JPS61212001A - Low resistance ptcr thermistor and manufacture thereof - Google Patents

Low resistance ptcr thermistor and manufacture thereof

Info

Publication number
JPS61212001A
JPS61212001A JP5236285A JP5236285A JPS61212001A JP S61212001 A JPS61212001 A JP S61212001A JP 5236285 A JP5236285 A JP 5236285A JP 5236285 A JP5236285 A JP 5236285A JP S61212001 A JPS61212001 A JP S61212001A
Authority
JP
Japan
Prior art keywords
particles
thermistor
ptor
low resistance
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5236285A
Other languages
Japanese (ja)
Other versions
JPH0314201B2 (en
Inventor
誠 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP5236285A priority Critical patent/JPS61212001A/en
Publication of JPS61212001A publication Critical patent/JPS61212001A/en
Publication of JPH0314201B2 publication Critical patent/JPH0314201B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なチタン酸バリウム系半導体磁器よりなる
FTORサーミスタ及びその製造方法に関するものであ
り、更に詳しくは、チタン酸ノZ +7ウムのキュリ一
点(スイッチング温度)以下での抵抗率が0.10(7
)以下であるような超低抵抗PTOサーミスタ及びその
製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a new FTOR thermistor made of barium titanate semiconductor ceramic and a method for manufacturing the same. Resistivity below one point (switching temperature) is 0.10 (7
) The present invention relates to an ultra-low resistance PTO thermistor and its manufacturing method as follows.

(従来の技術) 正の抵抗温度係数(以下PTOfLという)t−有する
チタン酸バリウム半導体磁器flPTORサーミスタと
して使用され、自己温度制御発熱体、従来このようなチ
タン酸バリウム半導体磁器はRaCO3とTiO7を主
原料としこnに微量の半導体化元素I La 、 Sb
 、 Y 、 Nb等フを添加した混合粉体の固相反応
によって得られる半導体粉末をプレス成形した後焼成し
て製造さnている。この方法によって得らn7cPTO
Rサーミスタは通常、異常粒成長した粒子からなる組織
をもつものが多く、得らnるP T OR効果の大きさ
C抵抗率の上昇比で云う)は一般に2〜4桁程度と小き
く、このFTOR効果を改良する目的で微量のMn ’
p Or等のアクセブタ−元素を添加したり、或はチタ
ン酸ノ々リウムを多孔質化し、その粒径を2〜5μm程
度にすることが行なわnており(例えば特開昭56−1
58401号参照)そのPTOR効果の大きさとしては
舵者では6〜7桁、後者では7〜9桁程度に改良さfし
た。
(Prior art) Barium titanate semiconductor porcelain flPTOR having a positive temperature coefficient of resistance (hereinafter referred to as PTOfL) is used as a self-temperature control heating element, and conventionally such barium titanate semiconductor porcelain mainly contains RaCO3 and TiO7. Trace amounts of semiconducting elements I La and Sb are used as raw materials and particles.
It is manufactured by press-molding semiconductor powder obtained by solid-phase reaction of a mixed powder to which fluorine, Y, Nb, etc. are added, and then firing it. n7cPTO obtained by this method
R thermistors usually have a structure consisting of particles with abnormal grain growth, and the magnitude of the P T OR effect obtained (referred to as the ratio of increase in resistivity) is generally as small as about 2 to 4 orders of magnitude. In order to improve this FTOR effect, a trace amount of Mn'
It has been done to add an acceptor element such as p-Or, or to make norium titanate porous to have a particle size of about 2 to 5 μm (for example, in JP-A-56-1).
(Refer to No. 58401) The magnitude of the PTOR effect was improved by 6 to 7 orders of magnitude for the helmsman, and about 7 to 9 orders of magnitude for the latter.

