steel (I) having the same components as steel (A) other than Al according to the present invention were used. The test temperature was set to 250 ° C. The test results are shown in Table 5.

[표 5]TABLE 5

표 5로부터 명백하듯이, 본 발명에 따른 강(A)는 퀀칭·템퍼링 후의 경도가 비교강(I)과 거의 동등함에도 불구하고, 상온 및 250℃에서의 피로강도는 모두 비교강(I)에 비해 우수함을 알 수 있다. 이것은 강(A)의 Al함유량이 0.020중량% 이하이기 때문에, 피로파괴의 기점으로 되는 경질재재물의 양이 적은 것에 기인하는 것이라고 생각된다. 또, 본 발명에 따른 강(G)도, 강(A)와 동일한 피로특성을 나타내고 있다.As is apparent from Table 5, although the steel (A) according to the present invention has almost the same hardness as the comparative steel (I) after quenching and tempering, both the fatigue strength at room temperature and 250 ° C is compared to the comparative steel (I). It can be seen that excellent. This is considered to be due to the small amount of hard material which becomes the starting point of fatigue failure because Al content of steel (A) is 0.020 weight% or less. The steel G according to the present invention also exhibits the same fatigue characteristics as the steel A. FIG.

한편, 비교강(J)는, Si 함유량에 비교해서 Cr 함유량이 적고, SICR값이 7.50으로 본 발명에서 규정하는 범위외에 있기 때문에, 어니일링시에 흑연화가 발생하였다. 또, 오오스테나이트화에 장시간을 필요로 하였으므로 탈탄반응이 진행하였다.On the other hand, the comparative steel (J) had less Cr content compared to Si content, and since SICR value was 7.50 and it was out of the range prescribed | regulated by this invention, graphitization generate | occur | produced at the time of annealing. Moreover, since a long time was required for austenitization, the decarburization reaction proceeded.

그 결과, 피로특성은, 본 발명에 따른 강(A)(G)보다도 뒤떨어진다.As a result, the fatigue characteristic is inferior to the steel (A) (G) according to the present invention.

또, 이완시험에 의해 내이완성을 평가하였다. 시험온도는 350℃, 초기변형은 1.0%, 유지시간은 12시간으로 각각 설정해서, 보존유지 전후에서의 하중저하율을 이완율로서 나타내었다. 시험결과를 표 6에 나타낸다.Moreover, the relaxation resistance was evaluated by the relaxation test. The test temperature was set at 350 ° C, the initial strain was 1.0%, and the holding time was 12 hours, respectively, and the load reduction rate before and after storage was expressed as a relaxation rate. The test results are shown in Table 6.

[표 6]TABLE 6

[실시예 4]Example 4

본 실시예에 있어서는, 표 7에 나타낸 성분 조성을 함유하는 공시재를 사용하였다. 또, 표 7의 기호(A) ∼(G)는 본 발명에서 규정한 성분 조성의 범위에 있는 강을 나타내고, 기호 (H)∼(L)는 비교강을 나타낸다.In the present Example, the test material containing the component composition shown in Table 7 was used. In addition, symbols (A)-(G) of Table 7 represent the steel in the range of the component composition prescribed | regulated by this invention, and symbols (H)-(L) represent a comparative steel.

