JPS5827958A - Spring steel with superior yielding resistance - Google Patents

Spring steel with superior yielding resistance

Info

Publication number
JPS5827958A
JPS5827958A JP12628481A JP12628481A JPS5827958A JP S5827958 A JPS5827958 A JP S5827958A JP 12628481 A JP12628481 A JP 12628481A JP 12628481 A JP12628481 A JP 12628481A JP S5827958 A JPS5827958 A JP S5827958A
Authority
JP
Japan
Prior art keywords
steel
resistance
spring steel
copper
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12628481A
Other languages
Japanese (ja)
Other versions
JPS6121298B2 (en
Inventor
Toshiro Yamamoto
俊郎 山本
Ryohei Kobayashi
良平 小林
Mamoru Kurimoto
栗本 衛
Toshio Kosone
小曽根 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP12628481A priority Critical patent/JPS5827958A/en
Publication of JPS5827958A publication Critical patent/JPS5827958A/en
Publication of JPS6121298B2 publication Critical patent/JPS6121298B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a spring steel with superior yielding resistance by adding a specified percentage each of C, Si, Mn, W and Ta to Fe. CONSTITUTION:A steel consisting of, by weight, 0.50-0.80% C, 1.50-2.50% Si, 0.50-1.50% Mn, 0.05-1.00% W and/or 0.05-0.50% Ta, and the balance essentially Fe is prepared. To the steel may be added 1 or >=2 kinds among 0.05- 0.50% V, 0.05-0.50% Nb and 0.05-0.50% Mo, and/or 1 or >=2 kinds among 0.03-0.10% Al, 0.02-0.10% Ti and 0.02-0.10% Zr. A spring steel superior to SUP7 in yielding resistance and equal to SUP7 in fatigue resistance and toughness is obtd.

Description

【発明の詳細な説明】 本発明は、耐へたり性のすぐれたばね用鋼に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spring steel with excellent fatigue resistance.

従来、自動車等の懸架装置に用いられるばね用鋼として
は5UP6.SUPgが主なものてあった。近年自動車
の軽量化が要請され、懸架装置自体の軽量化も強く求め
られるようになってきた。
Conventionally, 5UP6. SUPg was the main thing. In recent years, there has been a demand for lighter automobiles, and there has also been a strong demand for lighter suspension systems themselves.

これに対して、懸架装置全般にわたって各種の手段が試
みられているが、その中でもばねの設計応力を上昇させ
る手段が効果的とされている。このように高応力設a1
にともない、従来の上記ばね用銅を素材としばねを製作
した場合、へたりが増大するという問題が発生した。特
に乗用車に用いた場合へたりの増大はバンパ高さの低下
につながりがなされた結果、ばね用鋼中の8+含有量を
増加させると耐へたり性が向上するということを見い出
し近時、S TJ P 6よりもさらにSt含有量が多
く1.s I S G 4 s o tに規定されるば
ね用鋼中では最も高SIのS U P 7が乗用車懸架
ばね用銅として広く使用されるに至っている。
In response to this, various measures have been attempted for suspension systems in general, but among these measures, a measure of increasing the design stress of the spring is considered to be effective. In this way, high stress setting a1
Accordingly, when a spring is manufactured using the above-mentioned conventional spring material, a problem arises in that the sag increases. In particular, when used in passenger cars, it has been found that an increase in fatigue is linked to a decrease in bumper height.As a result, it has been discovered that increasing the 8+ content in spring steel improves fatigue resistance.Recently, S It has a higher St content than TJ P 6 and 1. SUP 7, which has the highest SI among the steels for springs specified in s I S G 4 s o t, has come to be widely used as copper for suspension springs of passenger cars.

しかるに、懸架ばねの軽量化に対する要求は厳しいもの
があり、5UP7よりもさらに耐へたり性のすぐれたば
ね用銅の開発が強く望まれていた。
However, there are strict requirements for reducing the weight of suspension springs, and there has been a strong desire to develop copper for springs that is even more resistant to fatigue than 5UP7.