一方、チタン酸バリウム半導体のキュリ一点以下での抵
抗率の大きさはその応用においてFTORサーミスタの
スイッチング機能、印加電圧の大きさ、発熱量の大きさ
等に関連し、非常に重要な問題であるため従来より室温
での抵抗率が0.10個以下である低抵抗PTORサー
ミスタの開発が試みられてきた。しかしながら物質の抵
抗率ρは伝導電子の密度n%電子の電荷e及び電子の易
動度〃とすると、ρ= (n e II )  で表わ
されることから、FTORサーミスタの本体としてチタ
ン酸ノ々リウム半導体を用いる限りその室温での抵抗率
は粒子内の抵抗率に等しく最も良好なものでもn = 
2 X 1018cm−3、e=1.6X10″″19
0 、 Fl、0m−V−’イ1よりρ=3Ω傭となり
、室温すなわちキュリ一点以下での抵抗率を0.1Ωd
以下とすることば原理的に不可能であり、また実際にそ
のようなPTORサーミスターの製造の成功例もなかっ
た。
On the other hand, the magnitude of the resistivity of barium titanate semiconductors below the Curie point is a very important issue in its application, as it relates to the switching function of the FTOR thermistor, the magnitude of the applied voltage, the magnitude of heat generation, etc. Therefore, attempts have been made to develop a low resistance PTOR thermistor having a resistivity of 0.10 or less at room temperature. However, the resistivity ρ of a material is expressed as ρ = (n e II ), where the conduction electron density is n%, the electron charge e, and the electron mobility. As long as a semiconductor is used, its resistivity at room temperature is equal to the resistivity inside the particle, and even the best one has n =
2 X 1018cm-3, e=1.6X10''''19
0, Fl, 0m-V-'1, ρ = 3Ω, and the resistivity at room temperature, that is, below the Curie point, is 0.1Ωd.
The following is impossible in principle, and in fact, there has been no successful example of manufacturing such a PTOR thermistor.

(解決すべき問題点) 本発明者らは室温で0.1Ω備以下の低抵抗率を有し且
つPTOR効果の大きい低抵抗PTORサーミスタを提
供すべく種々研究を行った結果、本発明を完成するに至
ったのである。
(Problems to be Solved) The present inventors completed the present invention as a result of conducting various studies to provide a low resistance PTOR thermistor that has a low resistivity of 0.1Ω or less at room temperature and has a large PTOR effect. That's what I came to do.

(問題点を解決するための手段) 本発明の低抵抗PTC!R,サーミスタは金属導電性を
有するセラミック粒子の表面および粒界にチタン酸バリ
ウム表面層あるいは微粒子層が介在するものであって、
介在の状態としては金属導電性セラミック粒子の粒界に
均一の厚みのチタン酸バリウム表面層が存在する場合や
金属導電性セラミック粒子間の間隙(粒界厚み約1μm
以下)にチタン酸ハ13ウムの微粒子が存在する場合な
どがある。
(Means for solving the problem) Low resistance PTC of the present invention! R, thermistor has a barium titanate surface layer or a fine particle layer interposed on the surface and grain boundaries of ceramic particles having metal conductivity,
Examples of intervening conditions include cases in which a barium titanate surface layer with a uniform thickness exists at the grain boundaries of metal-conductive ceramic particles, and gaps between metal-conductive ceramic particles (grain boundary thickness of approximately 1 μm).
(below), there are cases where fine particles of ha-13ium titanate are present.

図面について説明すると、従来のチタン酸ノ々リウム系
半導体セラミックは第3図に示すように半導性チタン酸
ノ9リウム粒子が結合し、各粒子の表面はそのスイッチ
ング温度以上で絶縁性チタン酸ノ9リウムで覆われる構
造となるが、本発明にあっては第1図に示すように半導
性チタン酸ノ9リウム粒子を金属導電性物質でおきかえ
たもので該物質の各粒子の表面はスイッチング温度以上
で絶縁性チタン酸バリウム表面層で覆わ;7’lまた、
第2図に示すようK、その金属導電性粒子の粒子間の間
隙に半導性チタン酸バリウムを介在させたものである。
To explain the drawings, as shown in Figure 3, in the conventional Norium titanate-based semiconductor ceramic, semiconducting Norium titanate particles are bonded together, and the surface of each particle becomes insulating Titanate at a temperature higher than its switching temperature. However, in the present invention, as shown in FIG. 1, the semiconductive particles of Norium titanate are replaced with a metal conductive substance, and the surface of each particle of the substance is is covered with an insulating barium titanate surface layer above the switching temperature;
As shown in FIG. 2, semiconducting barium titanate is interposed in the gaps between the metal conductive particles.