[표 7]TABLE 7

표 7에 나타낸 성분의 강을 열간압연하여 두께 3.5mm의 열연판으로 해서, 이 열연판에 어니일링을 실시하였다. 그리고, 압연율 35%의 냉간압연을 행하여 두께 2.3mm의 냉연판을 제조하였다. 얻어진 냉연판에 680℃에서 10시간의 어니일링을 1회 실시하고, 계속해서 Ac3 변태점을 넘는 온도 850∼900℃에서 10분간 가열한 후, 오일퀀칭하고, 그후 30분간 여러 온도에서 퀀칭을 행하는 것에 의해서, 퀀칭경도를 변화시켰다. 이 퀀칭·템퍼링재를 사용해서, 피로특성 및 내이완성을 조사하였다. 피로시험은, 교번평면굽힘피로시험으로 행하였다.The steel of the component shown in Table 7 was hot-rolled, and it was made into the hot rolled sheet of thickness 3.5mm, and this hot rolled sheet was annealed. And cold rolling of 35% of the rolling ratio was performed, and the cold rolled sheet of thickness 2.3mm was produced. The cold rolled sheet thus obtained was subjected to annealing for 10 hours at 680 ° C. once, then heated at a temperature of 850 to 900 ° C. exceeding the Ac3 transformation point for 10 minutes, followed by oil quenching, and then quenching at various temperatures for 30 minutes. The quenching hardness was changed. Using this quenching and tempering material, fatigue characteristics and relaxation resistance were examined. The fatigue test was carried out by an alternating plane bending fatigue test.

시험결과를 표 8에 나타낸다.The test results are shown in Table 8.

[표 8]TABLE 8

주 : Ⅰ은 본 발명품의 강을 나타내고, Ⅱ는 비교강을 나타낸다.Note: I represents steel of the present invention, and II represents comparative steel.

표 8로부터 명백하듯이, 본 발명에 따른 강(E)은, 퀀칭·템퍼링후의 경도가 비교강(I)과 거의 동등함에도 불구하고, 상온 및 250℃에 있어서의 피로강도는 모두 비교강 (I)에 비해 우수함을 알 수 있다. 이것은, 강(E)의 Al 함유량이 0.020중량% 이하이기 때문에, 피로파괴의 기점으로 되는 경질개재물의 양이 적은 것에 기인하는 것이라도 생각된다. 또, 성분 및 조성이 본 발명에서 규정하는 범위에 있어도, 어니일링 경도가 HV550을 초과하면, 피로강도가 감소하고 있음을 알 수 있다.As is apparent from Table 8, the steel (E) according to the present invention, although the hardness after quenching and tempering is almost equivalent to that of the comparative steel (I), both the fatigue strength at room temperature and 250 ℃ is comparative steel (I It can be seen that it is superior to). This may be due to the fact that the Al content of the steel (E) is 0.020% by weight or less, due to the small amount of hard inclusions serving as a starting point for fatigue destruction. Moreover, even if a component and a composition exist in the range prescribed | regulated by this invention, when annealing hardness exceeds HV550, it turns out that a fatigue strength decreases.

내이완성은, 이완시험에 의해 조사하였다. 시험온도는 350℃, 초기변형은 1.0%, 유지시간은 12시간으로 각각 설정해서, 보전유지 전후에서의 하중저하율을 이완율로서 나타내었다. 시험결과를 표 9에 나타낸다.The relaxation resistance was investigated by the relaxation test. The test temperature was set at 350 ° C, the initial strain was 1.0%, and the holding time was 12 hours, respectively, and the load reduction rate before and after maintenance was expressed as a relaxation rate. The test results are shown in Table 9.

[표 9]TABLE 9

비교강(H),(J)은 각각 C함유량 및 Si함유량이 적으므로, 비교예에서 나타내는 바와 같이 이완율이 높은 값을 나타내고 있다.Comparative steels (H) and (J) each had a low C content and a Si content, and thus exhibited high relaxation rates as shown in the comparative examples.

또, Mo가 첨가되어 있지 않은 비교강(K)은, 내온간이완성에 유효한 Mo 탄화물이 석출하고 있지 않기 때문에, 극히 높은 이완값을 나타내고 있다. 또, 성분 및 조성에 관해 본 발명에서 규정한 범위에 있는 A,D,E,G에서도, 비교예 Ⅱ로서 나타내는 바와 같이, 템퍼링온도가 높게 되어서, 어니일링경도가 HV400을 하회하도록 되면, 이완값이 그다지 낮은 값으로 되지 않는다.In addition, comparative steel K to which Mo was not added exhibited extremely high relaxation values because Mo carbides effective for temperature resistance were not precipitated. In addition, even in A, D, E, and G in the range defined by the present invention regarding the component and composition, as shown in Comparative Example II, when the tempering temperature becomes high and the annealing hardness is less than HV400, the relaxation value This is not so low.