(3) 本発明はこのような背景の下に、本発明者等が研究を重
ねた結果、高Si ばね用銅に適量のW。
(3) Against this background, the present invention was developed as a result of repeated research by the present inventors, and was developed by adding an appropriate amount of W to high-Si spring copper.

Taを1種ないし2種あるいはそれにさらにAr。One or two types of Ta or further Ar.

Nl) 、 Moを1種ないし2種以」二、あるいはさ
らにA、 l 、 T + r Z rのうち1種ない
しは2種以上添加することにより、S TJ IF 7
 、J:りも耐へたり性が優れ、かつ、ばね用銅として
必要な耐疲労性、靭性についてもS U P 7と同等
の性能を有するばね用銅を開発したものである。
STJ IF 7 by adding one or more types of Nl), Mo, or one or more types of A, l, T + r Z r
, J: Rimo has developed copper for springs that has excellent fatigue resistance and also has the same performance as SUP 7 in terms of fatigue resistance and toughness required for copper for springs.

W、’l”a及びV、N11.Moは鋼中において炭化
物を形成し、これらの合金炭化物は焼入れ時の加熱に際
して、オーステナイト中に溶解する。これを急冷して焼
入れするとこれら元素を過飽和に固溶したマルテンサイ
トが得られる。これを焼もどしするとその過程で微細な
合金炭化物が再析出を始め、これが鋼中において転位の
動きを阻止し、二次硬化を生じ、W、Ta及びV 、 
Nl) 、 Moを添加しないばね用銅よりも硬さを上
昇させ、さらに耐へたり性を向上させる働きをする。
W, 'l''a, V, N11.Mo form carbides in steel, and these alloy carbides dissolve into austenite during heating during quenching. When this is rapidly cooled and quenched, these elements become supersaturated. Solid solution martensite is obtained. When this is tempered, fine alloy carbides begin to re-precipitate in the process, which prevents the movement of dislocations in the steel and causes secondary hardening, resulting in W, Ta, and V.
Nl) has the effect of increasing hardness compared to spring copper without the addition of Mo and further improving resistance to settling.

またA、 l 、 T 1 + Z rは鋼中において
、多くの(4) 、場合Nと結合して合金窒化物を形成し、オーステナイ
ト結晶粒を微細化するとともに、その粗大化を防止する
。このように微細化した結晶粒は転位の移動量を少なく
することにより耐へたり性を向上させる。
In addition, A, l, T 1 + Z r often combine with (4) and N in steel to form alloy nitrides, thereby refining austenite crystal grains and preventing their coarsening. The crystal grains refined in this manner improve the resistance to settling by reducing the amount of movement of dislocations.

また、前述のように二次硬化を生じるということは、同
−焼もどし硬さ範囲を狙う場合、従来鋼に比較して焼も
どし温度範囲をより広い範囲とすることが可能であり、
狙いの硬さが安定して得られることになる。このことを
さらに明らかにするため、後述の0.81%のWを含有
させたA1鋼、0.31%のTaを含有させたA2鋼、
0.45%のWと0,20%(7) T aを含有させ
たA3鋼とS U P7であるBl鋼とを300〜65
0℃の間で焼もどしを行ない、その硬さを測定した結果
を第1図に示した。WとTa を適宜に含有させたA1
〜八3鋼の本発明鋼は第1図から明らかなように硬さに
対応する焼もどし温度範囲は従来鋼に比べ広いことが認
められると同時に、2次硬化の生起を示す硬さの上昇が
550℃の焼もどし温度で見られる。
In addition, as mentioned above, secondary hardening means that when aiming for the same tempering hardness range, the tempering temperature range can be wider than that of conventional steel.
This means that the desired hardness can be stably obtained. In order to clarify this further, A1 steel containing 0.81% W, A2 steel containing 0.31% Ta, which will be described later,
A3 steel containing 0.45% W and 0.20% (7) Ta and SUP7 Bl steel were heated to 300 to 65%.
Figure 1 shows the results of tempering at 0°C and measuring the hardness. A1 containing W and Ta appropriately
As is clear from Figure 1, the steel of the present invention, 83 steel, has a wider tempering temperature range corresponding to hardness than the conventional steel, and at the same time shows an increase in hardness indicating the occurrence of secondary hardening. is observed at a tempering temperature of 550°C.