本発明における金属導電性物質には導電性の高い例えば
ランタン添加チタン酸ストロンチウム(Lmxarl−
xTHO3)や鉛酸、6リウム(BaPb03)などが
ある、。しかして、本発明のような複合組織を有するサ
ーミスタは粒界部のチタン酸ノ々IJウムがPTOR特
性を与え骨格の金属導電性粒子が全体の抵抗率を下げる
役目をはたしている。
The metal conductive substance used in the present invention has high conductivity, such as lanthanum-doped strontium titanate (Lmxarl-
xTHO3), lead acid, hexalium (BaPb03), etc. Thus, in the thermistor having a composite structure as in the present invention, the nitride titanate in the grain boundary portion provides PTOR characteristics, and the metal conductive particles in the skeleton serve to lower the overall resistivity.

また、本発明の低抵抗PTORサーミスタの製造法は金
属導電性粒子の表面に半導体化元素を添加した8 a 
T i Os超微粒子をコーテングした後、得られた粒
子を加圧成形し焼結することからなる。こ粒子層が拡散
により金属性導電性粒子に吸収されないようにしなけn
ばならず、通常ホットプレス法あるいは常圧燃結法を用
い1300℃以下での焼結条件下で行う。いま一つの方
法は、そnらの混合物を通常1300〜1400℃の温
度で焼結し、その冷却過程でB a T + 03成分
を粒界に析出させ粒子表面にRaT i O5の極めて
薄い表面層を形成するものである。
In addition, the method for manufacturing the low resistance PTOR thermistor of the present invention involves adding a semiconductor element to the surface of metal conductive particles.
After coating the TiOs ultrafine particles, the resulting particles are pressure-molded and sintered. This particle layer must be prevented from being absorbed by the metallic conductive particles by diffusion.
Usually, the hot press method or normal pressure sintering method is used under sintering conditions at 1300° C. or lower. Another method is to sinter the mixture at a temperature of usually 1,300 to 1,400°C, and during the cooling process, the B a T + 03 component is precipitated at the grain boundaries, resulting in an extremely thin surface of RaTi O5 on the grain surface. It forms a layer.

本発明においては現在知らnている先に述べたようなP
TOR効果を大にする手段を併用することにより室温で
0.1Ω削以下の低抵抗を有し且つPTOR効果の大き
いサーミスタを得ることができる。すなわちRaTiO
3にアクセプター元素を添加したりB a T i O
Bを多孔質とするような焼結条件を採用して介在するR
 a T i Osを多孔質化することにより低抵抗に
してP T OR効果の大きいサーミスタを得る。次に
実施例をもって本発明を説明する。
In the present invention, the currently known P
By using means for increasing the TOR effect in combination, it is possible to obtain a thermistor having a low resistance of 0.1Ω or less at room temperature and a large PTOR effect. That is, RaTiO
Adding an acceptor element to 3 or B a T i O
By adopting sintering conditions that make B porous, the intervening R
By making a TiOs porous, a thermistor with low resistance and a large P T OR effect is obtained. Next, the present invention will be explained with reference to examples.