이것에 대해서, 강의 성분 조성 및 어니일링경도가 본 발명에서 규정하는 조건을 만족하는 것에 있어서는, 비교예에 비해서 현저히 낮은 이완율을 나타내고 있다. 이 결과, 본 발명에 따라 얻어진 강은, 온간에서의 내이완성이 우수함을 알 수 있다.On the other hand, when the component composition and annealing hardness of steel satisfy | fill the conditions prescribed | regulated by this invention, the relaxation rate is markedly low compared with a comparative example. As a result, it can be seen that the steel obtained according to the present invention is excellent in relaxation resistance at warm temperature.

Claims (9)

C : 0.4∼0.8중량%, Si=0.5-2.5중량% Mn : 0.3∼2.0중량%, Cr : 0.1∼1.5중량%, Mo : 0.1∼0.5중량%를 함유하고 나머지부가 Fe 및 불가피불순물로 이루어지는 강재를 열간압연하여 열연판을 제조하고, 전기한 열연판을 어니일링한 후 10∼80%의 압연율로 냉간압연하고, 이어서 전기한 냉연판을 Ac1 변태점 이하의 온도에서 어니일링한 다음 이 어니일링된 냉연판을 Ac3 변태점 이상의 온도에서 탄화물을 오오스테나이트화하기에 충분한 시간동안 가열유지하고, 전기한 가열유지된 냉연판을 하부임계냉각속도 이상으로 냉각한 후 이 냉각된 냉연판을 탄화물을 석출하기에 필요한 시간동안 가열한 다음 상온까지 냉각시키는 것으로 이루어지는 것을 특징으로 하는 스프링용 강의 제조방법.C: 0.4-0.8% by weight, Si = 0.5-2.5% by weight Mn: 0.3-2.0% by weight, Cr: 0.1-1.5% by weight, Mo: 0.1-0.5% by weight The remainder consists of Fe and unavoidable impurities Hot rolled to prepare a hot rolled sheet, annealing the hot rolled sheet and then cold rolled at a rolling rate of 10 to 80%, and then annealing the cold rolled sheet at a temperature below Ac1 transformation point and then annealing The cold rolled sheet is heated and maintained for a time sufficient to austenitize the carbide at a temperature above Ac3 transformation point, and the cooled cold rolled sheet is cooled above the lower critical cooling rate and the carbide is precipitated. Method for producing a spring steel, characterized in that for heating for a time required for the following and then cooled to room temperature. 제1항에 있어서, 강재는 V 및 Nb의 1종 또는 2종을 합계로 0.05∼0.5중량% 함유하는 것을 특징으로 하는 스프링용 강의 제조방법.The method for producing a spring steel according to claim 1, wherein the steel contains 0.05 to 0.5% by weight in total of one kind or two kinds of V and Nb. 제1항에 있어서, 강재는 0.020중량% 이하의 Al을 함유하는 것을 특징으로 하는 스프링용 강의 제조방법.The method for producing a spring steel according to claim 1, wherein the steel contains 0.020 wt% or less of Al. 제1항에 있어서, 냉각된 냉연판의 가열을 450∼600℃의 온도범위에서 하는 것을 특징으로 하는 스프링용 강의 제조방법.The method for producing a spring steel according to claim 1, wherein the cooled cold rolled sheet is heated at a temperature in the range of 450 to 600 占 폚. 제1항에 있어서, Si 함유량과 Cr 함유량은 하기의 식을 만족하도록 선택되는 것을 특징으로 하는 스프링용 강의 제조방법.The method for producing spring steel according to claim 1, wherein the Si content and the Cr content are selected to satisfy the following formula. -74×Si(%)-10×Cr(%)5-7 4 x Si (%)-10 x Cr (%) 5 제1항에 있어서, 가열된 냉연판의 냉각은 하부임계 냉각속도이상의 속도로 실시하는 것을 특징으로 하는 스프링용 강의 제조방법.The method of claim 1, wherein the cooling of the heated cold rolled sheet is performed at a speed higher than the lower critical cooling rate. 제3항에 있어서, 냉각된 냉연판을 가열하여 HV400∼HV550의 어니일링 경도를 보유하도록 하는 것을 특징으로 하는 스프링용 강의 제조방법.4. The method of claim 3, wherein the cooled cold rolled sheet is heated to maintain annealing hardness of HV400 to HV550. 제5항에 있어서, 냉연판의 어니일링을 550∼730℃의 온도범위에서 실시하여 평균탄화물입경이 2㎛ 이하가 되도록 하는 것을 특징으로 하는 스프링용 강의 제조방법.The method of manufacturing a steel for spring according to claim 5, wherein the annealing of the cold rolled sheet is carried out at a temperature range of 550 to 730 占 폚 so that the average carbide particle diameter is 2 mu m or less. C : 0.4~0.8중량%, Si : 0.5~2.5중량%, Mn : 0.3~2.0중량%, Cr : 0.1~1.5중량 %, Mo ; 0.1~0.5중량%를 함유하고, 나머지부가 Fe와 불가피불순물로 구성되어 있는 것을 특징으로 하는 스프링용 강.C: 0.4-0.8 weight%, Si: 0.5-2.5 weight%, Mn: 0.3-2.0 weight%, Cr: 0.1-1.5 weight%, Mo; A spring steel containing 0.1 to 0.5% by weight, with the remainder being composed of Fe and an unavoidable impurity.
KR1019910010243A 1990-06-19 1991-06-19 Method of making steel for spring KR930012177B1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2-158790 1990-06-19
JP???2-158790? 1990-06-19
JP15879090A JP2961666B2 (en) 1990-06-19 1990-06-19 Manufacturing method of spring steel with excellent resistance to warm set
JP???3-025076? 1991-01-28
JP???3-025077? 1991-01-28
JP3-025076 1991-01-28
JP3-025077 1991-01-28
JP2507791A JP2823965B2 (en) 1991-01-28 1991-01-28 Manufacturing method of steel for diaphragm spring
JP2507691A JP2952862B2 (en) 1991-01-28 1991-01-28 Manufacturing method of spring steel with excellent hardenability and warm set resistance