ρ、ρ2/        ρ・′ノ A8鋼、0.59%のWと←弁→%のAlとホ#幡%0
) T i を添加シタA、 9鋼、0.25%ノ’I
’a、Q。
ρ, ρ2/ ρ・′ノA8 steel, 0.59% W and ← Valve → % Al and Ho #幡% 0
) Addition of Ti A, 9 steel, 0.25% No'I
'a, Q.

0ヨ8%のAl、0.06%(1) T i を添加し
t: A 10鋼、0.22%のTaと0.067%0
’)A、(Jfx添加り、?、=A11鋼と従来鋼で5
UP7のBl鋼について実施した酸化法によるオーステ
ナイト結晶粒度の測定結果を第2図に示す。第2図から
明らかなように結晶粒の微細化元素であるAl 、Ti
 を添加することにより、従来鋼の5UP7に比べ、粒
度番号で約3程度結晶粒が微細化することがわかる。
0yo8% Al, 0.06%(1) Ti added: A10 steel, 0.22% Ta and 0.067%0
') A, (Jfx addition, ?, = 5 for A11 steel and conventional steel
Figure 2 shows the results of measuring the austenite grain size using the oxidation method on UP7 Bl steel. As is clear from Fig. 2, Al, Ti, which are elements for refining crystal grains,
It can be seen that by adding , the crystal grains become finer by about 3 in terms of grain size number compared to the conventional steel 5UP7.

本発明鋼の化学組織は、C! 0..50−0.80%
The chemical structure of the steel of the present invention is C! 0. .. 50-0.80%
.

Si  1.50〜2.50%、 Mn  0.50〜
1.50%を含有し、さらにwo、o5〜1.0%、’
I’a0.05〜0.50%のうち1種ないし2種を含
有し、使用目的によッテハさラニV o、o 5〜0.
50%、 Nl) 0゜05〜0.50%、 Mo 0
.05〜0.50%のうち1種ないし2種以上、あるい
はまたさらにA10.03〜0.10%、 Ti  0
.02〜0.10%、Zr□、02〜0.10%のうち
1種ないし2種以上を含有し、残り実質的にF cより
なるものである。
Si 1.50~2.50%, Mn 0.50~
Contains 1.50%, and further contains wo, o5~1.0%,'
Contains one or two of 0.05 to 0.50% of I'a, and has a content of 5 to 0.0% depending on the purpose of use.
50%, Nl) 0°05~0.50%, Mo 0
.. One or more of 05 to 0.50%, or further A10.03 to 0.10%, Ti 0
.. 02 to 0.10%, Zr□, and 02 to 0.10%, and the remainder substantially consists of Fc.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

C量を0.50〜0.80%としたのは、0.50%以
下では焼入れ、焼もどしにより高応力ばね用銅として十
分な強度が得られないためであり、080%を越えて含
有させると過共析鋼となり靭性の低下が著しくなるため
である。
The reason for setting the C content to 0.50 to 0.80% is because if it is less than 0.50%, sufficient strength cannot be obtained as copper for high stress springs by quenching and tempering. This is because, if it is, it becomes a hypereutectoid steel and the toughness decreases significantly.