実施例1 0.010閉程度の抵抗率を有するランタン添加チタン
酸ストロンチウム(Lax8r1−x’[”i03 X
=0.01〜0.02 )粒子を調整し、その粒径を約
50μm程度に揃える。ついで、この金属導電粒子の表
面にマイクロカプセル技術を応用して半導体化元素を添
加し7(0,01μm以下のB a T r Os微粒
子をコーテングし、このようにして得た粒子粉体を加圧
成形しホットプレス法もしくは常圧焼結法により焼結す
る。
Example 1 Lanthanum-doped strontium titanate (Lax8r1-x'["i03
=0.01 to 0.02) Adjust the particles so that the particle size is approximately 50 μm. Next, a semiconductor element is added to the surface of the metal conductive particles by applying microcapsule technology to coat them with B a T r Os fine particles of 0.01 μm or less, and the thus obtained particle powder is processed. It is pressed and sintered using the hot press method or pressureless sintering method.

焼結に際しては、表面の8a T i O3層が拡散に
より完全に5iTi03層に吸収さnてしまわないよう
にする必要がある。また、焼結船の加圧成形体の密度を
出来るだけ高くすることにより表面のF1aTi034
同士のみの焼結反応を進めることが可能となる。
During sintering, it is necessary to prevent the 8a TiO3 layer on the surface from being completely absorbed into the 5iTi03 layer by diffusion. In addition, by increasing the density of the press-formed body of the sintered ship as much as possible, the F1aTi034 on the surface
It becomes possible to proceed with the sintering reaction between the two.

Ra T + OsとS r T + Osは完全固溶
系物質であるので2相聞の分離や剥離を生ずることなく
熱的に安定な焼結体が得られる。この焼結体は第1図に
示すような組織構造を呈する。また[F]lに示す組織
構造をもつP T OR焼結体は上記の襟付組成粉体を
常圧焼結法により一旦1350℃以上の温度で焼結し、
その後冷却過程で多段冷却法を用いるか、熱処理を行う
ことによっても得られる。
Since Ra T + Os and S r T + Os are completely solid solution substances, a thermally stable sintered body can be obtained without separation or peeling between the two phases. This sintered body exhibits a microstructure as shown in FIG. In addition, the P T OR sintered body having the structure shown in [F]l is obtained by sintering the above-mentioned collared composition powder at a temperature of 1350°C or higher by an atmospheric pressure sintering method.
It can also be obtained by using a multi-stage cooling method in the subsequent cooling process or by performing heat treatment.

なお、こnに適量のアクセプタ元素を粒界に添加するこ
とにより良好なPTOR特性を得ることができる。
Note that good PTOR characteristics can be obtained by adding an appropriate amount of an acceptor element to the grain boundaries.

実施例2 実施例1と同様に約50pm程度のLaxSrl−xT
iO2やBaPbO3の金属導電性を示す粒子を調製し
、これに約0.1μm程度の粒径を有する半導性Ba’
ri03粉体を混合し、Ra T’ i 05粒子が金
属導電性粒子を取り囲むようにする。このようにして得
り混合粉体を加圧成形し焼結する。この際、実施例1と
同様に焼結条件を制御しB a T + Os粒子間の
焼結反応が主として進行するようにし、Ra’I’i0
3粒子が金属導電性粒子に吸収さnないようにする。金
属導電性粒子間のRaTi036を粒子はその焼結過程
で約0.3μm程度に成長するような焼結条件で焼結し
て多孔質化する。
Example 2 LaxSrl-xT of about 50 pm as in Example 1
Particles exhibiting metallic conductivity such as iO2 or BaPbO3 are prepared, and semiconductive Ba' having a particle size of approximately 0.1 μm is added to the particles.
The ri03 powder is mixed so that the Ra T' i05 particles surround the metal conductive particles. The thus obtained mixed powder is press-molded and sintered. At this time, the sintering conditions were controlled in the same manner as in Example 1 so that the sintering reaction between B a T + Os particles mainly proceeded, and Ra'I'i0
3. Prevent the particles from being absorbed by the metal conductive particles. The RaTi036 particles between the metal conductive particles are sintered to become porous under sintering conditions such that the particles grow to about 0.3 μm during the sintering process.

得らnた焼結体は第2図のような襟付組織構造をン。The obtained sintered body had a collared structure as shown in Figure 2.

呈する。present.

(作用) 次に本発明で得られる組織を有するPT、ORサーミス
タがキュリ一点以下で0.1Ωd以下の抵抗率を有し、
3桁以上のPTOFL効果を示すことを説明する。すな
わち材料の抵抗率ρは金属導電性粒子の抵抗率ρLm)
と粒界のRa T i 03の抵抗率ρ(s)で表わし
、全抵抗は粒内抵抗と粒界抵抗の直列接゛続によって表
わされるので次のようになる。
(Function) Next, the PT, OR thermistor having the structure obtained by the present invention has a resistivity of less than one Curie point and less than 0.1 Ωd,
It will be explained that it shows a PTOFL effect of three orders of magnitude or more. In other words, the resistivity ρ of the material is the resistivity ρLm of the metal conductive particles)
and the resistivity ρ(s) of the grain boundary Ra T i 03, and the total resistance is represented by the series connection of the intragrain resistance and the grain boundary resistance, so it is as follows.

ρ;ρ Cm)  + ρ is)・ r(s)/γ 
(m)ここでγ(m)は金属導電性粒子の粒径、r C
s)は粒界層の厚みである。しかして、ρ(m)=0.
010備。
ρ; ρ Cm) + ρ is)・r(s)/γ
(m) where γ(m) is the particle size of the metal conductive particles, r C
s) is the thickness of the grain boundary layer. Therefore, ρ(m)=0.
010 prepared.

ρ(s ) = 3ΩQでr(m)=50μm%r(s
)=1μm(BaTiO3粒子3個分の厚み)とすると
、ρ=0.07Ω備となり、γ(m) f更に大きくす
ることによりρは0.050備程度に下げることができ
る。
ρ(s) = 3ΩQ and r(m) = 50μm%r(s
) = 1 μm (thickness of 3 BaTiO3 particles), then ρ = 0.07Ω, and by increasing γ(m) f further, ρ can be lowered to about 0.050Ω.

また、このような低抵抗素子を回路に直接挿入(2て用
いた場合、素子にか\る端子間電圧は回路の負荷抵抗値
との関係から1■以上とけならないのが普通であるので
厚み1cPJtのPTORのサーミスタに1■の電圧が
印加さnると粒界には約50V /carの電圧が掛る
ことKなりこの程度の電界ではPTOR,効果に著しい
劣fヒは見らnないことから、本来6桁以上の大きざの
PTOR効果を示すRa’ri03粒子はこの程度の電
界の下で実用上充分な大きさの3桁以上のPTOR効果
を示すこととなる。
In addition, when such a low-resistance element is directly inserted into a circuit (2), the voltage across the terminals of the element usually does not exceed 1μ due to the relationship with the load resistance value of the circuit, so the thickness When a voltage of 1 cm is applied to a PTOR thermistor of 1 cPJt, a voltage of approximately 50 V/car is applied to the grain boundaries, so there is no noticeable deterioration in the PTOR effect with this level of electric field. Therefore, the Ra'ri03 particles, which originally exhibit a PTOR effect of six orders of magnitude or more, exhibit a PTOR effect of three orders of magnitude or more, which is sufficiently large for practical use, under this level of electric field.

(効果り 以上述べたように本発明はPTOR効果を低下きせるこ
とな(キュリ一点以下の抵抗率が0.1Ω傭という低抵
抗PTOFLサーミスタt−提供することができ、こn
によりPTORサーミスタを直接電源ライン中に挿入し
無接点スイッチとして各fin’1路の過熱防止用素子
とし7て充分利用することができる。
(Effects) As described above, the present invention can provide a low-resistance PTOFL thermistor with a resistivity of 0.1Ω or less, without reducing the PTOR effect.
Therefore, the PTOR thermistor can be inserted directly into the power supply line and can be fully utilized as a non-contact switch and as an overheating prevention element 7 for each fin'1 path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低抵抗P 1’ ORサーミスタの組
織構造を示す説明図、第2因は本発明の低抵抗FTOR
サーミスタの他の実施例の組織構造の説明図、第3図は
従来のBaTiO3系PTORサーミスタの組織構造の
説明図である。 1・・・金属導電性セラミック粒子、2・・・半導性チ
タン酸バリウム微粒子、3・・・極めて薄い絶縁性チタ
ン酸バリウム表面層 手続補正書 昭和60年4月17日
FIG. 1 is an explanatory diagram showing the organizational structure of the low resistance P 1' OR thermistor of the present invention, and the second factor is the low resistance FTOR of the present invention.
FIG. 3 is an explanatory diagram of the organizational structure of another embodiment of the thermistor. FIG. 3 is an explanatory diagram of the organizational structure of a conventional BaTiO3-based PTOR thermistor. 1...Metal conductive ceramic particles, 2...Semiconductive barium titanate fine particles, 3...Extremely thin insulating barium titanate surface layer procedural amendment April 17, 1985

Claims (1)

【特許請求の範囲】 1、金属導電性を有するセラミック粒子の表面および粒
界にチタン酸バリウム微粒子層が介在していることを特
徴とする低抵抗PTORサーミスタ 2、金属導電性物質よりなる粒子の表面に半導体化元素
を添加したBaTiO_3超微粒子をコーテングし得ら
れた粒子を加圧成形したのち焼結することもしくはそれ
らの混合物を焼結し、その冷却過程で拡散析出法により
金属導電性物質の粒子表面に極めて薄いBaTiO_3
表面積を形成することを特徴とする低抵抗PTCRサー
ミスタの製造方法
[Claims] 1. A low-resistance PTOR thermistor characterized in that a barium titanate fine particle layer is interposed on the surface and grain boundaries of ceramic particles having metal conductivity.2. The surface of BaTiO_3 ultrafine particles added with semiconducting elements is coated, the resulting particles are pressure-molded and then sintered, or a mixture thereof is sintered, and during the cooling process, a metal conductive material is formed by diffusion precipitation. Extremely thin BaTiO_3 on the particle surface
Method for manufacturing a low resistance PTCR thermistor characterized by forming a surface area
JP5236285A 1985-03-18 1985-03-18 Low resistance ptcr thermistor and manufacture thereof Granted JPS61212001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5236285A JPS61212001A (en) 1985-03-18 1985-03-18 Low resistance ptcr thermistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5236285A JPS61212001A (en) 1985-03-18 1985-03-18 Low resistance ptcr thermistor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61212001A true JPS61212001A (en) 1986-09-20
JPH0314201B2 JPH0314201B2 (en) 1991-02-26

Family

ID=12912693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5236285A Granted JPS61212001A (en) 1985-03-18 1985-03-18 Low resistance ptcr thermistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61212001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044201A1 (en) * 2021-02-12 2022-08-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A composite thermistor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044201A1 (en) * 2021-02-12 2022-08-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A composite thermistor element
WO2022173288A1 (en) * 2021-02-12 2022-08-18 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno A composite thermistor element

Also Published As

Publication number Publication date
JPH0314201B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JPS6166391A (en) Self-temperature control type heater
US3044968A (en) Positive temperature coefficient thermistor materials
JPS61212001A (en) Low resistance ptcr thermistor and manufacture thereof
KR20030024084A (en) A PTC ceramic pre-heater and the preparing method thereof
JPS6255281B2 (en)
JPH10101413A (en) Ptc ceramic, its production and heater
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JP2971689B2 (en) Grain boundary type semiconductor porcelain capacitor
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158210A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS58123714A (en) Grain boundary layer type porcelain dielectric material and method of producing same
KR0147969B1 (en) A ceramic composite for ptc thermister
JP2612247B2 (en) Manufacturing method of NTC thermistor
JPS58116702A (en) Semiconductive barium titanate material
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JP2000016866A (en) Production of barium titanate-based semiconductor material
JPS61101003A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPH0534808B2 (en)
JPS6138603B2 (en)
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158208A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH04365B2 (en)
JPS6158207A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6064403A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH0534807B2 (en)