Publications (2)

Publication Number Publication Date
KR920000959A KR920000959A (en) 1992-01-29
KR930012177B1 true KR930012177B1 (en) 1993-12-24

Family

ID=27284887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910010243A KR930012177B1 (en) 1990-06-19 1991-06-19 Method of making steel for spring

Country Status (5)

Country Link
EP (1) EP0462779B1 (en)
KR (1) KR930012177B1 (en)
AU (1) AU633737B2 (en)
CA (1) CA2044639C (en)
DE (1) DE69121982T2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932943B2 (en) * 1993-11-04 1999-08-09 株式会社神戸製鋼所 High corrosion resistance and high strength steel for springs
SE502969C2 (en) * 1994-02-17 1996-03-04 Uddeholm Steel Strip Use of a steel alloy as material for coating scrapers in the form of cold rolled strips
GB2352726A (en) * 1999-08-04 2001-02-07 Secr Defence A steel and a heat treatment for steels
US7074282B2 (en) * 2000-12-20 2006-07-11 Kabushiki Kaisha Kobe Seiko Sho Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring
KR20040083545A (en) 2002-04-02 2004-10-02 가부시키가이샤 고베 세이코쇼 Steel wire for hard-drawn spring excellent in fatique strength and sag resistance, and hard-drawn spring
US7615186B2 (en) 2003-03-28 2009-11-10 Kobe Steel, Ltd. Spring steel excellent in sag resistance and fatigue property
JP4291639B2 (en) * 2003-08-28 2009-07-08 トヨタ自動車株式会社 Iron-based sintered alloy and method for producing the same
KR101056868B1 (en) * 2006-06-09 2011-08-12 가부시키가이샤 고베 세이코쇼 Steel and high clean springs with excellent fatigue properties
JP5624503B2 (en) 2011-03-04 2014-11-12 日本発條株式会社 Spring and manufacturing method thereof
CN106202937B (en) * 2016-01-28 2018-10-19 西北工业大学 M50 steel forgings make carbide size prediction technique in tissue
SE543422C2 (en) * 2019-06-07 2021-01-12 Voestalpine Prec Strip Ab Steel strip for flapper valves