S+  量を1.50〜250%としたのは、150%
以下ではSlの有するフェライト中に固溶することによ
り素地の強度を上げ、耐へたり性を改善するという効果
が十分に得られないためてあり、250%を越えて含有
させても耐へたり性向上の効果が飽和し、かっ、熱処理
により遊離炭素を生じる恐れがあるためである。
The S+ amount is 1.50-250%, which means 150%.
In the following cases, the effect of increasing the strength of the base material and improving the sagging resistance by solid solution in the ferrite possessed by Sl cannot be sufficiently obtained, and even if the content exceeds 250%, the sagging resistance will not increase. This is because the effect of improving properties may reach saturation and free carbon may be generated due to heat treatment.

M、 n量を0.50〜1..50%としたのは、05
0%以下ではばね用銅としての強度が不足し、さらに焼
入性の点でも不十分であるためてあり、1.50%を越
えて含有させると靭性を阻害するためである。
The amount of M and n is 0.50 to 1. .. 50% is 05
This is because if the content is less than 0%, the strength as copper for springs is insufficient, and furthermore, the hardenability is insufficient, and if the content exceeds 1.50%, the toughness is inhibited.

+71 W、Ta及びV 、 Nb 、 Mo i、tイずれも
本発明鋼においては耐へたり性を改善する元素である。
+71 W, Ta, V, Nb, Mo i, and t are all elements that improve the sag resistance in the steel of the present invention.

このような働きを奏する1゛a及びAr 、 Nb 、
 M。
1゛a, Ar, Nb, which play such a function
M.

の含有量を0.05〜0.50%とし、Wの含有量を0
05〜1.00%としたのは、005%以下では上記の
効果が十分に得られないためであり、Ta及びV、Nb
 、Moについては0.50%、Wについては1.00
%を越えて含有させてもその効果が飽和し、かつ、オー
ステナイト中に溶解されない合金炭化物量が増加し、大
きな塊となることにより非金属介在物的な作用が働いて
鋼の疲労強度を低下させる恐れがあるためである。  
   −これらのW、’l”、a及びV、 Nl) 、
 Mo ハ’cしぞれを単独で添加するほかに、2種な
いし3種を複合添加することにより、それらを単独で添
加した場合に比べ、より低い温度でオーステナイト中へ
の溶解を開始させ、また焼もどし過程において微細な合
金炭化物の析出は、二次硬化をより促進させることにJ
:り耐へたり性をさらに向上させるものである。
The content of W is 0.05 to 0.50%, and the content of W is 0.
The reason why it is set at 0.05% to 1.00% is that the above effect cannot be obtained sufficiently below 0.05%, and Ta, V, and Nb
, 0.50% for Mo, 1.00 for W
Even if the content exceeds %, the effect is saturated, and the amount of alloy carbide that is not dissolved in austenite increases, forming large lumps that act like nonmetallic inclusions and reduce the fatigue strength of steel. This is because there is a risk of causing
- these W, 'l'', a and V, Nl),
In addition to adding each Mo c'c individually, by adding two or three kinds in combination, dissolution into austenite starts at a lower temperature than when adding them alone, In addition, the precipitation of fine alloy carbides during the tempering process promotes secondary hardening.
: This further improves the fatigue resistance.

(8) また、結晶粒を微細化して耐へたり性を向上させるA 
l o +p l + Z rの含有量をAeについて
は、0.03−0.10%、T1 とZrにライては0
.02〜010%としたのは、それ以下ではこれらの窒
化物の分布が疎らで結晶粒の微細化に寄与しないからで
あり、0.10%を越えて含有させると熱間圧延時に割
れを発生したり、非金属介在物として鋼の靭性を劣化さ
せる恐れがあるためである。
(8) Also, A which improves the resistance to settling by making the crystal grains finer.
The content of l o + p l + Z r is 0.03-0.10% for Ae, and 0 for T1 and Zr.
.. The reason why the content is 0.02 to 0.10% is that if the content is less than 0.02%, the distribution of these nitrides will be sparse and will not contribute to grain refinement.If the content exceeds 0.10%, cracks will occur during hot rolling. This is because there is a possibility that the toughness of the steel may be deteriorated as non-metallic inclusions.

つぎに本発明鋼の特徴を従来鋼と比へ実施例でもって明
らかにする。
Next, the characteristics of the steel of the present invention will be clarified through examples in comparison with conventional steel.

第1表は、これらの供試鋼の化学成分を示すものである
Table 1 shows the chemical composition of these test steels.

ν入子 才穎 第    1     表 これらは、いずれも鋳造後、圧延比50以上で熱間圧延
を施して但試拐とした。
Table 1 All of these samples were hot rolled at a rolling ratio of 50 or more after casting, but were tested.

本発明1■の耐へたり特性をみるために前記供試鋼を素
拐として第2表に示す諸元を有するコイルばねを成形バ
最終硬さがn鼻c45〜55となるように焼入・焼もど
し処理を行った後、素線の剪断応力で一]、 1.5 
kg/−となるようにセツチングを加えてへたり試験片
を作製した。そしてこの試験片を20℃の一定温度で、
素線の剪断応力τ= 1.05 klj/−となる荷重
を加え、96時間経過(以下、これを長期荷重という)
した後のコイルばねのへたり隈を測定した。
In order to examine the fatigue resistance properties of the present invention 1, a coil spring having the specifications shown in Table 2 was prepared using the above-mentioned test steel and quenched to give a final hardness of c45 to c55.・After tempering, the shear stress of the wire is 1], 1.5
A set test piece was prepared by setting the weight to 1 kg/-. This test piece was then held at a constant temperature of 20°C.
A load such that the shear stress of the wire is τ = 1.05 klj/- is applied for 96 hours (hereinafter referred to as long-term load)
The fatigue of the coil spring was measured after

第     2     表 そして、上記試験片の硬さに対するへたり量を第3〜6
図に示した。第3〜6図より明らかなように、本発明鋼
である実質的にS TJ P 7にW 、 T a。
Table 2 The amount of set in relation to the hardness of the above test piece is shown in Table 3 to 6.
Shown in the figure. As is clear from FIGS. 3 to 6, W and Ta are substantially present in STJ P7, which is the steel of the present invention.

を1種ないし2種添加したA1−A3鋼(第3図)S 
TJ P 7にW 、 III aを1種ないし2種添
加し、さらにV 、 Nl+ 、 Moのうち1種ない
し2種以」二添加したA4〜A7鋼(第4図)、STJ
]F7にW。
A1-A3 steel (Fig. 3) S with one or two added
A4 to A7 steel (Fig. 4), STJ, in which one or two of W, IIIa and one or more of V, Nl+, and Mo are added to TJ P7 (Fig. 4).
]W to F7.

Taを1種ないし2種添加し、さらにAl、 T;。One or two types of Ta are added, and further Al and T;.

Zrのうち1種ないし2種以上添加したA8〜A11鋼
(第5図) 、5UP7にW、Ta を1種ないし2種
、さらにV、Nl)、MOのうち1種ないし2種以上、
さらにkl 、Ti 、Zrのうち1種ないし2種以上
添加したA、 12〜A、 15鋼(第6図)、いずれ
においても従来鋼で実質的にSU、PであるB1鋼に比
べて本発明鋼は優れた耐へたり性を有していることが認
められる。
A8 to A11 steels containing one or more of Zr (Fig. 5), 5UP7 with one or more of W and Ta (further V, Nl), one or more of MO,
Furthermore, steels A, 12 to A, and 15 (Fig. 6) to which one or more of Kl, Ti, and Zr were added had a higher concentration compared to B1 steel, which is a conventional steel and is essentially SU and P. It is recognized that the invented steel has excellent resistance to settling.

また、本発明鋼のなかでも析出強化元素であるW、 T
a、 、 V、 N1+等を単独で添加したものよりも
それらを複合添加したもの、さらに結晶粒の微細化元素
であるAI 、Ti等を添加した鋼の方がより優れた耐
へたり性を有していることが分かる。
In addition, among the steels of the present invention, W and T, which are precipitation-strengthening elements, are
Steels that have a combination of a, , V, N1+, etc. added, as well as grain refinement elements such as AI and Ti, have better resistance to settling than those that have them added alone. It can be seen that it has.

なお、へたり量は前記長期荷重を加える前にコイルばね
を一定の高さまで圧縮するに要した荷重P1と、前記長
期荷重を加えた後に同一の高さまで圧(縮するに要した
荷重P2とを測定し、その差△P(=P1−P 2) 
J:り次式を用いて算出したもので、剪断ひずみの単位
を有し、残留;綻剪断ひずみと称する値をもって評価し
た。
The amount of settling is determined by the load P1 required to compress the coil spring to a certain height before applying the long-term load, and the load P2 required to compress the coil spring to the same height after applying the long-term load. Measure the difference △P (=P1-P2)
J: Calculated using the following equation, and has a unit of shear strain, and was evaluated using a value called residual shear strain.

γR−上・K−fiu△P G   π(18 G;横弾性率(kQf/mrM)  D Hコイル中心
径(y+m)(■;素線径(m肩) K;ワールの修正係数(コイルばねの形状によ繰返し与
え疲労試験を行った結果、いずれのコイルばねも20万
回繰り返しをしても折損しなかっtこ 。
γR-Up・K-fiu△P G π (18 G; Transverse elastic modulus (kQf/mrM) D As a result of repeated fatigue tests using the same shape, none of the coil springs broke even after 200,000 cycles.

上述の如く本発明鋼は従来の高Si ばね用銅に適量の
W、Taを単独あるいは複合して添加させさらにV、N
l)、Moを単独あるいは複合して添加させ、あるいは
またさらにA I + T + r Z rを単独ある
いは複合して添加させることにより、従来の高St ば
ね用銅のすぐれた耐へたり性をさらに改善することに成
功したもので、かつ、ばね用銅として必要な耐疲労性、
靭性についても従来鋼と比べそん色のないもので、特に
乗用車懸架ばね用銅として極めて高い実用性を有するも
のである。
As mentioned above, the steel of the present invention is made by adding appropriate amounts of W and Ta, singly or in combination, to conventional high-Si spring copper, and further adding V and N.
l), by adding Mo alone or in combination, or by adding A I + T + r Zr alone or in combination, the excellent fatigue resistance of conventional high St copper for springs can be improved. We have succeeded in further improving the fatigue resistance required for copper for springs.
Its toughness is also comparable to that of conventional steel, and it has extremely high practicality, especially as copper for suspension springs for passenger cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼と従来鋼について焼入れ後、300〜
650℃の間で焼もどしを行い、その硬ト化温度におけ
るオーステナイト結晶粒度を酸化法によって測定した結
果を示した線図、第3〜第6図は本発明鋼と従来鋼の焼
入・焼もどし処理後T(&C45〜55の硬さの試験片
のへたり量を示した線図である。 !lv聞昭58−27958(5) 第4図
Figure 1 shows the steel of the present invention and the conventional steel after being quenched.
Diagrams showing the results of tempering at 650°C and measuring the austenite grain size at the hardening temperature using an oxidation method. It is a diagram showing the amount of settling of a test piece with a hardness of T (&C 45 to 55) after restoration treatment. !lv Bunsho 58-27958 (5)

Claims (1)

【特許請求の範囲】 1 重量比にしてCO,50〜0.80%、Fllil
。 50〜2.50%、  M、n  O,50〜1..5
0%と、WO,05〜1.00%、  ’I”’  0
.05〜0.50%のうち1種ないし2種を含有し、残
り実質的にFcよりなることを特徴とする耐へたり性の
優れたばね用鋼。 2 重量比にして(30,50〜0.80%、Sin。 50〜2.50%、 M、n  0.50〜1.50%
と、WO,05〜1.00%、  Ta  O,05〜
0.50%のうち1種ないし2種を含有し、さらにVo
、05〜0.50%、NbO,05〜0.50%、MO
o、05〜0.50%のうち1種ないし2種以上を含有
し、残り実質的にFeよりなることを特徴とする耐へた
り性の優れたばね用鋼。 3 重量比にして00.50〜080%、Sil。 50〜2.50%、 M、n  o、 5’O〜1..
50%と、Wo、05〜1.00%、  Ta  0.
05〜0.50%ノウち1種ないし2種を含有し、さら
にA[0,03〜0.10%、 Ti  0.02〜0
.10%、ZrQ、92〜0.10%のうち1種ないし
2種以上を含有し残り実質的にFcよりなることを特徴
とする耐へたり性の優れたばね用鋼。 4 重量比にしてCO,50〜0.80%、8tl。 50〜2.50%、、Mn  o、り 0〜1.50%
と、WO,05〜1.00%、  Ta  0.05〜
0.50%のうち1種ないし2種と、V 0.05〜0
.50%、Nb0105〜0.50%、MOo、05〜
0.50%のうち1種ないし2種以上と、さらにAl、
0.03〜0.10%、Ti 0102〜0.10%、
Zr0.02〜0.10%のうち1種ないし2種以上を
含有し、残り実質的にFeよりなることを特徴とする耐
へたり性の優れたばね用鋼。
[Claims] 1 CO, 50-0.80% by weight, Flil
. 50-2.50%, M, n O, 50-1. .. 5
0% and WO, 05~1.00%, 'I''' 0
.. 1. A spring steel having excellent fatigue resistance, characterized in that it contains one or two of Fc in an amount of 0.05 to 0.50%, and the remainder substantially consists of Fc. 2 Weight ratio (30,50-0.80%, Sin. 50-2.50%, M, n 0.50-1.50%
and WO, 05~1.00%, Ta O, 05~
Contains one or two of 0.50%, and further contains Vo
, 05-0.50%, NbO, 05-0.50%, MO
1. A spring steel having excellent fatigue resistance, characterized in that it contains one or more of the following: 3 00.50-080% by weight, Sil. 50-2.50%, M, no, 5'O-1. ..
50%, Wo, 05-1.00%, Ta 0.
Contains 0.05-0.50% of one or two types of Nochi, and further contains A [0.03-0.10%, Ti 0.02-0
.. 10%, ZrQ, and one or more of 92 to 0.10%, with the remainder substantially consisting of Fc. 4 CO, 50-0.80% by weight, 8 tl. 50-2.50%, Mno, Ri 0-1.50%
and WO, 05~1.00%, Ta 0.05~
One or two of 0.50% and V 0.05-0
.. 50%, Nb0105~0.50%, MOo, 05~
One or more of 0.50%, and further Al,
0.03-0.10%, Ti 0102-0.10%,
A spring steel having excellent resistance to setting, characterized in that it contains one or more of 0.02 to 0.10% of Zr, and the remainder substantially consists of Fe.
JP12628481A 1981-08-11 1981-08-11 Spring steel with superior yielding resistance Granted JPS5827958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12628481A JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12628481A JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Publications (2)

Publication Number Publication Date
JPS5827958A true JPS5827958A (en) 1983-02-18
JPS6121298B2 JPS6121298B2 (en) 1986-05-26

Family

ID=14931401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12628481A Granted JPS5827958A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Country Status (1)

Country Link
JP (1) JPS5827958A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128152A (en) * 1986-11-18 1988-05-31 Kobe Steel Ltd Spring steel having superior settling fatigue resistance
US5453139A (en) * 1990-10-24 1995-09-26 Consolidated Metal Products, Inc. Method of making cold formed high-strength steel parts
US5454888A (en) * 1990-10-24 1995-10-03 Consolidated Metal Products, Inc. Warm forming high-strength steel structural members
US5496425A (en) * 1990-10-24 1996-03-05 Consolidated Metal Products, Inc. Cold formed high-strength steel structural members
US5538566A (en) * 1990-10-24 1996-07-23 Consolidated Metal Products, Inc. Warm forming high strength steel parts
US5704998A (en) * 1990-10-24 1998-01-06 Consolidated Metal Products, Inc. Hot rolling high-strength steel structural members
US6325874B1 (en) 1999-12-03 2001-12-04 Consolidated Metal Products, Inc. Cold forming flat-rolled high-strength steel blanks into structural members
US6852181B2 (en) 2001-10-23 2005-02-08 Consolidated Metal Products, Inc. Flattened U-bolt and method
CN111690875A (en) * 2020-06-29 2020-09-22 马鞍山钢铁股份有限公司 Spring steel with good heat-resistant and impact-resistant properties and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127422A (en) * 1976-04-19 1977-10-26 Kobe Steel Ltd Spring steel with high fatigue resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127422A (en) * 1976-04-19 1977-10-26 Kobe Steel Ltd Spring steel with high fatigue resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128152A (en) * 1986-11-18 1988-05-31 Kobe Steel Ltd Spring steel having superior settling fatigue resistance
US5453139A (en) * 1990-10-24 1995-09-26 Consolidated Metal Products, Inc. Method of making cold formed high-strength steel parts
US5454888A (en) * 1990-10-24 1995-10-03 Consolidated Metal Products, Inc. Warm forming high-strength steel structural members
US5496425A (en) * 1990-10-24 1996-03-05 Consolidated Metal Products, Inc. Cold formed high-strength steel structural members
US5538566A (en) * 1990-10-24 1996-07-23 Consolidated Metal Products, Inc. Warm forming high strength steel parts
US5704998A (en) * 1990-10-24 1998-01-06 Consolidated Metal Products, Inc. Hot rolling high-strength steel structural members
US6325874B1 (en) 1999-12-03 2001-12-04 Consolidated Metal Products, Inc. Cold forming flat-rolled high-strength steel blanks into structural members
US6852181B2 (en) 2001-10-23 2005-02-08 Consolidated Metal Products, Inc. Flattened U-bolt and method
CN111690875A (en) * 2020-06-29 2020-09-22 马鞍山钢铁股份有限公司 Spring steel with good heat-resistant and impact-resistant properties and production method thereof

Also Published As

Publication number Publication date
JPS6121298B2 (en) 1986-05-26

Similar Documents

Publication Publication Date Title
US4770721A (en) Process of treating steel for a vehicle suspension spring to improve sag-resistance
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
US4544406A (en) Spring steel having a good sag-resistance and a good hardenability
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
EP2746420B1 (en) Spring steel and spring
US4448617A (en) Steel for a vehicle suspension spring having good sag-resistance
WO2020248459A1 (en) Heat treatment method for high-strength steel and product obtained therefrom
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPS5827958A (en) Spring steel with superior yielding resistance
JPS5941502B2 (en) Spring steel with excellent fatigue resistance
JPS5827959A (en) Spring steel with superior yielding resistance
JPH04157135A (en) Steel for high strength spring
JP3226737B2 (en) Low decarburized spring steel
JPS6237109B2 (en)
US4711675A (en) Process for improving the sag-resistance and hardenability of a spring steel
JPS5867847A (en) Spring steel excellent in fatigue resistance
JPH0830246B2 (en) High strength spring steel
JPS6237110B2 (en)
EP4060072A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
JPS6041686B2 (en) Manufacturing method for spring steel with excellent fatigue resistance
JP3276045B2 (en) Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same
JPS6041699B2 (en) Spring steel with excellent hardenability and fatigue resistance
GB2112810A (en) Steels for vehicle suspension springs
JPH06128689A (en) Spring steel excellent in permanent set resistance
JP2803891B2 (en) Manufacturing method of hot rolled steel sheet with excellent fatigue properties