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1290235A (en) * 1961-02-28 1962-04-13 Ct Tech De L Ind Horlogere Method of manufacturing springs or materials for steel springs and springs or materials obtained by this method, in particular springs for watch movements
JPS5827956A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior wear resistance
JPS5827955A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior hardenability and wear resistance
AU547648B2 (en) * 1981-09-30 1985-10-31 Aichi Steel Works Ltd. Steel for a vehicle suspension spring
JPH02240240A (en) * 1989-03-10 1990-09-25 Aisin Seiki Co Ltd Diaphragm spring of clutch for automobile use

Also Published As

Publication number Publication date
DE69121982D1 (en) 1996-10-17
DE69121982T2 (en) 1997-01-30
EP0462779A3 (en) 1993-09-01
AU7837391A (en) 1992-01-09
EP0462779B1 (en) 1996-09-11
AU633737B2 (en) 1993-02-04
CA2044639A1 (en) 1991-12-20
EP0462779A2 (en) 1991-12-27
KR920000959A (en) 1992-01-29
CA2044639C (en) 2001-08-28

Similar Documents

Publication Publication Date Title
WO2001048258A1 (en) Bar or wire product for use in cold forging and method for producing the same
KR20130058069A (en) Carburizing steel having excellent cold forgeability, and production method thereof
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
KR20130004307A (en) Steel component having excellent temper softening resistance
EP3885462A1 (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method therefor
EP3828300A1 (en) Wire rod for cold heading, processed product using same, and manufacturing methods therefor
KR930012177B1 (en) Method of making steel for spring
KR102289525B1 (en) Method for manufacturing hot stamping product and hot stamping product manufactured using the same
KR20180074008A (en) Steel wire rod having excellent hydrogen embrittlement resistance for high strength spring, and method for manufacturing the same
RU2768717C1 (en) Cold-rolled annealed steel sheet with high degree of hole expansion and method of its manufacturing
EP3020841B1 (en) Coil spring, and method for manufacturing same
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
KR101889172B1 (en) High strength steel wire rod having excellent corrosion resistance for spring, and method for manufacturing the same
KR20200062926A (en) Cold-rolled steel sheet having high resistance for hydrogen embrittlement and manufacturing method thereof
CN114787409B (en) Wire rod for high-strength cold heading quality steel having excellent hydrogen embrittlement resistance and method for manufacturing same
CN114929922B (en) Wire rod and part for cold forging each having excellent delayed fracture resistance characteristics and method for manufacturing the same
KR101289132B1 (en) High strength and toughness spring steel wire having excellent fatigue life, spring for the same and method for manufacturing thereof
CN107868905B (en) High carbon steel sheet and method for producing same
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JP2000144311A (en) High carbon thin steel sheet
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
KR20110075316A (en) High toughness spring steel wire having excellent fatigue life, spring for the same and method for manufacturing thereof
JPH11246943A (en) High strength valve spring and its manufacture
JPH0598357A (en) Production of tempering-free-type high carbon steel sheet
JP2961666B2 (en) Manufacturing method of spring steel with excellent resistance to warm set

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20011219

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee